Меню Рубрики

Двигатели для гребных электрических установок

Схемы применяемых гребных установок

Виды и типы гребных установок

ТЕМА 1. ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ О ГРЕБНЫХ ЭЛЕКТРИЧЕСКИХ УСТАНОВКАХ

Судовые энергетические установки состоят из источника энергии, расположенного на судне, механизма передачи и механического движителя, преобразующего механическую энергию вращения в энергию поступательного движения судна.

Источники энергии на судах – в основном тепловые двигатели – дизели и паровые или газовые турбины. В них энергия топлива или тепловая энергия преобразуется в механическую.

Передача энергии от тепловых двигателей к судовым движителям может быть механической, гидравлической или электрической.

Установки с электрической передачей энергии к гребным винтам называются гребными электрическими установками – ГЭУ.

Надежными и экономичными гребными установками являются установки, которые включают тихоходные (низкооборотные) дизели 1, (рис.1.1) соединяемые непосредственно с гребными валами, на которых находятся гребные винты. Сила упора, развиваемая гребным винтом 3, передается корпусу судна через упорный подшипник 2.

Рис.1.1. Дизельная гребная установка

На судах с энергоустановками большой мощности и на быстроходных пассажирских лайнерах гребные винты 3 приводятся во вращение паровыми турбинами 1 с зубчатыми редукторами 4 (рис.1.2). Их называют турбозубчатыми агрегатами (ТЗА).

Рис.1.2. Гребная установка с паровой турбиной

На судах с атомными энергетическими установками тепловая энергия из атомных реакторов, преобразуется в механическую энергию также при помощи тепловых двигателей – паровых или газовых турбин. Атомные энергетические силовые установки (АЭСУ) значительно сложнее других установок, имеют высокую степень автоматизации, требуют большего числа квалифицированного обслуживающего персонала. Применение АЭСУ оправданно для крупнотоннажных танкеров и ледоколов, т.к. при этом увеличивается полезный объем, автономность плавания и сокращаются простои, необходимые для пополнения топливом.

Гребные электрические установки (ГЭУ) состоят из тепловых двигателей 1 (рис.1.3), которые работают на генераторы 2, постоянного или переменного тока 2, электроэнергия генераторов подается на гребные электродвигатели 3, через щит управления 4.

Рис.1.3. Схема гребной электрической установки

Гребные электродвигатели соединены с движителями (чаще всего с гребными винтами).

Также в схеме ГЭУ имеется система возбуждения 5. Пост управления ГЭУ 6 предназначен для управления схемой ГЭУ через системы ручного или автоматизированного управления 7.

ГЭУ позволяют уменьшить шумы, позволяют часто менять скорость и направление движения, а энергетическая установка может использоваться также и для питания других судовых механизмов.


1.3. Требования к ГЭУ. Достоинства и недостатки ГЭУ.

ГЭУ, как и все судовое оборудование должны обладать высокой надёжностью и безотказностью, а также иметь простое устройство и быть безопасными для обслуживания. ГЭУ не должны полностью выходить из строя и вызывать остановку судна в случае повреждения одного теплового двигателя, генератора, электродвигателя или системы управления ими.

Достоинства ГЭУ по сравнению с другими видами передачи:

— Для ГЭУ используются тепловые двигатели с высокой частотой вращения, что уменьшает массу.

— Отсутствие непосредственного соединения вала теплового двигателя с гребным валом позволяет оптимизировать режим работы и размеры судового движителя и уменьшить длину соединительных валов.

— Есть возможность переключения генераторов и гребных электродвигателей (ГЭД) в аварийных ситуациях для сохранения хода судна.

— Простота управления по сравнению с другими видами передачи;

— Высокая экономичность на малом и среднем ходе;

— В дизель — электрических ГЭУ можно применять агрегатный метод ремонта (каждый узел ремонтируют свои специалисты одновременно).

— Применения ГЭУ устраняет передачу вибрации гребного винта и ударов тепловым двигателям

Наряду с достоинствами ГЭУ имеют и недостатки:

1.- При электрической передачи в генераторах и ГЭД появляются дополнительные потери, снижающие к.п.д.- 5-8%

2.- Применение ГЭУ без автоматического управления требует увеличения обслуживающего персонала.

