Меню Рубрики

Установка бск на подстанции

Батареи статических конденсаторов 6-220 кВ. Эффективное управление реактивной мощностью и уровнем напряжения.

За последние годы во многих регионах России выросло потребление электроэнергии. Большая часть трансформаторов и подстанций работают с предельной загрузкой или перегрузкой, что связано с превышением разрешенной мощности, установленной в технических условиях, а также недостаточной компенсацией реактивной мощности (РМ). До недавнего времени в связи с отсутствием нормативной базы предприятия не спешили компенсировать РМ и перестали участвовать в поддержании коэффициента мощности на шинах нагрузок. В итоге это привело к возрастанию потоков РМ, увеличению потерь, снижению управляемости режимами работы распредсетей и ухудшению качества и надежности электроснабжения потребителей. Сейчас ситуация изменилась.

Согласно приказу РАО ЕЭС № 893 от 11.12.2006 проблеме компенсации реактивной мощности в распредсетях и на стороне потребителей будет уделено особое внимание.

Батареи статических конденсаторов БСК 6—10—35—110—220 кВ — эффективное средство управления потоками реактивной мощности и нормализации уровней напряжения. Компания «Матик-электро» разрабатывает и производит БСК и конденсаторные установки на напряжения от 0,4 до 220 кВ. В ряду производимого оборудования как конденсаторные установки 0,4—0,66 кВ контакторные и тиристорные для предприятий-потребителей, так и регулируемые высоковольтные КРМ-6—10 кВ (регулирование по tg φ и по напряжению), а также БСК 110—220 кВ мощностью до 200 МВАр.

Регулирование напряжения с помощью БСК

Величина напряжения в различных точках энергосистемы изменяется в зависимости от нагрузки и схемы сети. Этот параметр согласно ГОСТ 13109—87 должен находиться в пределах от 5 до 20% (таблица 1).

Напряжение в энергосистеме

Номинальное напряжение (линейное) UНОМ, кВ 6 10 20 35 110 220 330 500 750 1 150
Наибольшее рабочее напряжение (линейное), кВ 7,2 12 24 40,5 126 242 363 525 787 1 200
Превышение наибольшего рабочего напряжения над номинальным напряжением, % 20 20 20 15 15 10 10 5 5 5

Кроме того, ограничение по наибольшему рабочему напряжению электрооборудования диктуется надежностью работы изоляции электрооборудования, т. к. постоянно повышенное напряжение вызывает ускоренное старение изоляции и выход ее из строя. У большинства потребителей электроэнергии допускаются длительные отклонения напряжения от номинального не более чем на ±5%. Превышение номинального напряжения приводит к сокращению срока службы оборудования, уменьшение снижает производительность и экономичность электроприемников, пропускную способность линий электропередачи, может нарушить устойчивость работы синхронных и асинхронных электродвигателей.

Как видно из таблицы 1, с повышением номинального напряжения допустимые повышения напряжения уменьшаются с 20 до 5%. Это связано с ростом стоимости изоляции в установках более высоких напряжений, минимизацией затрат на изоляцию и выполнением оборудования практически на номинальное напряжение.

Допустимые снижения напряжения в энергосистеме также лимитированы и составляют от 10 до 15%. Как мы видим, в электросетях возможны колебания напряжения от -15 до +20%. Поэтому при изменении параметров схемы, величины нагрузки, и режима работы электрической сети необходимо регулировать уровень напряжения посредством технических мероприятий.

Как известно, напряжение у потребителя определяется формулой:

где: UЦП — напряжение центра питания;

РН и QН — активная и реактивная мощность нагрузки потребителя;

RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем.

Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов.

Снижение потерь при передаче электроэнергии с помощью БСК

Доля технологических потерь электроэнергии в распределительных электрических сетях напряжением 6—10 кВ в среднем составляет 8—12% от величины электроэнергии, отпущенной в сеть данного напряжения. Величина потерь электроэнергии определяется параметрами электрической схемы, конструкцией сетей и режимом нагрузки. Как показали расчеты для реальных сетей 10 кВ, потери электроэнергии существенно зависят от величины реактивной мощности, передаваемой потребителям по элементам сети. Например, при изменении коэффициента мощности (tg φ) от 0,5 до 0,8 потери электроэнергии увеличиваются примерно на 20%.

