Меню Рубрики

Установка датчиков на ультразвуковом расходомере

Ультразвуковой расходомер US-800. Исполнения 1Х,2Х,3Х. Требования к монтажу.

Требования к монтажу US-800 1Х,2Х,3Х

Монтаж, наладку и эксплуатацию расходомера должны производить лица, имеющие специальную подготовку и аттестацию, разрешение на выполнение соответствующих работ, ознакомленные с нормативными документами и руководством по эксплуатации к приборам.

ТРЕБОВАНИЯ К МЕСТАМ УСТАНОВКИ РАСХОДОМЕРА:

Соблюдения следующих требований гарантирует надежную работу расходомера и соответствие заявленным метрологическим характеристикам.
В месте установки ЭБ не допускается концентрация агрессивных паров и газов.
Не рекомендуется питать US800 от электрической сети, в которой происходят частые коммутации силовых нагрузок или используются мощные преобразователи частоты.
В месте установки УПР не должно быть установлено оборудования, наводящих мощные электромагнитные помехи на датчики, кабели, что может приводить к сбоям в работе.
Для защиты от механических повреждений и для дополнительного экранирования кабель необходимо прокладывать в металлических трубах, металлорукаве.
Избегать прокладки кабеля расходомера вдоль силовых кабелей, особенно коммутирующих большие токи.

УСТАНОВКА УПР:

Для надежной работы расходомера и соответствия заявленным метрологическим характеристикам необходимо выполнить ряд требований к местам установки УПР.

УПР могут устанавливаться в вертикальные, горизонтальные и наклонные трубопроводы на восходящих потоках, не создают гидравлического сопротивления и не требуют установки фильтров в трубопровод.

Главными условиями для соблюдения метрологических характеристик при измерении расхода являются:
-полное заполнение сечения УПР жидкостью;
-симметричное распределение (эпюра) местных скоростей жидкости в профиле его потока относительно оси УПР.

Присутствие твердых или газообразных включений на пути следования ультразвукового сигнала приводит к отказу прибора и невозможности вычисления расхода.
Причиной этого может быть загрязнение жидкости, а также кавитация, вспенивание, сифонный эффект.
Данные явления определяются свойствами измеряемой жидкости, наличием в ней посторонних примесей, присутствием в непосредственной близости к месту установки УПР гидравлических сопротивлений.
Неполное заполнение трубопровода может привести к неправильному расчету расхода.
Также необходимо учитывать возможные перерывы в подаче.

Во избежание (или уменьшения вероятности) возможных ошибок в измерении и сбоев в работе расходомера необходимо следовать следующим рекомендациям при установке УПР:
— рекомендуется устанавливать УПР вертикально, на восходящем потоке (рисунок 5, а);
— на длинных горизонтальных трубопроводах установку УПР желательно осуществлять на участке, имеющем угол восхождения (рисунок 5, б);
— при подаче и вытекание жидкости самотеком во избежание неполного заполнения установку УПР осуществлять в заниженной секции трубопровода (рисунок 5, в);
— в случае, когда может возникнуть неполное заполнение из-за перерывов в подаче, рекомендуется устанавливать УПР в нижней секции трубопровода на восходящем потоке (рисунок 5, г);
— не рекомендуется устанавливать УПР в наивысшей точке трубопроводной трассы (рисунок 6, а);
— не рекомендуется в качестве места установки УПР использовать прямые заниженные секции трубопровода во избежание образования отложений в УПР (рисунок, 6 б);
— избегать установки УПР на нисходящем участке трубопровода, имеющего свободный слив жидкости в атмосферу (рисунок 6, в);
— не устанавливать УПР перед всасывающим насосом;
— при установке УПР плоскость ПЭП ориентировать горизонтально с допускаемыми отклонениями (рисунок 7).

