Меню Рубрики

Установка датчика состава смеси

Barik-CZ › Блог › Возможные проблемы с топливом. Часть 5

Не спится, вот и решил пописать немного.

Не долго был я безработным. Все творческий отпуск закончен. Новые планы, проекты. Сегодня на совещании нашей команды были определены задачи всем. И у многих запланированы командировки, кто решать сложные вопросы с программистами, ну а мне осталось дождаться получения визы и ждет меня 14 часовой перелет. Еду на ознакомление, изучение и практику новых интересных разработок в области автоспорта и тюнинга двигателей. Необходимо к поездке подготовится, но пару ночей еще у меня есть, что бы закончить серию этих постов.

Я понимаю, становятся они для многих скучными. Но я всячески стараюсь писать, как можно проще и не забывайте, что для меня это очень сложно писать по-русски. Да, я учился в школе, в институте в России, но это было очень давно и все дальнейшее образование в этой области я получил на различных иностранных языках и просто не владею русской терминологией. Буду очень признателен, если кто-то в комментариях будет поправлять мои корявые выражения.

Вот к примеру Drive-by-wire – я знаю как работает, что это, сколько проводов, для чего каждый из них, но как это перевести на русский язык?

Ладно, вернемся к скукоте, к нашим баранам. Не, еще одна мысля пришла. Я вырос в семье физиков брат старший, отец – да Пап поздравляю тебя, у тебя же сегодня день рождения. Так вот они меня научили не запоминать уравнения, законы, теоремы, а главное их прочувствовать. Если достичь такого понимания процессов, то ты всегда будешь в состоянии, потом сам вывести любое уравнение или доказать теорему. Для чего я это, все просто, много комментариев, сообщений получил типа – а какой цвет провода и т.д. Да это не важно, они не постоянны, зависят от изготовителя.

Или многие спрашивают совета как настроить машину, какая смесь и т.д. Не с этого надо начинать. Вы же не можете попросить вас научить, скажем, вырезать аппендицит. Я не думаю, что это как то сложно, если тебе покажут, расскажут и возможно, наверное, даже не быв ДОКТОРОМ произвести эту операцию. Но, что ПРОИЗОЙДЕТ если там будет что то не так? Человек может просто умереть. Вы не можете подходить к изучению вопроса локально, надо комплексно. Наверное, поэтому врачи больше всего и учатся, у них ошибка может стать кому то жизни.

ДАТЧИКИ СОСТАВА ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ

— Wideband sensors, – широкополосные датчики кислорода,
— Air Fuel sensors – датчики составе смеси TOYOTA/SUBARU
— Lean Mixture (датчики обедненной смеси)

Как вы помните, обычный кислородный датчик характеризуется наличием двух устойчивых состояний. При обогащенной смеси он вырабатывает повышенное напряжение, а при избытке кислорода пониженное. Эта ´переключательностьª приводит к тому, что блок управления (БУ) не в состоянии определить точный состав смеси и необходимую в данный момент степень её изменения.

По мере повышения требований к содержанию вредных веществ в отработавших газах и дальнейшего развития конструкции двигателей внутреннего сгорания такие обычные кислородные датчики перестали удовлетворять требованиям к инжекторным системам, так как не позволяли определять точный состав смеси.

Это потребовало разработки датчиков новой конструкции. Основной параметр (крутизна) выходной характеристики обычного кислородного датчика не позволяет оценивать (определять) состав отработавших газов при работе двигателя. С помощью этих датчиков БУ может определять только приблизительный состав смеси, то есть богатая она или бедная, но не может определить на сколько состав смеси отличается от стехиометрической величины (14.7:1)

ПРИНЦИП ДЕЙСТВИЯ ШИРОКОПОЛОСНОГО КИСЛОРОДНОГО ДАТЧИКА

Широкополосные датчики состоят из двух ячеек: измерительной ячейки и ячейки накачки. С помощью измерительной ячейки содержанию кислорода в выхлопных газах, попадающих в детекторную камеру, сопоставляется напряжение, которое сравнивается с заданной величиной 450 мВ (это значение для стехиометрической смеси).

Любое отличие от 450мВ приводит к тому, что с помощью тока накачки в измерительную камеру подается или отводится столько ионов кислорода, чтобы между электродом на стороне эталонного воздуха и электродом измерительной камеры установилась величина напряжения 450 мВ.