3.- ГЭУ имеют повышенные эксплуатационные расходы, но это часто компенсируется увеличением полезного груза.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8807 — | 8342 — или читать все.

источник

Схемы включения генераторов и гребных двигателей ГЭУ постоянного тока

В ГЭУ постоянного тока используется ряд вариантов основных схем включения генераторов и гребных электрических двигателей. Некоторые из них приведены на рис.

Рис. 14.1. Схемы соединения генераторов и двигателей в ГЭУ постоянного тока

Схема с последователь­ным включением генераторов и якоря двигателя (рис. 14.1, а) позволяет получить повышенное напряжение питания двигателя, поскольку напряжения генераторов сумми­руются при номинальном токе генератора.

Например, если напряжение генератора 600 В, то на двигатель будет подано 1200 В. По требованию Правил Регистра — это пре­дельное значение напряжения, которое допустимо между двумя любыми точками цепи главного тока ГЭУ.

В ГЭУ с последовательным соединением генераторов возможна опасная аварийная ситуация, если один из первичных двигате­лей лишается подачи топлива, например, из-за заклинивания топливного насоса ди­зеля.

Через генератор продолжает при этом идти ток главной цепи. Создается большой отрицательный момент на валу генератора, который остановит аварийный первичный двигатель и начнет вращать его в обратную сторону, что приведет к крупным поврежде­ниям дизеля. Эту ситуацию следует быстро фиксировать соответствующими датчиками ( часто

ты вращения, давлении воды, масла), которые выдают сигнал аварийной остановки и обес­печивают снятие возбуждения генератора.

Схема с параллельным включением генераторов (рис. 14.1, б) обеспечивает удобство включения и отключения отдельных гене­раторов.

Если генераторы установлены на одном валу, то равно­мерность их нагрузки обеспечивается относительно просто. Если генераторы имеют различные первичные двигатели, то равномер­ное распределение нагрузок достигается с помощью дополнитель­ных мер, например путем введения перекрестных связей между последовательными обмотками возбуждения.

На рис. 14.1. в при­веден пример схемы одноконтурной ГЭУ с последовательным со­единением четырех генераторов и двух двигателей. Такая схема, в которой чередуются пара генераторов и один двигатель, позволяет понизить напряжения между любыми двумя точками цепи до двойного напряжения одного генератора и тем самым повысить безопас-

Читайте также:  Starline a93 установка времени прогрева двигателя

ГЭУ такого состава генераторов и ГЭД может иметь и двухконтурную струк­туру: каждый электродвигатель питается от своей пары последова­тельно (или параллельно) соединенных генераторов. Два контура ГЭУ обеспечивают большую надежность работы установки в целом.

2.3. Принципиальная схема дизельной электрической уста­новки (ДГЭУ) на постоянном токе

Пример принципиальной схемы дизельной электрической уста­новки (ДГЭУ) на постоянном токе показан на рис. 14.2.

Рис. 14.2. Принципиальная схема дизельной электрической уста­новки на постоянном токе

Подобные . схемы используются на буксирах, судах ледового плавания и ледоколах

Основные элементы установки:

1. первичный двигатель ПД, частота вращения которого поддерживается постоянной регуля­тором Р, изменяющим расход топлива;

2. генератор постоянного тока Г с двумя обмотками возбуждения;

4. возбудительный агрегат, состоящий из асинхронного приводного двигателя АД, возбудителя генератора ВГ и возбудителя двига­теля ВД;

5. : пост управления ПУ, расположенный в ходовой рубке или ЦПУ.

При перемещении рукоятки на ПУ из нулевого в за­данное положение движок потенциометра ПР смещается из поло­жения «0» и напряжение подается на первую обмотку возбудителя, по которой пойдет ток возбуждения возбудителя генератора I , создающий поток возбуждения возбудителя генератора Ф .

В возбудителе генератора ВГ появляется ЭДС, создающая ток в его обмотке самовозбуждения, ток в обмотке возбуждения генератора и свя­занный с ним поток Ф .

В генераторе возникает ЭДС, которая соз­дает ток I в якорной цепи генератора и двигателя. Двигатель имеет постоянный поток возбуждения Ф , и поэтому при появле­нии тока I возникает момент М, вращающий якорь двигателя и винт.