Наличие колен, задвижек, насосов, диффузоров, тройников и других гидравлических сопротивлений могут искажать профиль течения жидкости, что влияет на погрешность измерения.
Для того, чтобы погрешности измерений находились в установленных пределах, рекомендуется в местах установки УПР выдерживать прямые участки трубопровода до и после УПР в зависимости от типа гидравлического сопротивления и диаметра условного прохода (Ду) УПР в соответствии с рисунком 8.
В скобах приведены значения, до которых можно сокращать длины прямых участков, при использовании двухлучевых УПР.
Полностью открытие полнопроходные шаровые краны не являются гидравлическим сопротивлением.
В случаях, когда невозможно увеличить длину прямого участка до требуемой величины при сильно искаженном профиле потока (от насоса, регулирующей арматуры и т.п.), следует предусмотреть установку струевыпрямителя перед УПР на расстоянии не менее 3 Ду.
Длина прямолинейного участка трубопровода между двумя последовательными местными сопротивлениями перед УПР должна быть не менее 5 Ду.
Внутренний диаметр трубопровода в месте установки не должен отличаться более+- 5% от фактического внутреннего диаметра УПР.

Длины прямых участков ДО и ПОСЛЕ установки УПР (в скобках приведены значения для двухлучевого УПР).

Более подробную информацио о монтаже смотрите в «Руководстве по эксплуатации и монтажу», в рубрике «Документация».

Модификации и исполнения расходомера US-800

Стандартное исполнение. Обслуживание 1 трубопровода. Подключение 1 шт однолучевого УПР Ду15-2000 мм

Комплектация исп.1x

Двухканальный, удобен в системах теплоучета. Обслуживание 2 трубопроводов. Подключение 2 шт однолучевых УПР Ду15-2000 мм

Комплектация исп.2x

Двухлучевой высокоточный. Обслуживание 1 трубопровода. Подключение 1 шт двухлучевого УПР Ду50-2000 мм

Комплектация исп.3x

Многоканальный, помехозащищенный, удаленный от трубы, для самых ответственных объектов. Обслуживание до 2-4 трубопроводов. Подключение 4 шт однолучевых УПР Ду15-2000 мм или 2 шт двухлучевых УПР Ду50-2000 мм

Комплектация исп.4x

источник

ИЗ ОПЫТА ПРИМЕНЕНИЯ И ЭКСПЛУАТАЦИИ УЗ РАСХОДОМЕРОВ

СОДЕРЖАНИЕ:

I.Краткие сведения об измерении объемного расхода сред ультразвуковыми расходомерами

Ультразвуковые расходомеры с накладными преобразователями обладают высокой надежностью, так как их сенсоры не контактируют с контролируемой средой. Они не имеют подвижных и изнашиваемых частей, не создают дополнительное гидравлическое сопротивление в измеряемом трубопроводе. Обычный диапазон измерений составляет 1:100. На их работоспособность не влияет электропроводимость среды, ее давление и агрессивность.

Среди недостатков можно выделить высокую чувствительность к вибрациям трубопровода и турбулентным искажениям потока, требование к значительным прямым участкам до и после установки датчиков измерения. Эти недостатки в современных приборах удается исключить за счет усовершенствованной конструкции измерительной части и программными методами обработки сигнала.

Схемное решение и конструктивное исполнение ультразвукового расходомера зависит от следующих принципов измерения и применения:

  1. по методу измерения: корреляционный, доплеровский, время-импульсный;
  2. по типу прибора: врезной или с накладными преобразователями (датчиками);
  3. по варианту исполнения: портативный (переносной) или стационарный;
  4. по типу трубопровода: для измерения на заполненном (напорном) и не заполненном трубопроводе или самотечном коллекторе.
Читайте также:  Установка вариатора на китайский скутер

Корреляционный метод основан на измерении скорости движения неоднородностей потока: турбулентных вихрей, а также газообразных и твердых включений, путем выделения среднего временного интервала, необходимого для преодоления этими неоднородностями расстояния между двумя парами «излучатель – приемник ультразвука», расположенными на известном расстоянии друг от друга.