Анализ показаний счетчиков активной и реактивной электроэнергии показал, что значения коэффициентов мощности на шинах 10 кВ источников питания и на подстанциях 35—110/10 кВ изменяются в процессе эксплуатации и достигают значений 0,77—0,85. То есть, потери электроэнергии при передаче реактивной мощности становятся существенными.

Номенклатура БСК и КРМ Мощность
КРМ 0,4—0,66 кВ 50—2000 кВАр
БСК 6—10 кВ 5—50 МВАр
БСК 35 кВ 10—50 МВАр
БСК 110 кВ 20—60 МВАр
БСК 220 кВ 52—104 МВАр

Эффективным способом снижения потерь электрической энергии в сетях 10 кВ является установка батарей статических конденсаторов.

Читайте также:  Установка линукс на арм процессор

Выбор мощности и мест установки компенсирующих устройств проводится по условию минимума приведенных затрат с учетом стоимости компенсирующих устройств и ожидаемой экономии от снижения потерь электрической энергии.

Технические характеристики БСК 104 МВАр 220 кВ
Мощность, МВАр 104
Напряжение, кВ 220
Частота, Гц 50
Номинальный ток, А 272,9
Емкость, мкФ 6,84 (одного конденсатора 27,37) 0..+5%
Окружающая температура от -50 до +50°С
Относительная влажность, % до 90
Высота над уровнем моря, м до 1000
Защита Предохранители, встроенные в конденсаторы. Несбалансированный ток (ТФЗМ-220) – 3 шт. Токоограничивающие реакторы – 3 шт.
Количество стоек 3
Вес, кг 22 200
Габариты Д × Ш × В, мм 16 500 × 1 970 × 9 200
Габариты Д × Ш × В, мм 22 500 × 22 500 (по ограждению)
Соединение:
— последовательных групп
— параллельных блоков
— последовательных групп
16
2
2
Всего конденсаторов 192
Режим работы нейтрали Глухозаземленная нейтраль
Конструкция Модульная, соединение конденсаторов в звезду с глухозаземленной нейтралью, две параллельные группы конденсаторов для каждой фазы звезды, в каждой группе 16 конденсаторов, работающих последовательно, по 2 конденсатора в группе
Конденсаторы Однофазные 542 кВАр / 7,94 кВ / 50 Гц со встроенными предохранителями

Батареи статических конденсаторов (БСК)

Батареи статических конденсаторов на напряжения 6, 10, 35, 110 × 220 кВ мощностью от 5 до 200 МВАр производятся на базе косинусных однофазных конденсаторов, путем параллельно-последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали.

Внедрение батарей статических конденсаторов позволяет увеличить напряжение на шинах подстанций на 3—4%, снизить потери в сетях 6—110 кВ, скорректировать перетоки энергии и урегулировать напряжение в энергосистеме.

Кроме того, при превалировании тяговой нагрузки, вследствие ее неравномерности и обусловленной тем самым неравномерной загрузки линий, возникает необходимость регулировать показатели качества передаваемой электроэнергии применением компенсирующих устройств (БСК или реакторов, в зависимости от режима).

Конструкция

БСК состоит из групп силовых конденсаторов, собранных в стальные несущие блоки, закрепленные на полимерных изоляторах. БСК выполняется на трех стойках с размещенными на них конденсаторами, токоограничивающими реакторами и трансформаторами тока. Между стойками БСК предусмотрены 6-метровые проезды для автокрана, предназначенные для монтажа блоков конденсаторов.

БСК поставляется в исполнении У1 для температур от -55 до +45°С. Для более низких температур БСК монтируется в утепленном быстровозводимом здании. Стальные конструкции выполняются из сварных профилей, защищенных от коррозии гальваническим цинкованием (цинковое покрытие — не менее 650 г/м 2 ). Конструкции собраны в блоки по 6—8 конденсаторов, монтируются на месте и имеют в комплекте крепеж, наконечники и медные шины для соединения конденсаторов, а также гибкие медные переходы. В БСК применяются силовые конденсаторы 700 кВАр / 6—10 кВ, 560 кВАр / 11,7 кВ для напряжений 35 кВ, 542 кВАр / 7,94 кВ для напряжений 110—220 кВ с двумя фарфоровыми изоляторами и встроенными предохранителями.

