Меню Рубрики

Установка антенн на башню связи

Базовые станции сотовой связи и их антенная часть 7

И вновь немного общеобразовательного материала. На этот раз речь пойдет о базовых станциях. Рассмотрим различные технические моменты по их размещению, конструкции и дальности действия, а также заглянем внутрь самого антенного блока.

Базовые станции. Общие сведения

Так выглядят антенны сотовой связи, установленные на крышах зданий. Эти антенны являются элементом базовой станции (БС), а конкретно – устройством для приема и передачи радиосигнала от одного абонента к другому, и далее через усилитель к контроллеру базовой станции и другим устройствам. Являясь наиболее заметной частью БС, они устанавливаются на антенных мачтах, крышах жилых и производственных зданий и даже дымовых трубах. Сегодня можно встретить и более экзотические варианты их установки, в России их уже устанавливают на столбах освещения, а в Египте их даже «маскируют» под пальмы.

Подключение базовой станции к сети оператора связи может производиться по радиорелейной связи, поэтому рядом с «прямоугольными» антеннами блоками БС можно увидеть радиорелейную тарелку:

С переходом на более современные стандарты четвертого и пятого поколений, для удовлетворения их требований подключать станции нужно будет исключительно по волоконной оптике. В современных конструкциях БС оптоволокно становится неотъемлемой средой передачи информации даже между узлами и блоками самой БС. К примеру, на рисунке ниже показано устройство современной базовой станции, где оптоволоконный кабель используется для передачи данных от RRU (выносные управляемые модули) антенны до самой базовой станции (показано оранжевой линией).

Оборудование базовой станции располагается в нежилых помещениях здания, либо устанавливается в специализированные контейнеры (закрепленные на стенах или столбах), ведь современное оборудования выполняется довольно компактно и может запросто поместиться в системный блок серверного компьютера. Часто радиомодуль устанавливают рядом с антенным блоком, это позволяет уменьшить потери и рассеивание передаваемой в антенну мощности. Так выглядят три установленных радиомодуля оборудования базовой станции Flexi Multiradio, закрепленные прямо на мачте:

Зона обслуживания базовых станций

Для начала следует отметить, что бывают различные типы базовых станций: макро, микро, пико и фемтосоты. Начнем с малого. И, если кратко, то фемтосота не является базовой станцией. Это, скорее, Access Point (точка доступа). Данное оборудование изначально ориентируется на домашнего или офисного пользователя и владельцем такого оборудования является частное или юр. лицо, не относящееся к оператору. Главное отличие такого оборудования заключается в том, что оно имеет полностью автоматическую конфигурацию, начиная от оценки радиопараметров и заканчивая подключением к сети оператора. Фемтосота имеет габариты домашнего роутера:

Пикосота – это БС малой мощности, принадлежащая оператору и использующая в качестве транспортной сети IP/Ethernet. Обычно устанавливается в местах возможной локальной концентрации пользователей. Устройство по размерам сравнимо с небольшим ноутбуком:

Микросота – это приближенный вариант реализации базовой станции в компактном виде, очень распространено в сетях операторов. От «большой» базовой станции ее отличает урезанная емкость поддерживаемых абонентом и меньшая излучающая мощность. Масса, как правило, до 50 кг и радиус радиопокрытия — до 5 км. Такое решение используется там, где не нужны высокие емкости и мощности сети, или нет возможности установить большую станцию:

И наконец, макросота – стандартная базовая станция, на базе которой строятся мобильные сети. Она характеризуется мощностями порядка 50 W и радиусом покрытия до 100 км (в пределе). Масса стойки может достигать 300 кг.

Зона покрытия каждой БС зависит от высоты подвеса антенной секции, от рельефа местности и количества препятствий на пути до абонента. При установке базовой станции далеко не всегда на первый план выносится радиус покрытия. По мере роста абонентской базы может не хватить максимальной пропускной способности БС, в этом случае на экране телефона появляется сообщение «сеть занята». Тогда оператор со временем на этой территории может сознательно уменьшить радиус действия базовой станции и установить несколько дополнительных станций в местах наибольшей нагрузки.