В основе доплеровского метода измерения заложен принцип измерения частоты ультразвукового сигнала, отраженного от движущихся неоднородностей в среде (пузырьки газа, твердые частицы, градиенты плотности). Более подробно с этим методом измерения можно ознакомиться здесь: http://avr.ru/ready/measure/mass/debet/part1. Измерительные датчики устанавливаются в основном диаметрально-противоположно друг относительно друга, но допускают и установку под углом.

При время-импульсном методе измеряется разность времени прохождения ультразвукового сигнала от датчика к датчику в движущемся потоке жидкости по направлению потока и в противоположном направлении. При этом датчики устанавливаются в трубе (или на поверхности трубы) под углом к перпендикулярной оси трубы (с разносом) и в одной плоскости с продольной осью трубы.

Более подробно о достоинствах и недостатках этих методов измерения можно прочитать в статье: http://signur.ru/publications-37.html (Бесконтактные методы измерения расхода жидкости в напорных и безнапорных трубопроводах. Журнал «Мир измерений», № 1/2004).

Ввод ультразвукового сигнала в измеряемую среду может производиться разными способами: с преломлением и без преломления ультразвукового луча. При вводе без преломления у расходомеров появляется функциональная зависимость от скорости звука в измеряемой среде.

Материал трубопровода при использовании накладных излучателей должен быть звукопроводящим: сталь, чугун, алюминий, керамика, стекло, ПВХ, ПНД, асбоцемент.

Измеряемая среда: вода – холодная, морская, артезианская, сиаманская, речная, горячая вода, стоки, спирты и их растворы, кислоты, щелочи, растворы коагулянтов, хладагент, рассолы, ацетон, автомобильные и растительные масла, мазут (90°С и выше), керосин, бензин, дизтопливо, насыщенный пар (до 200°С), воздух, газы и другие звукопроводящие среды.

II. ИЗМЕРЕНИЕ ОБЪЕМНОГО РАСХОДА СТОЧНЫХ ВОД

1. Безнапорные трубопроводы, самотечные каналы, лотки и коллекторы

1.1. Основные сведения и приборы учета

Особенность измерения объемного расхода жидкости в не заполненных трубопроводах-необходимость определения мгновенного уровня наполнения трубопровода в точке измерения. При этом скорость потока либо калибруется в зависимости от метода измерения, либо непосредственно измеряется УЗ датчиками (установленными на дне трубопровода (канала) и непосредственно находящимися в потоке или накладными датчиками, установленными на днище трубопровода с наружной стороны).

Уровень наполнения трубопровода (канала) возможно измерить несколькими способами:

  • пьезометрическим (гидростатическим);
  • барботажным (пневмометрическим);
  • акустическим;
  • лазерным дальномером стационарного исполнения (пока практически не применяется).

Если скорость потока не измеряется датчиками, калибровку трубопроводов и лотков можно осуществлять расчетным методом с использованием формулы Шези. Для этого необходимо создать в трубопроводе (канале) условие для определения средней скорости потока: задать (знать) точный строительный уклон прямого измерительного участка и знать коэффициент шероховатости стенок.

Если строительный уклон невозможно измерить, то можно определить среднюю скорость потока в точке измерения уровня с помощью гидрометрической вертушки при разных уровнях наполнения.

Также применяются косвенные методы измерения при помощи водосливов различной конструкции и лотков Вентури и Паршалла. Подробно эти методы рассмотрены в МИ 2406-97.

Объемный расход жидкости при всех методах измерения в конечном итоге определяется произведением площади поперечного сечения трубопровода (лотка) на среднюю скорость потока. Данные о площади сечения, градуировочные характеристики лотка (канала, трубопровода) заносятся в память прибора при его изготовлении на предприятии и не могут быть изменены потребителем в процессе эксплуатации оборудования, что исключает не санкционированное вмешательство и корректировку результатов измерения.