Трансформаторы тока ТФЗМ (по 1 на фазу) подключены первичной обмоткой в разрыв двух параллельных групп, и в случае разбаланса выдают сигнал на устройства РЗА для отключения головного выключателя. Токоограничивающие реакторы (по 1 на фазу) ограничивают ток при включении БСК. Соединения выполнены гибкой медной шиной, для предотвращения повреждения изоляторов при температурном расширении/сжатии либо при воздействии электродинамических сил.

При заказе БСК указывается мощность батареи, номинальное напряжение и ток КЗ на месте установки, тип и количество конденсаторов в батарее, категория размещения и климатическое исполнение.

Виктор ИТКИН,
технический директор ЗАО «Матик-электро».

источник

Мы производим оборудование для качества электроэнергии!

НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР «ЭНЕРКОМ-СЕРВИС» с 1991 года занимается разработкой и производством электротехнического оборудования, имеет лицензию на проектирование, монтаж, наладку и испытания перечисленного выше оборудования.

НПЦ «ЭНЕРКОМ-СЕРВИС» поставил оборудование более чем на 200 российских предприятий и энергосистем, а также СТК 10 и 35 кВ на металлургические комбинаты в городах Ухань, Нанкин и Бао-Тоо (Китай).

Мы улучшаем качество электроэнергии!

Автоматизация производства неуклонно растет, количество высокоточных механизмов, которые обладают восприимчивостью к качеству потребляемой электроэнергии, увеличивается с каждым годом. Сбои в работе технологического оборудования часто приводят к неоправданным потерям, связанным с уменьшением объема выпускаемой продукции. Часты случаи выхода сложного и дорогого оборудования из строя в результате подачи некачественной электроэнергии. Выход ценного оборудования из строя, снижение норм выработки, падение эффективности работы предприятия в целом или же постоянные сбои и отказы — это характерные симптомы производства, на котором используется сеть, не обеспечивающая надлежащее качество электроэнергии.

Читайте также:  Установка пламегасителя с диффузором

Качество электроэнергии — технический термин, который был закреплен в одном из государственных стандартов. В перечень характеристик, которые определяют качество электроэнергии, входит более десяти параметров, среди которых — коэффициент искажения синусоидальности, отклонение частоты, коэффициент временного перенапряжения и так далее. В результате снижения качества электроэнергии чаще всего возникают следующие проблемы: изменение мощности, кратковременные перепады, резкие снижения напряжения.

Обращение в НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР «ЭНЕРКОМ-СЕРВИС» даёт вам возможность модернизировать производство, улучшить качественные показатели электросети и как следствие получить более высокую эффективность производственных процессов, а также добиться повышениях стабильности работы предприятия. Решения, предоставляемые нашей организацией, успешно доказывают своё качество и высокий уровень по всей нашей стране, а также в Китае и других регионах. Надёжная и точная работа всех систем — это совершенно нормально и естественно, если электрооборудование поставлялось нами.
Качество электроэнергии — приоритетное направление нашей деятельности.

Компенсация реактивной мощности

Компенсация реактивной мощности — один из наиболее важных факторов, позволяющих решить задачу энергосбережения, уменьшения расход реактивной энергии. И зарубежные, и отечественные специалисты утверждают, что чуть более трети от общей стоимости продукции — это стоимость энергоресурсов. Необходимо подойти к анализу энергопотребления с наибольшей ответственностью, поскольку компенсация реактивной мощности может дать существенную экономию.

Компенсация реактивной мощности — ключевой способ решения вопроса энергосбережения, даже если речь идет не о крупных производственных предприятиях, а о малых организациях. Ведь устройстваминелинейной нагрузкой, системами кондиционирования, вытяжки, лампами освещения генерируется немалое количество реактивной энергии. Устройства компенсации реактивной мощности способны помочь решить проблему экономии энергии.