Для ограничения тока при пуске и создания мягкой характе­ристики ГЭУ предусматривается обратная отрицательная связь по току: пропорционально току I возникает поток Ф второй об­мотки возбуждения, размагничивающей ВГ и тем самым ослабляющий ЭДС генератора.

Такая схема называется схемой с трехобмоточным возбудителем. Компенсационная обмотка КО и об­мотки дополнительных полюсов ДП электродвигателя играют в схеме роль сопротивления, падение напряжения на котором пропорционально току I.

18. ГЭУ переменного тока. Структурные схемы.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8807 — | 8342 — или читать все.

источник

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

07.07.2011

Гребные электрические установки. Особенности электропривода гребных винтов

Кроме механической передачи энергии от главного двигателя к гребному винту, на судах применяется электрическая передача. В этом случае главный двигатель вращает установленный на одном валу с ним электрический генератор. Вырабатываемая им электрическая энергия передается по кабельным сетям к гребному электродвигателю, который соединен непосредственно с гребным винтом. Основной особенностью электропривода гребных винтов является отсутствие жесткой связи между главным двигателем, вращающим генератор, и движителем (винтом), приводимым в движение гребным электродвигателем.

Механическая независимость главного двигателя и движителя создает ряд преимуществ строительного и эксплуатационного характера гребных электрических установок (ГЭУ) по сравнению с механической передачей.

Преимущества ГЭУ строительного характера:

  • возможность применения быстроходных главных двигателей (дизелей, паровых и газовых турбин), меньших по массе и габаритным размерам;
  • более удобное размещение главных агрегатов и гребных электродвигателей на судне;
  • возможность выбора числа и мощности главных двигателей с генераторами электрической энергии независимо от числа гребных электродвигателей, что повышает маневренность, надежность и экономичность судна;
  • меньшие размеры машинного отделения для судовых энергетических установок с быстроходными главными двигателями; кроме экономии площади, достигается и уменьшение высоты машинного отделения, это особенно важно для речных судов с малой осадкой;
  • возможность установки более дешевых и легких нереверсивных главных двигателей, короткого гребного вала, не занимающего своим тоннелем трюмных помещений;
  • возможность выбора оптимальных параметров гребных винтов в целях уменьшения их радиальных размеров, это имеет большое значение для речных судов с малой осадкой;
  • применение двухъякорных гребных электродвигателей, имеющих в одном корпусе два якоря и две магнитные системы, что приводит к уменьшению радиальных размеров двигателя и увеличивает его надежность, так как при аварии одного из якорей можно работать на втором;
  • возможность использования одного главного двигателя для вращения двух или нескольких генераторов, что позволяет питать электрической энергией, кроме гребной установки, электроприводы вспомогательных механизмов и освещение во время хода судна.

Преимущества ГЭУ эксплуатационного характера:

  • возможность работы гребной установки при неполном числе главных генераторов, но при наиболее выгодных технико-экономических показателях, что особенно важно при движении судна с пониженной скоростью и использовании полной мощности отдельных генераторов при всех режимах работы гребных винтов;
  • применение гребных электродвигателей с мягкими механическими характеристиками, развивающих максимальный вращающий момент на гребном валу при минимальной частоте вращения двигателя, что увеличивает маневренность судна (это преимущество особенно ценно для паромов, рейдовых буксиров-толкачей и ледоколов);
  • высокая надежность ГЭУ, так как при повреждении одного из генераторных агрегатов возможна работа всех гребных электродвигателей от остальных;
  • значительная перегрузочная способность электрических двигателей по моменту, что имеет большое значение для безопасности плавания;
  • меньший износ гребного вала и главных двигателей вследствие уменьшения числа реверсов и значительного снижения вибрации корпуса судна;
  • уменьшение расходов на топливо и смазочные материалы при одновременном питании от двух генераторов, вращаемых одним главным двигателем, всех приемников электроэнергии судна;
  • возможность использования главных агрегатов судна на стоянках для питания перегрузочных механизмов и для нужд береговых судоремонтных предприятий.
Читайте также:  Сборка и установка зажигания двигатель 4216

Существенные недостатки ГЭУ:

  • увеличение обслуживающего персонала, а следовательно, и увеличение эксплуатационных расходов;
  • низкий коэффициент полезного действия установки в целом, что вызвано двойным преобразованием энергии механической в электрическую в генераторе и электрической в механическую в двигателе, а также потерей энергии в соединительных проводах и кабелях; большие масса, габаритные размеры и стоимость ГЭУ.
  • К. п. д. гребной электрической установки, включая все ее звенья от главного двигателя до движителя на 12—18 % ниже, чем при механической передаче.