Этот ток накачки является измеряемой величиной, которая почти линейно описывает состояние топливно-воздушной смеси и значение ее лямбда-показателя.

В стехиометрической смеси эта величина равна нулю, поскольку парциальное давление кислорода измерительной камеры соответствует указанной выше заданной величине 450 мВ

Если смесь стехиометрическая (лямбда = 1), то никакой ток через ячейку накачки не идет.

Если смесь богатая, количество остаточного кислорода в выхлопных газах очень незначительно, в ячейке накачивания индуцируется негативный ток и кислород накачивается в детекторную камеру.
При обедненной смеси концентрация остаточного кислорода в отработанных газах высокая, в ячейке накачивания индуцируется положительный ток и кислород откачивается из детекторной камеры.

Главное отличие любого датчика состава топливно-воздушной смеси от скачкового датчика кислорода это в том, что выходных значением для измерения состава смеси является значение тока, а не напряжение. Напряжение является управляющими сигналами или выходными из контролера, без которого данный вид сенсоров не способен работать. И конечно он более чувствителен.
В чем разница между широкополосным датчиком кислорода wideband и A/F sensor? Wideband О2 сенсор обычно (не без исключения к примеру Хонда) имеет 5 проводов, а A/F сенсор 4 провода.

Рассмотрим сегодня немного 5 проводные датчики

Цвета соответствуют LSU BOSCH

Широкополосные кислородные датчики имеют пять кабельных соединений. Нагревательный элемент снабжается током через серый и белый кабель. Сигнал тока накачки (Ip+) протекает через красный кабель, сигнал измерительной ячейки (Vs+) — через черный кабель. Желтый кабель создаёт измерительное соединение для ячейки накачки и измерительной ячейки (Опорное напряжение IP/ VS)

Читайте также:  Установка водяного полотенцесушителя margaroli

Для того что бы была одинаковая чувствительность сенсора (одинаковый выходной ток для одной и той же лямбды) устанавливается калибровочное сопротивление Rcal но это кабель идет не от датчика а от ЭБУ или контролера к разъему. Очевидно, что заводские датчики все откалиброваны, и калибровочное сопротивление Rcal обычно установлено в самом разъеме.

Если этой опции нет, как к примеру у контролеров которые используют UEGO (Universal Exhaust Gas Oxygen) датчик (AEM, Innovate …) в таком случае обязательна калибрация на воздухе.

Запомните, что все датчики такого типа имеют как минимум 5 проводов от сенсора к разъему и 6 или 7 от разъема.

Вообще желательно всегда знать, что у Вас за датчик кислорода, для этого есть специальный документ. К примеру, на BOSCH LSU 4.2 www.daytona-sensors.com/download/Bosch_LSU4.pdf

Для сравнения, выходное (измеряемое, определяющее) значения тока для BOSCH LSU 4.2

Очень немало важный фактор. Сила тока на нагревательном элементе намного выше т.к. минимальная рабочая температура датчика состава топливно-воздушной смеси 750 градусов. Подробно об этом контуре поговорим в следующем посте.

Место расположения, установки. Для любителей ставить близко к турбине (или вообще перед ней) рекомендую взглянуть на следующий график

На нем указан % ошибки показаний в зависимости от давления. Учтите 1 бар – это атмосферное давление.

Продолжение следует (датчики тайота/субару)

источник

Barik-CZ › Блог › Возможные проблемы с топливом. Часть 4

Датчик содержания кислорода в отработавших газах (наиболее распространенное название-лямбда зонд) является сложным высокотехнологичным устройством, имеющим достаточно много разновидностей по устройству, параметрам и применению.

Расположение кислородных датчиков

Современные автомобили имеют минимум два кислородных датчика. Регулирующий датчик расположен перед катализатором и, с момента введения бортовой диагностики On=Board (OBD), после катализатора устанавливается диагностический датчик.