Когда нужно увеличить емкость сети и снизить нагрузку на отдельные базовые станции, тогда и приходят на помощь микросоты. В условиях мегаполиса зона радиопокрытия одной микросоты может составлять всего 500 метров.

В условиях города, как ни странно, встречаются такие места, где оператору нужно локально подключить участок с большим количеством трафика (районы станций метро, крупные центральные улицы и др.). В этом случае применяются маломощные микросоты и пикосоты, антенные блоки которых можно располагать на низких зданиях и на столбах уличного освещения. Когда возникает вопрос организации качественного радиопокрытия внутри закрытых зданий (торговые и бизнес центры, гипермаркеты и др.) тогда на помощь приходят пикосотовые базовые станции.

За пределами городов на первый план выходит дальность работы отдельных базовых станций, так установка каждой базовой станции в удалении от города становится все более дорогостоящим предприятием в связи с необходимостью построения линий электропередач, дорог и вышек в сложных климатических и технологических условиях. Для увеличения зоны покрытия желательно устанавливать БС на более высоких мачтах, использовать направленные секторные излучатели, и более низкие частоты, менее подверженные затуханию.

Так, например, в диапазоне 1800 МГц дальность действия БС не превышает 6-7 километров, а в случае использования 900–мегагерцового диапазона зона покрытия может достигать 32 километров, при прочих равных условиях.

Антенны базовых станций. Заглянем внутрь

В сотовой связи чаще всего используют секторные панельные антенны, которые имеют диаграмму направленности шириной в 120, 90, 60 и 30 градусов. Соответственно для организации связи во всех направлениях (от 0 до 360) может потребоваться 3 (ширина ДН 120 градусов) либо 6 (ширина ДН 60 градусов) антенных блоков. Пример организации равномерного покрытия во всех направлениях показан на рисунке ниже:

А ниже вид типовых диаграмм направленности в логарифмическом масштабе.

Большинство антенн базовых станций широкополосные, позволяющие работать в одном, двух или трех диапазонах частот. Начиная с сетей UMTS, в отличие от GSM, антенны базовых станций умеют изменять площадь радиопокрытия в зависимости от нагрузки на сеть. Один из самых эффективных методов управления излучаемой мощностью – это управление углом наклона антенны, таким способом изменяется площадь облучения диаграммы направленности.

Антенны могут иметь фиксированный угол наклона, либо имеют возможность дистанционной регулировки с помощью специального программного обеспечения, располагаемого в блоке управления БС, и встроенных фазовращателей. Существуют также решения, позволяющие изменять зону обслуживания, от общей системы управления сети передачи данных. Таким образом, можно регулировать зону обслуживания всего сектора базовой станции.

Читайте также:  Установка вариатора снегохода рысь

В антеннах базовых станций применяется как механическое управление диаграммой, так и электрическое. Механическое управление проще реализуется, но часто приводит к искажению формы диаграммы направленности из-за влияния конструктивных частей. Большинство антенн БС имеет систему электрической регулировки угла наклона.

Современный антенный блок представляет собой группу излучающих элементов антенной решетки. Расстояние между элементами решетки выбирается таким образом, чтобы получить наименьший уровень боковых лепестков диаграммы направленности. Наиболее часто встречаются длины панельных антенн от 0,7 до 2,6 метров (для многодиапазонных антенных панелей). Коэффициент усиления варьируется от 12 до 20 dBi.

На рисунке ниже (слева) представлена конструкция одной из наиболее распространенных (но уже устаревающих) антенных панелей.

Здесь излучатели антенной панели представляют собой полуволновые симметричные электрические вибраторы над проводящим экраном, расположенные под углом 45 градусов. Такая конструкция позволяет формировать диаграмму с шириной главного лепестка 65 или 90 градусов. В такой конструкции выпускаются двух- и даже трехдиапазонные антенные блоки (правда, довольно крупногабаритные). Например, трехдиапазонная антенная панель такой конструкции (900, 1800, 2100 МГц) отличается от однодиапазонной, примерно в два раза большим размером и массой, что, конечно же, затрудняет ее обслуживание.