Однако возможность использования главных двигателей в наиболее экономичном для них режиме при любой скорости хода судна, а также применение нереверсивных двигателей повышают эксплуатационную экономичность судна и до некоторой степени компенсируют низкий к. п. д. гребной установки. Это свойство ГЭУ особенно ярко проявляется у судов, которым по условиям плавания приходится часто изменять режим работы гребных винтов (реверсивность, изменять частоту вращения), поэтому ГЭУ целесообразно применять на рейдовых судах, паромах, ледоколах.

Основными показателями ГЭУ являются мощность, род тока, напряжение, тип главного двигателя, типы генератора и гребного электродвигателя. В соответствии с этими показателями гребные электрические установки могут быть условно подразделены:

  • по роду тока — переменного, постоянного и переменно-постоянного тока;
  • по типу первичного двигателя — дизель-электрические, турбо- электрические и газотурбоэлектрические;
  • по системе управления — с ручным и с автоматическим управлением;
  • по способу соединения гребного электродвигателя с винтом — на установки с прямым Соединением и установки с зубчатым соединением.

В гребных электрических установках переменного и переменно-постоянного тока в качестве главных генераторов применяют синхронные машины, а в качестве гребных электродвигателей — синхронные, асинхронные или постоянного тока. Из-за сложности и неэкономичности регулирования частоты вращения гребных электродвигателей ГЭУ переменного тока применяется редко, в основном на крупных морских судах с большой мощностью установки.

На речных судах наиболее целесообразно применять ГЭУ постоянного или переменно-постоянного тока, у которых значительно проще и экономичнее регулирование частоты вращения электродвигателя.

Преимуществами ГЭУ переменно-постоянного тока по сравнению с ГЭУ постоянного тока являются: высокая надежность и экономичность синхронных генераторов; плавное и экономичное регулирование частоты вращения гребного электродвигателя, управляемого выпрямителем, или изменением напряжения генератора при неуправляемом выпрямителе; возможность питания электроэнергией всех судовых приемников электроэнергии от главных генераторов (единая электростанция переменного тока).

Род тока. Опыт эксплуатации судов с электрическим приводом движителя показал, что при мощности до 5000 кВт целесообразно проектировать ГЭУ с гребными электродвигателями постоянного тока, используя их преимущества: широкий диапазон и экономичность регулирования частоты вращения по сравнению с двигателями переменного тока.

Постоянный ток, необходимый для питания цепей возбуждения электрических машин и цепей управления ГУЭ, получают при этом от специальных генераторов постоянного тока (возбудителей) или путем преобразования переменного тока в постоянный (двигатель-генератор- ные агрегаты, статические полупроводниковые выпрямители).

Напряжение. При выборе напряжения генераторов и электродвигателей ГЭУ исходят из того, что ток в электрических машинах не должен быть слишком большим (обычно не более 1200—1500 А). Однако очень высокие напряжения также опасны для обслуживающего персонала, поэтому правилами Речного Регистра РСФСР установлены следующие предельные значения напряжений для ГЭУ:

  • в силовых цепях: для постоянного тока — 1200 В, для трехфазной системы токов — 7500 В;
  • в цепях управления и сигнализации: для постоянного тока — 220 В, для трехфазной системы токов — 380 В.

Частота. Обычно частоту переменного тока выбирают стандартной — 50 Гц. Однако в некоторых случаях можно применять повышенную частоту. Повышение частоты переменного тока имеет следующие преимущества и недостатки;

  • для синхронных машин — уменьшение габаритных размеров, массы и стоимости, повышение устойчивости параллельной работы, увеличение магнитных потерь, снижение к. п. д.;
  • для асинхронных двигателей — уменьшение габаритных размеров, массы и стоимости, увеличение числа ступеней частоты вращения, возможность повышения ее верхнего предела выше 3000 об/мин, увеличение потерь в стали, существенное ухудшение коэффициента, мощности, уменьшение пускового и максимального моментов.