Контур регулирования Лямбды

Регулирующий датчик анализирует наличие остаточного кислорода в выхлопных газах еще до того, как они попадают в катализатор.
В зависимости от концентрации остаточного кислорода датчик генерирует сигнал (сигнал может быть напряжение, ток или сопротивление), который поступает на ЭБУ двигателем. Блок управления использует этот сигнал для регулирования состава топливно-воздушной смеси.
Диагностический датчик измеряет количество остаточного кислорода в выхлопных газах уже после того как они были обработаны катализатором. С помощью сигнала этого датчика БУ (блок управления) распознает отклонения в обработке выхлопных газов (например, нарушение в работе катализатора или регулирующего датчика), и генерирует соответствующее сообщение для водителя, обычно с помощью контрольной лампы на приборной панели

ТИПЫ КИСЛОРОДНЫХ ДАТЧИКОВ

В технической литературе различают три типа кислородных датчиков, которые не являются взаимозаменяемыми.

Кислородные датчики из диоксида циркония (наиболее популярные) и диоксида титана называются также датчиками перепада напряжения, скачковыми или бинарными кислородными датчиками, потому что сигнал датчика колеблется между двумя величинами, в зависимости от того, какое состояние топливно-воздушной смеси – богатая она или обедненная.

Третий тип – это так называемые широкополосные кислородные датчики. Их также называют “линейными “ кислородными датчиками, поскольку их выходной сигнал линейно изменяется в широком диапазоне состояний AFR (топливно-воздушной смеси), они могут точно измерять значение избытка воздуха (лямбда).

Но я считаю, что есть пять основных типов датчиков кислорода. Конструктивно датчики кислорода бывают циркониевые (с применением керамического элемента из двуокиси циркония) и титановые (с применением элемента из двуокиси титана).

Титановые лямбда зонды применялись на некоторых моделях автомобилей Nissan, Opel, BMW, Land Rover, Jeep и широкого распространения не получили. Я бы не хотел заострять внимание на титановых датчиках кислорода, главное их отличие, что выходной сигнал для определения БУ состава топливно-воздушной смеси является электрическое сопротивление. Элемент из диоксида титана изменяет эл. сопротивление пропорционально парциальному давлению кислорода в смеси выхлопных газов.

Что бы, не обидеть владельцев дизельных автомобилей, владельцев японских автомобилей: Toyota, Lexus, Honda, Subaru. Необходимо выделить из циркониевых датчиков еще два типа: Датчики обедненной смеси (Sensors Lean Mixture) – многие его принимают за узкополосный т.к. выходной сигнал очень похож на классический скачковый (бинарный) вид датчиков кислорода.
И конечно датчики состава смеси (Air Fuel Ratio Sensor) – также многие его путают с классическим широкополосным датчиком.

Датчики обедненной смеси (Sensors Lean Mixture), датчики состава смеси (Air Fuel Ratio Sensor) и широкополосные кислородные датчики в качестве выходного сигнала определяющего состав топливно-воздушной смеси используют изменение величины тока, а не напряжения или электрического сопротивление.

Все не так и сложно, теперь я предлагаю подробно рассмотреть по отдельности эти датчики кислорода.

Кислородный датчик из диоксида циркония

Это самый распространенный датчик. В зависимости от автомобиля, эти датчики могут быть как регулирующими, так и диагностическими.

Основой этого датчика является полый, пальцеобразный керамический элемент на основе диоксида циркония. Этот материал представляет из себя так называемый твердотельный электролит, свойства которого схожи с электролитом, который можно найти в аккумуляторных батареях.

При рабочей температуре выше 350 градусов этот элемент становится проницаемым для ионов кислорода. Первые датчики использовали для разогрева циркониевого элемента тепловую энергию выхлопных газов, в более современных датчиках для быстрого достижения нужной рабочей температуры используют специальный встроенный нагреватель. В процессе функционирования на выходе возникает высокое или низкое электрическое напряжение – в зависимости от содержания остаточного кислорода

Принцип действия датчика из диоксида циркония

Если у Вас есть желание понять, разобраться как работают датчики кислорода, в том числе и широкополосные, постарайтесь понять для начала ниже описанный принцип. Все остальные виды циркониевых датчиков – это усовершенствованный данный тип.

Элемент датчика из диоксида циркония имеет пальцевидную форму (как уже выше я описывал) и полый в нутрии. Внутренняя полость заполнена атмосферным (свежим) воздухом. Внешняя же поверхность находится в потоке отработанных газов. И внутренняя и внешняя поверхности покрыты слоями платины, выполняющими роль электродов.