В таблице 1 приведены технические характеристики приборов учета, которые были успешно применены при устройстве узлов учета на различных объектах в течение 16 лет (кроме «Взлет РСЛ», не пришлось с ними поработать).

Характеристика «Эхо-Р-03» «Днепр-7»
03.011.1, 03.071.1
«Взлет РСЛ-2ХХ»
1 Метод измерения:
— скорость потока
— уровень заполнения

Калибруется
акустический

Доплеровский
гидростатический (пневмометрический)

Калибруется
акустический
2 Соответствие нормативным документам МИ 2220-13
МИ 2406-97
МИ 13-92, 14-92
МИ 2220-13
МИ 2406-97
МИ 2220-13
МИ 2406-97
3 Основная погрешность измерений (относительная) 3% в диапазоне
20-100% диапазона измерений уровня, в диапазоне измерения уровня 0-20% — не > 3% (приведенная)
2 % во всем диапазоне уровня наполнения для безнапорных трубопроводов (допускается подпор) 3% при индивидуальной градуировке на месте.

1.3. Примеры установки измерительных датчиков на объектах

Расходомер акустический «Эхо-Р-03», ПНП «Сигнур», г. Москва

Ниже приведены несколько эскизов монтажа акустических преобразователей АП-11 и АП-13 расходомера «Эхо-Р-03» в зависимости от размеров и высоты заполнения лотка и трубопровода, рекомендуемые производителем.

Средняя скорость потока для градуировки расходомера была измерена с помощью гидрометрической вертушки «Микрокомпьютерный расходомер-скоростемер МКРС».

Зависимость скорости потока от высоты наполнения самотечного лотка и трубопровода для примера приводится ниже на диаграммах.

ПРИМЕР УСТАНОВКИ АП-13 РАСХОДОМЕРА ЭХО-Р-02 (03) НА БЕЗНАПОРНЫЙ ТРУБОПРОВОД

В данной статье приведен пример установки акустического преобразователя АП-13 с помощью монтажного комплекта на трубопровод (водовод) круглого сечения из ПНД. Установка на трубопроводы из других материалов практически не отличается от приведенного примера.

1. Обследование предполагаемого места установки АП-13
  • осмотреть измерительный колодец, определить материал трубопровода, возможные участки установки АП-13, способ закладки трубопровода
  • измерить параметры трубопровода: внутренний диаметр, наружный диаметр, толщину стенки
  • уточнить по проекту максимальный уровень заполнения трубопровода Нмах, наличие подпора

2. Изготовить монтажный комплект крепления по результатам измерения трубопровода
  • звуковод для АП-13 изготовить из стальной трубы диаметром 76 мм и длиной не менее L = (Нмакс + 250) – Двн, мм
  • внутреннюю вставку с зубцами изготовить из пластмассовой трубы 50 мм (для канализации, ПП или ПВХ) длиной на 50 мм больше L звуковода (для нарезания зубцов)
  • приварить фланец к торцу звуковода (строго перпендикулярно!)
  • изготовить крепление (основание) для звуковода по размерам наружного диаметра трубопровода из стальной трубы 89 мм и металлической пластины толщиной 2-3 мм.
3. Подготовить трубопровод к установке монтажного комплекта АП-13