Альтернативная технология изготовления таких антенн предполагает выполнение полосковых антенных излучателей (металлические пластины квадратной формы), на рисунке выше справа.

А вот еще один вариант, когда в качестве излучателя используются полуволновые щелевые магнитные вибраторы. Линия питания, щели и экран выполняются на одной печатной плате с двухсторонним фольгированным стеклотекстолитом:

С учетом современных реалий развития беспроводных технологий, базовые станции должны поддерживать работу 2G, 3G и LTE сетей. И если блоки управления базовых станций сетей разных поколений удается вместить в один коммутационный шкаф без увеличения габаритного размера, то с антенной частью возникают значительные трудности.

Например, в многодиапазонных антенных панелях количество коаксиальных соединительных линий достигает 100 метров! Столь значительная длина кабеля и количество паяных соединений неизбежно приводит к потерям в линиях и снижению коэффициента усиления:

С целью снижения электрических потерь и уменьшения точек пайки часто делают микрополосковые линии, это позволяет выполнить диполи и систему запитки всей антенны по единой печатной технологии. Данная технологиях проста в производстве и обеспечивает высокую повторяемость характеристик антенны при ее серийном выпуске.

Многодиапазонные антенны

С развитием сетей связи третьего и четвертого поколений требуется модернизация антенной части как базовых станций, так и сотовых телефонов. Антенны должны работать в новых дополнительных диапазонах, превышающих 2.2 ГГц. Более того, работа в двух и даже трех диапазонах должна производиться одновременно. Вследствие этого антенная часть включает в себя довольно сложные электромеханические схемы, которые должны обеспечивать должное функционирование в сложных климатических условиях.

В качестве примера рассмотрим конструкцию излучателей двухдиапазонной антенны базовой станции сотовой связи Powerwave, работающей в диапазонах 824-960, МГц и 1710-2170, МГц. Ее внешний вид показан на рисунке ниже:

Этот двухдиапазонный облучатель состоит из двух металлических пластин. Та, что большего размера работает в нижнем диапазоне 900 МГц, над ней расположена пластина с щелевым излучателем меньшего размера. Обе антенны возбуждаются щелевыми излучателями и таким образом имеют единую линию запитки.

Если в качестве излучателей используются дипольные антенны, то необходимо ставить отдельный диполь для каждого диапазона волн. Отдельные диполи должны иметь свою линию запитки, что, конечно же, снижает общую надежность системы и увеличивает энергопотребление. Примером такой конструкции является антенна Kathrein для того же диапазона частот, что и рассмотренная выше:

Таким образом, диполи для нижнего диапазона частот находятся как бы внутри диполей верхнего диапазона.

Для реализации трех- (и более) диапазонного режимов работы наибольшей технологичностью обладают печатные многослойные антенны. В таких антеннах каждый новый слой работает в довольно узком диапазоне частот. Такая «многоэтажная» конструкция изготавливается из печатных антенн с индивидуальными излучателями, каждая антенна настраивается на отдельные частоты рабочего диапазона. Конструкция поясняется рисунком ниже:

Как и в любых других многоэлементных антеннах в такой конструкции происходит взаимодействие элементов, работающих в разных диапазонах частот. Само собой это взаимодействие оказывает влияние на направленность и согласование антенн, но данное взаимодействие может быть устранено методами, применяемыми в ФАР (фазированных антенных решетках). Например, одним из наиболее эффективных методов является изменение конструктивных параметров элементов путем смещения возбуждающего устройства, а также изменение размеров самого облучателя и толщины разделительного диэлектрического слоя.

Важным моментом является то, что все современные беспроводные технологии широкополосные, и ширина полосы рабочих частот составляет не менее 0,2 ГГц. Широкой рабочей полосой частот обладают антенны на основе взаимодополняющих структур, типичным примером которых являются антенны типа «bow-tie» (бабочка). Согласование такой антенны с линией передачи осуществляется подбором точки возбуждения и оптимизацией ее конфигурации. Чтобы расширить полосу рабочих частот по согласованию «бабочку» дополняют входным сопротивлением емкостного характера.