Для компенсации реактивной мощности используется оборудование, которое снижает величину полной мощности; различают индуктивные и емкостные устройства компенсации реактивной мощности. Использование подобного оборудования приводит к тому, что электроэнергия используется более рационально.

Компенсация реактивной мощности призвана разгрузить распределительные линии, генераторы и трансформаторы от реактивного тока, а также уменьшить потери мощности в элементах электроснабжающей системы. Кроме того, компенсация реактивной мощности позволяет:

  • Уменьшить снижение напряжения и потери мощности в системе электроснабжения, ее элементах;
  • Существенно уменьшить расходы на электроэнергию;
  • Снизить влияние сетевых помех;
  • Снизить асимметрию фаз.

Устройства компенсации реактивной мощности быстро окупаются — при том, что цена на них остается более чем доступной. Потребление активной энергии при использовании устройств компенсации реактивной мощности может снижаться на 4-5 процентов.

Что такое БСК (батарея статических конденсаторов)

Батареи статической компенсации — это группа конденсаторов, используемых в схеме различных устройств, выступающих в качестве фильтров, то есть повышающих качество электрического тока. Для получения из группы конденсаторов БСК требуется соединение по строго определённой электросхеме, позволяющей использовать устройство без значительных потерь активной мощности.

БСК относится к более широкому классу устройств УКРМ. Комплексы на основе БСК обычно содержат управляющее устройство и могут также содержать фильтры высших гармоник. Учитывая принцип действия конденсаторов, составляющих БСК, зачастую комплексы оснащаются специальным устройством, обеспечивающим снятие напряжения за счёт разряда после отключения батарей от основного контура.

БСК может быть спроектирована и смонтирована достаточно быстро: практически за считанные дни после принятия решения о необходимости её установки на обычном производственном контуре.
подробнее в статье >>

Преимущества использования БСК

БСК — группы конденсаторов, соединяемых между собой. Как правило, в производстве БСК используются однофазные косинусные конденсаторы, тип соединения — параллельно-последовательное. Цели использования БСК — компенсация реактивной мощности, выравнивание кривой напряжения (в случае использования схемы с тиристорным регулированием), уровня напряжения.

Известно, что использование батарей статических конденсаторов дает значительный положительный эффект, способствует существенной экономии.
подробнее в статье >>

В соответствии с требованиями Федерального закона Российской Федерации от 28 декабря 2013 г. № 426 – ФЗ « О специальной оценке условий труда».

источник

Виды повреждений и защита батарей статических конденсаторов (БСК)

Назначение батарей статических конденсаторов (БСК)

Батареи статических конденсаторов (БСК) используются для следующих целей: компенсация реактивной мощности в сети, регулирование уровня напряжения на шинах, выравнивание формы кривой напряжения в схемах управления с тиристорным регулированием.

Передача реактивной мощности по линии электропередачи приводит к снижению напряжения, особенно заметному на воздушных линиях электропередачи, имеющих большое реактивное сопротивление. Кроме того, дополнительный ток, протекающий по линии, приводит к росту потерь электроэнергии. Если активную мощность нужно передавать именно такой величины, которая требуется потребителю, то реактивную можно сгенерировать на месте потребления. Для этого и служат конденсаторные батареи.

Наибольшее потребление реактивной мощности имеют асинхронные двигатели. Поэтому при выдаче технических условий потребителю, имеющему в составе нагрузки значительную долю асинхронных двигателей, обычно предлагается довести cosφ до величины 0.95. При этом снижаются потери активной мощности в сети и падение напряжения на линии электропередачи. В ряде случаев вопрос можно решить применением синхронных двигателей. Однако более простым и дешевым способом получения такого результата является применение БСК.

При минимальных нагрузках системы, может создаться положение, когда конденсаторная батарея создает избыток реактивной мощности. В этом случае излишняя реактивная мощность направляется обратно к источнику питания, при этом линия опять загружается дополнительным реактивным током, увеличивающем потери активной мощности. Напряжение на шинах растет и может оказаться опасным для оборудования. Поэтому очень важно иметь возможность регулирования мощности батареи конденсаторов.