  • временно установить крепление звуковода на трубопровод и разметить отверстие в трубе, необходимое для эхолокации от АП-13
  • вырезать в трубопроводе строго по центру отверстие диаметром не менее 70 мм
  • установить крепление звуковода на трубопровод строго по центру отверстия, закрепить его саморезами (винтами). На металлический трубопровод звуковод приваривается без крепления. Также возможно зафиксировать крепление звуковода с помощью 2-х стягивающих хомутов, если трубопровод не касается дна колодца.
4. Юстировка звуковода, запуск узла учета
  • в установленное крепление вставить металлический звуковод и отрегулировать его вертикальное положение с помощью 3-х пар винтов крепления
  • по металлической линейке, вставленной строго по центру во внутрь трубопровода через звуковод, выставить верхний фланец звуковода на уровне (Нмакс + 250) – 1 (3), мм
  • закрепить звуковод с помощью 3-х пар винтов крепления
  • на фланец звуковода при необходимости установить резиновые прокладки, чтобы расстояние от дна трубопровода до верхней поверхности составляло точно (Нмакс + 250), мм
  • установить АП-13 на фланец (резиновые прокладки) и закрепить 4-мя винтами, сильно не затягивая
  • подключить АП-13 к измерительному блоку ППИ, проверить корректность измерения уровня наполнения трубопровода, сравнить с измеренным линейкой значением
  • при корректном измерении монтаж закончить, все винты для предотвращения коррозии обмазать литолом, крепление покрасить, если этого не было сделано раньше
  • закрепить блок ППИ по месту установки щита узла учета, соединить контакты ППИ с кабелем АП-13 через проложенный кабель связи (например, МКЭШ 5х0,35)
  • включить питание и убедиться в работе всей системы и отсутствии диагностических ошибок

Расходомер стационарного исполнения «Днепр-7», ЗАО «Днепр», г. Сергиев Посад

Ультразвуковой расходомер-счетчик «Днепр-7» обеспечивает прямое измерение объемного расхода и количества жидкости в самотечных трубопроводах и коллекторах, в том числе при наличии подпора. Первичные датчики могут быть установлены как снаружи, так и внутри трубопровода. При использовании специальных технических решений возможно измерение от 0 до 100 % заполнения.

Измерения производятся по двум параметрам: по средней скорости течения жидкости и меняющейся площади поперечного сечения потока. Работа на самотечных трубопроводах и коллекторах обеспечивается за счет непрерывного измерения величины уровня заполнения и средней скорости потока жидкости.

Расходомер-счетчик производит преобразование доплеровской разности частот, возникающей при отражении ультразвука от движущихся неоднородностей потока, в импульсный сигнал пропорциональной частоты. Производится его обработка и вычисление объемного расхода и объема протекающей жидкости.

Примененный в расходомере-счетчике доплеровский метод измерения позволяет исключить чувствительность расходомера-счетчика к гидравлическим подпорам жидкости, поскольку измеряется скорость потока жидкости и его площадь. Допускает скопление над сточной жидкостью метана и пены, поскольку уровень жидкости определяется пневмометрическим методом.

Измерение уровня заполнения обеспечивается датчиком (измерительной трубкой) и блоком измерения вспомогательным (БИВ).

При возникновении в безнапорном трубопроводе избыточного давления расходомер индицирует внештатную ситуацию и измеряет расход жидкости как для напорного трубопровода.

Показания расходомера-счетчика практически не зависят от скорости звука в контролируемой среде, от ее состава и температуры.

Возможные способы крепления измерительных датчиков на трубопроводе приведены ниже на фотографиях с действующих узлов учета сточных вод.

Погружной датчик «Белая мышь»

Вариант №1

Наиболее прост в изготовлении и установке в трубу из различных материалов. Не возникает никаких проблем в процессе эксплуатации на условно-чистых стоках. Но если в канализацию сбрасывается мусор различного содержания (тряпки, веревки, полиэтилен, бумага и др.), то требует установки ловушек перед измерительным колодцем, что ведет к удорожанию организации учета. Если ловушек нет, то со временем мусор налипает на вертикальный штырь крепления и приводит к запору трубы.

Вариант №2

Крепление в форме распорного обруча. Сложнее в изготовлении и потребует терпения и умения, чтобы просунуть и закрепить в трубу малого диаметра. Особенно, когда уровень заполнения выше половины диаметра и скорость течения значительна. В трубе фиксируется распирающим болтом в верхней части.