Моделирование и расчет подобных антенн производят в специализированных программных пакетах САПР. Современные программы позволяют моделировать антенну в полупрозрачном корпусе при наличии влияния различных конструктивных элементов антенной системы и позволяют тем самым произвести достаточно точный инженерный анализ.

Проектирование многодиапазонной антенны производят поэтапно. Сначала рассчитывают и проектируют микрополосковую печатную антенну с широкой полосой пропускания для каждого рабочего диапазона частот отдельно. Далее печатные антенны разных диапазонов совмещают (наложением друг на друга) и рассматривают их совместную работу, устраняя по возможности причины взаимного влияния.

Широкополосная антенна типа «бабочка» может быть удачно использована как основа для трехдиапазонной печатной антенны. На рисунке ниже изображены четыре различных варианта ее конфигурации.

Приведенные конструкции антенн отличаются формой реактивного элемента, который применяется для расширения рабочей полосы частот по согласованию. Каждый слой такой трехдиапазонной антенны представляет собой микрополосковый излучатель заданных геометрических размеров. Чем ниже частоты – тем больше относительный размер такого излучателя. Каждый слой печатной платы отделен от другого с помощью диэлектрика. Приведенная конструкция может работать в диапазоне GSM 1900 (1850-1990 МГц) – принимает нижний слой; WiMAX (2,5 – 2,69 ГГц) – принимает средний слой; WiMAX (3,3 – 3,5 ГГц) – принимает верхний слой. Подобная конструкция антенной системы позволит принимать и передавать радиосигнал без использования дополнительного активного оборудования, не увеличивая тем самым габаритных размеров блока антенны.

И в заключении немного о вреде БС

Порой, базовые станции операторов сотовой связи устанавливают прямо на крышах жилых домов, чем конкретно деморализуют некоторых их обитателей. У хозяев квартир перестают «рожать кошки», а на голове у бабушки начинают быстрее появляться седые волосы. А тем временем, от установленной базовой станции жители этого дома электромагнитного поля почти не получают, ибо «вниз» базовая станция не излучает. Да и, к слову сказать, нормы СаНПиНа для электромагнитного излучения в РФ на порядок ниже, чем в «развитых» странах запада, и поэтому в черте города базовые станции никогда на полную мощность не работают. Тем самым, вреда от БС нет, если только вы не устраиваетесь позагорать на крыше в паре метров от них. Зачастую, с десяток точек доступа, установленных в квартирах жителей, а также микроволновые печи и сотовые телефоны (прижатые к голове) оказывают на вас намного большее воздействие, нежели базовая станция, установленная в 100 метрах за пределами здания.

Читайте также:  Установка гидроизоляции для душа

источник

Безопасное расстояние от вышки сотовой связи до жилого дома: нормы и вред здоровью

Постоянно появляются новые операторы теле- и радиовещания, мобильной связи. В борьбе за удобные места зачастую антенна сотовой связи неожиданно возникает рядом с домом. В нормативных документах расстояние от вышки сотовой связи до жилых домов не указано в точных цифрах. Оно определяется величиной общего фона, вредного для человека.

Роспотребнадзор разрабатывает нормативы излучения и сам их контролирует. Необходимо замерять уровень излучения уже после запуска оборудования, когда все построено. Каждый человек должен знать степень опасности излучений для здоровья и как им противостоять.

Определение безопасного расстояния от вышки сотовой связи

Специалисты утверждают, что находиться непосредственно под базовой станцией сотовой связи безопасно. Излучение от вышки сотовой связи приходит и уходит горизонтально и ловит сигнал на расстоянии до 35 км. Это означает, что вертикально, возле столба с оборудованием, не действует излучение мобильной связи. Но при этом телефон работает отлично.