Читайте также:  Установка предыдущей версии internet explorer

Всегда существует разница в концентрации кислорода между отработанными газами и атмосферным воздухом. Когда кислородный датчик достигает рабочей температуры, ионы кислорода начинают перемещаться через керамический элемент со стороны с большей концентрации кислорода в направлении зоны, где концентрация кислорода меньше, пытаясь установить равновесное состояние.

Из-за перемещения ионов от одного электрода к другому возникает разность потенциалов, приводящая к росту электрического напряжения. Если смесь обедненная, напряжение в сигнальной цепи датчика будет относительно низкое (примерно 0.1 Вольт). Если смесь богатая, то это значение относительно высокое (примерно 0.9 Вольт). Происходит значительный скачек напряжения при переходе через стехиометрическое состояние (когда значение лямбда равно 1).

Поэтому этот тип датчика и называется – датчиком переключения, скачковый или бинарный, потому что значения выходящего сигнала переключаются между двумя величинами. Данный тип датчика кислорода сообщает ЭБУ двигателя только о том, что он работает в режиме обедненной или богатой смеси для регулирования подачи топлива в режиме замкнутого контура. Процесс регулирования осуществляется с частотой один, два раза в секунду.

Проверка циркониевого (бинарного) кислородного датчика

Проверка с помощью осциллографа является наиболее эффективным методом.
Процедура проверки:
— при скорости 2000 оборотов довести двигатель до рабочей температуры
— осциллограф подключить к сигнальному проводу, не отсоединяя датчик от управления двигателем
— установить диапазон измерения 1-5 Вольт, время 5-10 секунд (соблюдать рекомендации производителя)

При этом определяется минимальное, максимальное напряжение и среднее усредненное выходное напряжение.

Показания исправного датчика изменяются между значениями 0.2-0.8 Вольт. Среднее должно быть 0.45 Вольт
Также необходимо измерить время срабатывания и продолжительность периодов

Показания исправного датчика меняются с частотой 0.5 -3 герца

Если датчик устарел, он посылает слабый или медленный сигнал. Наряду с естественным старением, возможны также другие причины повреждений. Соответствующие фотографии поломок могут подсказать причину дефекта (будут в следующем посте).

Если управление двигателя не получает сигнал кислородного датчика или этот сигнал слабый, то управление действует «вслепую». Управление не может определить, каков состав сжигаемой смеси. Как следствие, управление переключается на аварийный ход и автоматически насыщает смесь. Это значит: подаётся больше топлива, чем необходимо. Так обеспечивается мощность и детали защищаются от перегрева.

Но это имеет негативные последствия: Повышается расход топлива — в среднем на
15 %, при городском движении даже выше. К тому же катализатор больше не может корректно работать, в окружающий воздух попадает больше выбросов.

Необходимо проверить сопротивление в цепи подогрева. Если сопротивление составляет более 30 Ом – датчик поврежден. Для датчиков с 3-4 – мя проводами, сопротивление обычно в пределах 2-9 Ом.

Теперь немного о количестве и цвете проводов. У данного типа датчика кислорода (циркониевый, бинарный) может быть от 1 до 4 проводов. Цвет также зависит от изготовителя.

Наиболее часто встречающиеся варианты

Датчики с одним черным сигнальным проводом не имеют нагревателя, соединение на массу при этом осуществляется через резьбовую часть металлического корпуса.

Датчики без нагревателя, у которых соединение массы сигнальной цепи, осуществляется с электропроводкой автомобиля, имеют дополнительный провод серого цвета.

Нагреваемые датчики имеют три или четыре провода. В них черный это сигнальный. Два белых предназначены для электроснабжения нагревателя (полярность не имеет значения). Если есть провод серого цвета, так это масса.

Я думаю на сегодня хватит. (в этом посте основной материал взят из обучающего курса диагностики Фирмы NTK)
Продолжение следует.