Первичные двигатели. Использование турбин оправдывается только в энергетических установках большой мощности свыше 5000 кВт. При таких мощностях паровые турбины отличаются высокой частотой вращения, и для привода генераторов необходимы механические редукторы.

На речных судах с ограниченными мощностями силовых установок гурбоэлектрические гребные установки применения не получили.

Применяемые в качестве главных двигателей ГЭУ речных судов дизели снабжают предельными регуляторами, срабатывающими при достижении частоты вращения, равной 112% номинальной, и всережимными регуляторами, позволяющими произвольно изменять ее в пределах 30—105 % номинальной, а также имеют неравномерность вращения, не превышающую 1/125, для возможности устойчивой параллельной работы генераторов.

В ГЭУ используются двухтактные и четырехтактные двигатели внутреннего сгорания с частотой вращения до 1000 об/мин, обычно она составляет 500—750 об/мин.
Число дизельных агрегатов в судовых гребных установках колеблется в пределах от двух до шести. Мощность отдельных двигателей достигает 1500 кВт. Чаще используются двигатели мощностью 500— 1000 кВт.

Электрические машины. Электрические генераторы и двигатели гребных установок ввиду специфических условий их работы должны удовлетворять следующим требованиям:

  • нижняя часть электрической машины, находящаяся под настилом, должна быть водозащищенной; если нижняя часть электрической машины находится в специальном сухом отсеке или защищена от попадания воды водонепроницаемым фундаментом, она может быть каплезащищенной. Во всех случаях следует предусмотреть устройство сигнализации о повышении уровня воды в отсеке;
  • главные двигатели и генераторы нужно устанавливать на общей фундаментной раме или судовом наборе, оси их располагают параллельно диаметральной плоскости судна;
  • при стартерном пуске главных двигателей допускается использование главных генераторов или возбудителей, находящихся на общем валу с дизелями, в качестве электродвигателей;
  • электрические машины должны иметь хорошую вентиляцию.
Читайте также:  Двигатель редуктор для малогабаритной буровой установки

Вентиляция гребных электродвигателей в связи с их тихоходностью должна быть принудительной. Воздухопровод на выходе из машины снабжают термометром для замера температуры,отходящего воздуха. При повышении температуры электрических машин сверх допустимой следует включать автоматическую звуковую и световую сигнализацию.

Во избежание отсыревания обмоток электрических машин во время их бездействия необходимо иметь подогреватели для поддержания температуры внутри машины на 2—3° выше температуры окружающей среды; для исключения блуждающих токов в корпусах электрических машин один из подшипников изолируют от фундамента.

При последовательном соединении нескольких генераторов, применяемом в гребных электрических установках, общее напряжение установки, равное сумме напряжений отдельных агрегатов, может достичь недопустимого Правилами Речного Регистра РСФСР значения. В таких случаях для уменьшения напряжения при соединении электрических машин выполняют чередование генераторов и двигателей.

Генераторы постоянного тока, работающие в ГЭУ по системе Г—Д, имеют независимое возбуждение и последовательную размагничивающую обмотку для ограничения токов перегрузок и короткого замыкания. При значительных мощностях гребных установок размагничивающие обмотки выполняют на возбудителях главных генераторов.
В гребных установках переменного тока применяют тр’ехфазные синхронные генераторы.
Число электродвигателей в гребной установке зависит от числа движителей: мощность электродвигателей постоянного тока речных судов достигает 1200 кВт. Гребные электродвигатели постоянного тока имеют в большинстве случаев независимое возбуждение. Частота вращения гребных электродвигателей зависит от параметров движителей и колеблется в пределах от 50 (гребное колесо) до 500 об/мин (гребные винты).