Место над датчиком (монтажный вырез или смотровое окно) закрывается металлической крышкой через резиновую прокладку и стягивается обручем или любым креплением, кто как придумает. Можно посадить на шпильки, если есть возможность их смонтировать на трубе. Конструкция зависит также от частоты ревизии места крепления. Кабель выводится через приваренную к крышке трубу, длина которой выбирается из размеров колодца, удобства монтажа и возможного подпора. Резиновая прокладка используется для создания герметичности на случай возникновения подпора в трубе.

Измерительная трубка БИВ может крепиться сверху трубы (как на фото выше) или шланг от блока может быть присоединен через штуцер, вкрученный в нижней точке трубы (как показано на фото ниже, вариант 2). Сложнее, но предпочтительнее, изготовить боковой отвод от трубы по принципу уровнемерного колодца.

Накладные УЗ датчики

Использование накладных датчиков с точки зрения монтажа более удобно и менее трудоемко. Для этого необходимо, чтобы материал стенки трубы был звукопроводящим, не слишком толстым (в пределах 20 мм), без отложений с внутренней стороны. Для этого все равно придется вырезать смотровое окно сверху, которое будет использоваться и для периодической очистки дна трубы от наносов и прочей грязи. И самое главное, нижняя наружная часть трубы должна быть выше дна колодца, чтобы можно было провести работы по подготовке поверхности трубы к установке датчиков. Один из вариантов съемного крепления в условиях ограниченного доступа к нижней поверхности трубы приведен на фотографиях.

1.4. Особенности, выявленные при проектировании, монтаже и эксплуатации расходомеров

ЭХО-Р-02 (03)

  • при снятии градуировочной характеристики трубопровода измерение скорости потока по уровню заполнения трубопровода ограничено глубиной погружения гидрометрической вертушки (размером лопастей) и составляет не ниже уровня 20-25 мм. При малом расходе стоков данный метод измерения не пригоден.
  • при измерении на стоках, содержащих мусор, лопасти часто засоряются и перестают вращаться, что вызывает некорректное измерение скорости.
  • вертушка имеет временной интервал измерения скорости, в течение которого определяется усредненное значение. При динамично изменяющемся потоке уровень заполнения не постоянен, и конечный результат скорости трудно привязать к какому-то определенному значению уровня.
  • при эксплуатации в зимнее время над открытым каналом внутри конуса датчика АП-11 и на металлической мембране пьезоэлемента возможно образование наледи, «мохнатого» инея, что приводит к искажению измерения. Необходимо периодически осматривать внутреннюю полость конуса.
  • внутренняя полость конуса — излюбленное место пауков. При плотной паутине на мембране пьезоэлемента результаты измерения также могут быть не корректны.
  • при сильном пенообразовании на поверхности жидкости возможны искажения измерений за счет ослабления отраженного сигнала.
  • при правильной эксплуатации прибор исправно работает значительно дольше гарантированного производителем срока (10 и более тел).

ДНЕПР-7

  • крепление датчика «Белая мышь» в химически-активных (агрессивных) стоках разрушается в течение 1,5-2 лет.
  • редко, но вполне возможна разгерметизация датчика «Белая мышь» и выход его из строя.
  • при наносе песка, шлама, ила и др. материалов в место крепления как датчика «Белая мышь», так и накладных датчиков, измерения становятся не корректными. Чаще всего происходит индикация нулевого расхода при не нулевом уровне потока. Необходимо периодически осматривать место крепления через смотровой лючок и производить очистку.
  • при наносе песка, шлама и др. в место установки трубки измерения уровня заполнения, измеренный уровень блоком БИВ может оказаться больше фактического, а при засорении трубки расходомер будет измерять расход как в напорном трубопроводе (на полное проходное сечение). Необходимо периодически осматривать место измерения уровня и продувать трубку.
  • если шланг от блока БИВ имеет прогибы ниже уровня входа в трубу, то в зимнее время в нем может собираться конденсат (иногда образуется лед), который приводит к искажению измерения. Чаще всего расходомер будет измерять расход как в напорном трубопроводе по максимальному проходному сечению. По возможности не очень глубокие колодцы лучше утеплить.
  • при установке измерительной трубки уровня заполнения по центру трубопровода, на быстрых потоках и сильной замусоренности стоков происходит изгиб трубки по направлению потока или ее излом. На таких стоках лучше производить измерение через нижний штуцер или боковой отвод.
  • необходимо исключить затопление в колодце накладных датчиков от грунтовых или дождевых вод, так как их герметичность не бесконечна, и они не рассчитаны для такого режима эксплуатации. Необходимо при строительстве измерительных колодцев предусмотреть их гидроизоляцию и плотное прилегание крышки входного люка.
  • при соблюдении этих рекомендаций узел учета будет работать корректно, а оборудование — надежно и в течение всего гарантированного срока службы.