источник

KAZBEK64RUS › Блог › Проверка 5-контактного датчика обедненной смеси

Принцип работы и описание проверки LAF датчиков состава воздушно-топливной смеси
Как уже отмечалось, обычные датчики кислорода имеют ограничения по применению, так как они могут использоваться только для поддержания состава топливно-воздушной смеси в диапазоне стехиометрического состава смеси (14,7:1). С развитием конструкций двигателей и повышением их мощности, ужесточением требований к содержанию вредных веществ в отработавших газах возникла необходимость более точного определения состава топливно-воздушной смеси.
Для анализа состава смеси в диапазоне от 12:1 до 23:1 HONDA, часть Mazda, Subaru, Nissan и не только, в отличии от Тойота, использует циркониевый датчик кислорода, называемый датчиком обедненной смеси (LAF-Sensor). Блок управления (ECM) использует сигналы этого датчика наряду с данными о частоте вращения коленчатого вала, положением коленчатого и распределительного валов, положением дроссельной заслонки, нагрузкой, температурой и др. для поддержания устойчивости работы двигателя при обедненной смеси при 2500-3200 об/мин (в зависимости от положения дроссельной заслонки и нагрузки). Например, такие датчики использовались в Civic VX 1992-95 гг., Civic HX 1996-98 гг. и двигателях VTEC-E. Кроме этого, такие датчики применялись на некоторых европейских моделях VAG.
LAF датчик внешне очень похож на традиционный O2 (кислородный) датчик, за исключением того, что он подключен бόльшим количеством проводов. Такие датчики выпускают известные фирмы Bosch, NGK, HJS и другие. LAF-датчик Honda устроен сложнее, чем обычный датчик. Даже притом, что используется тандем из двух практически стандартных датчиков кислорода, работает он совершенно иначе.
В атмосфере содержится приблизительно 21 % кислорода. В отработавших газах бензинового двигателя примерно 1-2 %. В обычном датчике, за счет разницы концентрации, ионы кислорода перемещаются в твердом электролите ZrO2 и создают разность потенциалов. Чем больше разница концентраций кислорода в атмосфере и отработавших газах, тем больше выходное напряжение. Это напряжение поступает в БУ, что позволяет регулировать состав смеси.
LAF датчик напоминает традиционный кислородный не только внешне, но и некоторыми внутренними особенностями. Как видно из рисунка 1 он фактически «собран» из двух обычных датчиков (1 и 2). Внешняя сторона чувствительного элемента датчика 1 находится в потоке отработавших газов, а его внутренняя сторона соприкасается не с атмосферой, а с диффузионной камерой.
Позже мы увидим, что ECM управляет концентрацией кислорода в ней. Датчик 2 установлен «позади» датчика 1 и его внешняя сторона создает герметичный отсек между этими двумя датчиками. Внутренняя часть датчика 2 находится в атмосфере. Контакт внешней стороны датчика 1 подключен к ECM и называется входом ячейки напряжения (cell voltage input). На этом выводе генерируется напряжение, которое пропорционально разнице в концентрации кислорода в отработавших газах и в диффузионной камере. Диффузионная камера не соприкасается с атмосферой, но компьютер управления двигателем может изменять в ней содержание кислорода.
Второй контакт (reference voltage) соединен с внутренней областью датчика 1 и к внешней стороне датчика 2. На этот контакт комп подает эталонное напряжение 2,7 В относительно минуса аккумулятора.
Третий контакт — от внешней стороны датчика 2 используется для того, чтобы управлять направлением «покачивания» кислорода — в диффузионную камеру или из неё (pump cell control).
Управление LAF датчиком
Благодаря тому, что ECM управляет содержанием кислорода в диффузионной камере, LAF датчик измеряет состав топливно-воздушной смеси в широком диапазоне (на рис. 2 структурная схема датчика). При этом он проверяет выходное напряжение датчика 1, который аналогично традиционному кислородному датчику, вырабатывает напряжение, обратно пропорциональное разнице концентрации кислорода у своих электродов. Управляя количеством кислорода в диффузионной камере, ECM пытается поддерживать на «выходном контакте датчика 1 напряжение 0,45 В.
В зависимости от направления протекания тока через датчик 2 (контакт управления ячейкой насоса), кислород перемещается («накачивается») в диффузионную камеру или из неё. Так же, как многие другие электрические явления, движение ионов кислорода есть обратимый процесс. Например, протекание электрического тока создает магнитное поле, и, в свою очередь, изменение магнитного поля вызывает перемещение электронов (электрический ток). В кислородном датчике перемещение ионов кислорода между электродами создает разность потенциалов. Но при этом, если на электроды подать напряжение от внешнего источника, то это вызовет перемещение ионов кислорода.