Иногда в гребных установках с целью уменьшения габаритных размеров электродвигателя применяют редукторы. Включение редуктора понижает к. п. д. гребной установки на 3—5 %.
В гребных установках переменного тока применяют электродвигатели следующих типов: синхронные с асинхронным пуском; асинхронные с фазным ротором; асинхронные с короткозамкнутым ротором и переключением числа пар полюсов. Синхронные электродвигатели должны легко входить в синхронизм, допускать форсирование возбуждения в периоды пуска и реверса и работу в асинхронном режиме без перегрева при кратковременных перегрузках. Мощность отдельных электродвигателей гребных установок переменного тока составляет 1500—30 000 кВт, частота вращения 250—500 об/мин. Асинхронные электродвигатели применяются редко из-за пониженного к. п. д. Обмотки возбуждения генераторов и электродвигателей в ГЭУ переменного тока получают питание от вращающихся или статических возбудителей.

Цепи возбуждения главных генераторов и гребных электродвигателей переменного тока должны получать питание от разных источников, что связано с необходимостью форсирования возбуждения главных генераторов при пусках и реверсах гребных электродвигателей.
В гребных установках постоянного тока допускается применение возбудителей, насаженных на один вал с главным генератором, так как частота вращения последнего при работе гребной установки во всех режимах остается неизменной. В качестве возбудителей в судовых гребных установках часто используют электромашинные усилители, с помощью которых можно получить желаемые механические характеристики гребных электродвигателей.

Регулирование частоты вращения и торможение гребных электродвигателей в установках постоянного тока осуществляется по системе Г—Д, т. е. изменением тока независимой обмотки возбуждения главного генератора. Эта система обеспечивает плавное регулирование частоты вращения гребного электродвигателя в широких пределах без изменения направления и частоты вращения дизель-генератора, а также динамическое торможение его (при снятом возбуждении генератора).

Гребной электродвигатель реверсируется изменением направления тока в независимой обмотке возбуждения главного генератора.

Частота вращения гребных электродвигателей переменного тока регулируется изменением частоты вращения главных двигателей. Для этого последние снабжают всережимными регуляторами, дающими возможность устанавливать желаемую частоту вращения в пределах 30—100 % номинальной. Серводвигателями регуляторов управляют дистанционно из ходовой рубки. При применении многоскоростных асинхронных электродвигателей используют также способ регулирования частоты вращения изменением числа пар полюсов. Регулирование асинхронных гребных электродвигателей с помощью реостатов не применяют ввиду малой экономичности этого способа.

Процесс реверсирования синхронных гребных электродвигателей состоит из следующих этапов: снижают частоту вращения гребного электродвигателя до минимально возможного значения в результате уменьшения частоты вращения главного двигателя; снимают возбуждение с главного генератора, при этом происходит динамическое торможение возбужденного электродвигателя; электродвигатель переключают на обратное направление вращения, а затем пускают асинхронно в обратную сторону при форсированном возбуждении генератора; после синхронизации гребного электродвигателя снимают форсировку возбуждения генератора; увеличивают частоту вращения гребного двигателя до номинальной, повышая частоту вращения главного двигателя.

Защита главных генераторов и гребных электродвигателей должна обеспечивать своевременное получение звукового и светового сигнала, предупреждающего о нарушении режима работы установки. Автоматическое отключение должно происходить лишь в крайне необходимых аварийных случаях. Поэтому генераторы и электродвигатели ГЭУ защищают от перегрузок и токов короткого замыкания при помощи реле, воздействующих на возбуждение главных генераторов, без размыкания силовой цепи. Устанавливают реле перегрузки и реле короткого замыкания. Применение плавких предохранителей в силовых цепях н цепях возбуждения в качестве защиты не допускается.

Реле перегрузки при срабатывании включает в цепь возбуждения генератора (возбудителя генератора) добавочный резистор, ограничивая тем самым ток в силовой цепи. После прекращения перегрузки реле автоматически шунтирует его, восстанавливая первоначальный ток возбуждения. Реле настраивают на срабатывание при 10%-ной перегрузке.
Реле короткого замыкания разрывает цепь возбуждения генератора при коротком замыкании и перегрузке в 100 %. Возврат реле короткого замыкания выполняют при помощи кнопок, установленных на каждом посту управления.

Если главные генераторы снабжены размагничивающими обмотками, то они, размагничивая генераторы, служат достаточной защитой от перегрузок. В этом случае реле перегрузки и реле короткого замыкания не ставят.

источник

Добавить комментарий

Adblock
detector