Об опасности, которую представляет вышка мобильной связи, следует знать:

  1. Основное излучение направлено практически параллельно земле, под углом 3°.
  2. Оборудование должно размещаться на столбах и мачтах.
  3. Устанавливать антенны на крыше домов можно в порядке исключения в городских многоэтажных районах.
  4. Стекло уменьшает силу излучения в 2,5 раза, бетонная стена – в 30 раз.
  5. При влажной уборке удаляется не только пыль, но и статические заряды с поверхности мебели.
  6. Дальность приема составляет 35 км.
  7. Кроме излучения, вышка сотовой связи грозит жизни и здоровью людей обрушением.

СанПиН учитывает и измеряет только излучение антенны сотовой связи и считает безопасным место под излучающим оборудованием.

Стоять рядом со столбом, на котором смонтированы ретранслятор и антенна, – значит находиться в магнитном и индукционном поле, излучаемом целым пучком кабелей, идущих из-под земли по столбу верх.

Ведь любой провод, пропускающий ток, создает вокруг себя поле. Его излучение достигает допустимого безопасного значения на дистанции от 5 м.

Измеряя расстояние от жилого дома до вышки сотовой связи, следует помнить и о кабелях, которые часто прокладывают прямо по стенам или шахтам лифта, выводя оборудование на крышу. Излучаемые ими магнитные поля по своему воздействию почти не отличаются от радиации. Они слабее, но постоянно находятся рядом.

Затухание излучения происходит пропорционально квадрату расстояния до антенны. Если изобразить графически параболу излучения и наложить на нее допустимое значение, то можно определить безопасное расстояние от вышки сотовой связи до дома. Линии пересекутся напротив значения примерно в 45 м.

Учитывая, что одновременно работают другие источники излучения (например, теле-, видеокоммуникации, интернет), безопасное расстояние для здоровья составляет минимум 75 м в приоритетном направлении связи.

Благоприятная среда, чистая от вредных излучений, гарантированно начинается там, где телефонная вышка удалена на 100 м и рядом нет другого мощного электрического оборудования. Многоэтажный жилой дом строится на удалении от других построек в 25–60 м.

Вышка сотовой связи рядом с домом: допустимая норма

Роспотребнадзор обязывает сделать замеры электромагнитных излучений по нормам СанПиН и ГОСТа еще до установки оборудования. Суммарно ЭМИ не должны превышать 10 мВТ/см 2 . Как при этом учесть излучение от строящейся вышки, не указано. Точный результат будет получен только при текущих замерах. Они должны проводиться раз в 3 года.

СанПиН 2.1.8/2.2.4.1383-03 определяет минимальное расстояние от дома до сотовой вышки в 7 м и выдвигает ряд требований для мобильных ретрансляторов, расположенных на здании:

  • антенна располагается на высоте 1,5–5 м от поверхности крыши;
  • все подходы должны быть недоступны для посторонних;
  • санитарная зона на крыше и чердаке составляет от 10 м;
  • для установки оборудования над жилым домом необходимо письменное согласие жильцов, не менее 66 %.

Нормы и правила установки вышки сотовой связи от жилых домов должны соблюдаться неукоснительно. Высота стандартной вышки составляет 29 м, при этом антенны расположены в верхней части. Границы санитарной зоны определяются замерами суммарных излучений на высоте два метра от земли. Внешняя граница рассчитывается с учетом высотности жилых и промышленных зданий перспективной застройки.

Расстояние внутри санитарных зон вышек мобильной связи нормируется Роспотребнадзором. Разрешение на установку оборудования выдается с учетом всех операторов мобильной связи, радиооператоров и других устройств, излучающих магнитные волны.

В определенных надзорными органами санитарных зонах запрещено строительство жилых домов. На их территории рекомендуют в черте города устраивать автомобильные стоянки, склады и другие объекты без постоянного присутствия людей. На строениях, попадающих в ЗОЗ – зона ограниченной застройки, можно провести защитные мероприятия. Например, покрыть крышу металлическим листом и профнастилом. Материал хорошо гасит и отражает лучи.