Читайте также:  Установка led лампы в солярис

Блок управления изменяет величину напряжения на датчике 2 и, тем самым, определяет направление перемещения ионов кислорода в диффузионной камере. Иными словами, элемент, который контактирует с отработавшими газами, является чувствительным элементом. Пространство между двумя циркониевыми элементами образует диффузионную камеру. Прилагая переменное напряжение к управляющему элементу, ECM изменяет количество кислорода в диффузионной камере. Так как она является опорной для чувствительного элемента, то это позволяет влиять на его выходное напряжение. При этом компьютер проверяет напряжение чувствительного элемента, которое зависит от изменения количества кислорода в отработавших газах. И прикладывает напряжение к элементу достаточное для поддержания выходного напряжение датчика равным 0,45 В.
По величине приложенного напряжения определяется реальный состав смеси. В отличие от стандартного датчика кислорода, напряжение такого датчика может быть как положительным, так и отрицательным. Положительное напряжение указывает бедную смесь, отрицательное напряжение — признак обогащенной смеси. Нормальный диапазон изменения напряжения составляет примерно 1.5 В.
Функционирование при богатых смесях (λ 1)

При обеднении смеси процесс происходит в обратном (противоположном) направлении. Поскольку содержание кислорода увеличивается, то перемещение ионов кислорода из диффузионной камеры к системе выпуска замедляется. При этом выходное напряжение датчика 1 уменьшается. БУ «ощущает» это изменение, увеличивает напряжение на насосной ячейке, и датчик 2 «качает» в диффузионную камеру (diffusion chamber) большее количество кислорода. Это увеличение количества кислорода в диффузионной камере заставляет большее количество ионов кислорода двигаться по направлению к системе выпуска, что увеличивает выходное напряжение датчика.
В результате ECM контролирует напряжение управления насосной ячейкой для поддержания на датчике 1 0,45 В. Это напряжение используется для определения состава отработавших газов в диапазоне от 12:1 до 22:1. Как будет изложено ниже (описание проверки), напряжение на насосной ячейке пропорционально воздушно-топливному коэффициенту (составу смеси).
Для систем с обратной связью по напряжению LAF-датчика введен новый параметр – «управляющий состав смеси» (commanded AF ratio). Его суть состоит в том, что БУ определяет оптимальное соотношение между количеством воздуха и топлива в зависимости от режима работы двигателя. После определения оптимального состава смеси для текущего состояния двигателя БУ сохраняет его значение в памяти и в дальнейшем поддерживает необходимое напряжение на контакте насосной ячейки в соответствующем диапазоне. На рис. 3 (Данные диагностического сканера) представлены значения параметров инжекторной системы и показания датчиков на различных режимах работы двигателя. Например, ECM определил, что автомобиль может двигаться при более бедной смеси. После обеднения её состава уменьшением времени впрыска (pulse width, PW) проверяется напряжение на насосной ячейке. Как только достигнут необходимый результат, будет зафиксировано значение длительности открытого состояния форсунок. Иными словами, блок управления определяет оптимальный состав смеси и использует LAF датчик для его поддержания в этом диапазоне.
На рисунке 4 (Назначение контактов разъема) назначение LAF-датчика с помощью 8-контактного разъема его контактов. 1. «+» нагревателя (HT CNTL, оранжевый) 2. «-» нагревателя (GND, желтый) 3. «-» ЕСМ 4. Калибровочный резистор (Label) 5. Свободный 6. Ячейка напряжения (VS+, красный) 7. Насосная ячейка (IP+, красный) 8. Опорное напряжение (IP-, VS+, красный).
Примечание о подключении LAF датчика: в жгуте проводки автомобиля используется семь проводов и подключение с помощью 8-контактного разъема. Но сам датчик подключен к разъему только пятью проводами. К двум контактам разъема присоединены калибровочные резисторы (calibrating resistor), сопротивление которого обычно 4 кОм. Возможно подключение с помощью 10-контактного разъема (фото справа). В этом случае сопротивление «крайнего» резистора примерно 0,65-0,7 кОм, второго – 55 — 60 кОм. Сопротивление нагревателя составляет примерно 2 — 13 Ом.

источник

Добавить комментарий

Adblock
detector