1.5. Действующие нормативные документы

В части учета количества сточных вод в безнапорных каналах в настоящее время действуют следующие основные нормативные документы:

  • МИ 2220-13. ГСИ. Расход и объем сточной жидкости в безнапорных трубопроводах. Методика выполнения измерений;
  • МИ 2406-97. ГСИ. Расход жидкости в безнапорных каналах систем водоснабжения и канализации. Методика выполнения измерений при помощи стандартных водосливов и лотков;
  • МИ 13-92. «Расход воды в каналах. Методика выполнения измерений по средней скорости потока в одной точке гидрометрического створа»;
  • МИ 14-92. «Расход воды в каналах. Методика выполнения измерений по средней скорости потока в одной точке гидрометрического створа на свободной поверхности потока».

2. Напорные трубопроводы

2.1. Основные сведения и приборы учета

Устройство узлов учета на напорных трубопроводах менее трудоемко. Необходимо только грамотно провести предпроектное обследование на существующем трубопроводе и выбрать прибор учета, который будет работать корректно и стабильно. К первичной информации при предпроектном обследовании для выбора прибора относится:

  • внутренний диаметр трубопровода
  • материал стенки и его толщина
  • состав стоков, % содержание твердых и газообразных веществ, температура
  • наличие достаточных прямых участков до и после точки измерения
  • наличие или отсутствие вибрации трубопровода от перекачивающих насосов
  • расстояние от места установки датчиков до электронного блока
  • наличие или отсутствие гидроизоляции измерительного колодца для исключения его затопления грунтовыми или дождевыми водами
  • климатические условия работы датчиков и электронных блоков
  • количество газообразных включений в виде пузырьков, при установке датчиков после насоса
  • наличие реверсивного потока

Наиболее предпочтительный и достоверный способ при выборе прибора учета – провести контрольное измерение в предполагаемом месте установки накладных датчиков с помощью портативного расходомера с таким же принципом измерения, что применяется и в стационарном варианте. При постоянном потоке в трубопроводе достаточно провести разовое кратковременное измерение, при циклическом режиме (при перекачке из накопительной емкости в трубопровод) – несколько циклов от начала до конца. При этом необходимо обратить внимание на запаздывание начала и окончания измерения расходомером от момента включения и выключения насоса, наличие реверса жидкости. Преимущество такого подхода – после покупки расходомера и его установки на объекте не возникнет проблема с корректным измерением расхода жидкости и пуско-наладкой прибора. Во время контрольного измерения с помощью заложенных диагностических опций в прибор также можно оценить уровень измеряемого сигнала, его стабильность, спектр, уровень и наличие помехи в трубопроводе, что косвенно будет характеризовать измеряемую среду и состояние внутренних стенок трубопровода (наличие различного рода отложений и др.).

В таблице 2 приведены технические характеристики приборов учета, которые были успешно применены при устройстве узлов учета на различных объектах в течение 11 лет (кроме «Взлет МР», не пришлось с ними поработать).

источник

Добавить комментарий

Adblock
detector