Нюансы

В частном секторе и на территории дачных кооперативов СНиП определяет, какое расстояние будет безопасным от сотовой вышки. Статьи нормативного документа запрещают установку вышки на территории дачного кооператива.

Минимальное расстояние от границы земель общества берется из расчета 1,5 высоты мачты. Кроме излучения, СНиП учитывает возможность обрушения объекта и опасность от его падения. Он может разрушить строения и травмировать находящихся на его территории людей.

На участках ИЖС санитарными нормами запрещено размещение вышек сотовой связи без заключения договора с хозяином. От забора минимальный отступ делается не меньше 7 м.

Вред для здоровья от сотовой вышки связи учитывается при оформлении разрешительных документов. Они не выдаются для установки оборудования мобильной связи в ПГТ и частном секторе. Нельзя ставить антенны на дома в 2 этажа и ниже.

Согласно нормативным документам разрешение на строительство мачт с оборудованием для работы мобильной связи, их реконструкцию и ремонт можно получить только по результатам санитарно-эпидемиологического исследования. Суммарные показатели не должны превышать установленных норм излучения. Конструкция для антенн строится в строгом соответствии с ГОСТом и статьей Федерального закона.

Читайте также:  Установка puppyrus linux на флешку

Замеры производятся в жилых и офисных зданиях, если они попадают в зону распространения основного излучения. Его можно определять углом в 3–8° от горизонтальной плоскости, проведенной через антенну. Именно в этом секторе происходит прием и отправление сигналов, которые посылает телефон.

Зона наибольшей опасности от излучений

Определить безопасное расстояние от вышки до жилых домов можно, измерив фактическую величину излучения. Этим занимаются сотрудники Роспотребнадзора и Роскомнадзора. Узнавать нормативы также можно и у них, т. к. они же и будут разрешать эксплуатацию вышки. Сотрудники данных организаций имеют соответствующую аппаратуру, таблицу расчетов и значения допустимых норм.

Простой житель многоэтажки, расположенной рядом с вышкой, должен знать, что наибольшему облучению он подвергается, выходя на балкон, расположенный на уровне секторной и радиорелейной антенны. Такое положение возникает при установке на соседней крыше, если соседний дом значительно ниже или вышка стоит между строениями.

Антенны, их лепестки, настраиваются горизонтально. Наибольшая опасность, если установленная на вышке или малоэтажном здании антенна смотрит прямо на многоквартирный дом.

В этом случае минимальное безопасное расстояние от дома до сотовой вышки должно быть 28 метров. Такой результат получен в результате расчетов и замеров. Находиться на уровне лепестка и в зоне активного излучения опаснее, чем в других местах относительно антенны.

Одна вышка сотовой связи полностью покрывает маленький городок и полосу земель вокруг него. По факту, чтобы перестраховаться, каждый телефонный оператор устанавливает несколько вышек.

В большинстве регионов параллельно работают компании МТС, Мегафон и другие. СанПиН нормирует расстояние внутри санитарных зон опор сотовой связи 75–110 м друг от друга. Это касается мобильного телевидения и всех других операторов.

Наибольший вред для здоровья от сотовой связи получают жители, чей многоквартирный дом стоит в окружении вышек и оборудования на крышах.

Излучение от всех источников складывается, и в результате получается величина излучения в несколько раз выше нормы.

Смотрите видео ниже на эту тему.

Угроза излучения для человека

Цифры на приборе не смогут наглядно продемонстрировать вред для здоровья человека от сотовой связи. Лучи невидимые, и понять их вред сложно.

Для определения силы луча можно провести эксперимент:

  1. Спуститься в цокольное помещение и проверить наличие связи.
  2. Провести мысленно линию на улицу.
  3. Посчитать, сколько бетонных перекрытий и стен пронизывает луч от телефона.

По расчетам специалистов, каждый слой бетона уменьшает излучение в 30–32 раза. Остается умножить это число на количество преград и получить условное значение силы луча и представить, как они вас пронизывают на открытом месте.