В простейшем случае в минимальных режимах нагрузки можно отключить БСК – регулирование скачком. Иногда этого недостаточно и батарею делают состоящей из нескольких БСК, каждую из которых можно включить или отключить отдельно — ступенчатое регулирование. Наконец существуют системы плавного регулирования, например: параллельно батарее включается реактор, ток в котором плавно регулируется тиристорной схемой. Во всех случаях для этого применяется специальная автоматика регулирования БСК.

Виды повреждений конденсаторных установок

Основной вид повреждений конденсаторных установок — пробой конденсаторов — приводит к двухфазному короткому замыканию. В условиях эксплуатации возможны также ненормальные режимы, связанные с перегрузкой конденсаторов высшими гармоническими составляющими тока и повышением напряжения.

Широко применяемые схемы тиристорного регулирования нагрузки основаны на том, что тиристоры открываются схемой управления в определенный момент периода и чем меньшую часть периода они открыты, тем меньше действующее значение тока протекающего через нагрузку. При этом появляются высшие гармоники тока в составе тока нагрузки и соответствующие им гармоники напряжения на питающем источнике.

БСК способствуют снижению уровня гармоник в напряжении, так как их сопротивление с ростом частоты падает и следовательно растет величина потребляемого батареей тока. Это приводит к сглаживанию формы напряжения. При этом появляется опасность перегрузки конденсаторов токами высших гармоник и требуется специальная защита от перегрузки.

Ток включения конденсаторной батареи

При подаче напряжения на батарею возникает ток включения, зависящий от емкости батареи и сопротивления сети.

Определим для примера ток включения батареи мощностью 4.9 МВАр, приняв мощность КЗ на шинах 10кВ, к которым подключена батарея – 150МВ∙А: номинальный ток батареи: Iном = 4.9 / (√3 *11) = 0.257 кА; амплитудное значение тока включения для выбора релейной защиты: Iвкл. = √2*0.257*√ (150/4.9) =2 кА.

Выбор выключателя для коммутации конденсаторной батареи

Операции с выключателем при отключении конденсаторной батареи часто являются определяющими при выборе выключателя. Выбор выключателя определяется по режиму повторного зажигания дуги в выключателе, когда между контактами выключателя может возникнуть удвоенное напряжение – напряжение заряда конденсатора с одной стороны и напряжение в сети в противофазе с другой стороны. Ток повторного зажигания для выключателя получается умножением тока включения на коэффициент перенапряжения КП. Если используется выключатель того же напряжения, что и БСК, коэффициент КП равняется 2.5. Часто для включения батареи 6-10кВ используют выключатель повышенного напряжения 35 кВ. В этом случае коэффициент КП равняется 1.25.

Таким образом ток повторного зажигания дуги:

При выборе выключателя его номинальный ток (амплитудное значение) должен быть равен или больше расчетного отключаемого тока при повторном зажигании. Расчетный отключаемый ток зависит от типа выключателя и равен: IОткл .расч = IПЗ для воздушных, вакуумных и элегазовых выключателей; IОткл расч. = IПЗ / 0.3 для масляных выключателей.

Для примера произведем проверку параметров выключателя для токов включения, рассчитанных ранее, при применении масляного выключателя 10кВ c током отключения 20кА в действующих величинах или 28.3кА в амплитудных (ВМП-10-630-20).

а) Одна батарея 4.9 мВАр. Ток повторного зажигания: IПЗ =2.5 *2 = 5кА Расчетный ток отключения: IОткл. Расч. = 5/ 0.3 = 17кА.

Может быть использован масляный выключатель на напряжение 10кВ. При увеличении мощности КЗ на шинах 10кВ, так же при наличии двух батарей расчетный ток отключения может превысить допустимый. В этом случае, а также для повышения надежности в цепях БСК применяют быстродействующие выключатели, например, вакуумные, у которых скорость расхождения контактов при отключении больше, чем скорость восстанавливающегося напряжения.

источник

Добавить комментарий