Сторонники теории, что безопасно пользоваться мобильной связью и жить среди вышек, любят рассказывать, что бытовые приборы излучают значительно больше. Люди в своей квартире окружены проводами.

При включении обычной лампочки возникает магнитное поле. Многие замечали, что после длительного просмотра телевизора даже в удобной позе человек чувствует себя слабым и уставшим. Причина в излучении прибора.

В таблице для сравнения приведены показатели излучения бытового оборудования. По СНиП норма определяется в 0,2 мкТл.

Оборудование и приборы Показатели величины магнитного поля, мкТл
Провод освещения 0,7
Холодильник, стоя рядом 1
Микроволновка 8–100
Электробритва 17
Фен 15
Кофеварка 10
Компьютер 1–50
Троллейбус, в салоне 150

Наибольшее излучение действует на человека, когда он находится в метро. Кроме прямых лучей от работы электродвигателя, освещения и других источников, он получает отраженные волны. Вред для здоровья от компьютера и микроволновки определяются степенью их защиты.

В результате даже провод создает магнитное поле, превышающее норму в 3,5 раза. Но он находится на расстоянии более 1 м, значит, его фактическое воздействие в разы меньше.

Возле большинства опасного оборудования человек находится ограниченное время. Вышки сотовой связи работают круглосуточно. Безопасность пользования телефоном можно увеличить следующим образом:

  • меньше разговаривать по телефону;
  • использовать громкую связь, чтобы удалить аппарат от головы;
  • размещать мобильный телефон подальше от себя.

В зависимости от модели, неактивный, неподвижно лежащий телефон каждые 5–8 секунд посылает сигнал для связи с вышкой. Если его двигать, то лучи распространяются постоянно во все стороны. Минимальная норма излучения для человека превышается сотовым телефоном в 200 раз.

Влияние на здоровье

Всесторонние исследования по влиянию излучения мобильной связи и вышек с антеннами еще не провели. Результаты, которые уже получили, свидетельствуют, что волны, исходящие из антенн сотовой связи, отрицательно влияют на здоровье, особенно на следующие системы:

  • нервную;
  • сердечно-сосудистую;
  • эндокринную;
  • репродуктивную;
  • иммунную.

Первые признаки такого воздействия: головные боли, слабость, усталость. Операторы мобильной связи утверждают, что программа рассчитана таким образом, что излучение не влияет на здоровье. Длина вышки и ее удаление обеспечивают уменьшение мощности магнитного поля.

Как защититься от вышек мобильной связи

Не стоит разрушать частный дом, если рядом поставили вышку сотовой связи. Можно принять ряд мер по уменьшению излучения внутри него:

  • покрыть крышу сверху металлочерепицей или профилем;
  • установить на окна двойные стеклопакеты;
  • оштукатурить стены толстым слоем цементного раствора.

Металл отражает лучи, и попадать внутрь они почти не будут. Каждое стекло в 2,5 раза уменьшает силу излучения.

Обычная бетонная стена гасит магнитное поле, делая его слабее в 30 раз. Оштукатуривая фасад, можно добиться еще большего уменьшения силы излучения и одновременно утеплить строение.

Большое значение для защиты от магнитных и индукционных излучений имеет влажная уборка. Проводя по поверхности мебели, стен, подоконников смоченной в воде салфеткой, человек стирает одновременно пыль и статическое напряжение.

Оно скапливается на всех предметах в разных количествах в зависимости от материала.

При этом нужно учитывать, что пылесос убирает только пыль и малую долю напряжений.

В крупных городах нужно требовать от управляющей организации ремонта крыши, замены окон. При подозрении, что фон значительно выше, следует обращаться в Роскомнадзор. Они проведут замеры и в случае нарушений заставят демонтировать оборудование. Заявление можно оставить прямо на сайте организации.

Вред от сотовой вышки очевиден. Даже в Москве, где особенно актуальна проблема жилья, квартира в доме, на крыше которого стоит антенна, на 10–15 % стоит дешевле.

источник

Добавить комментарий