Меню Рубрики

Установка датчиков средней температуры

Датчики температуры. Устройство, монтаж

Виды датчиков температуры, по типу действия

Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. Кремневые резистивные датчики.Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.

Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру.

Полупроводниковые

В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.

Термоэлектрические(термопары)

Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет.

Термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.

Бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел.

Различают три вида пирометров:

Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.

Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.

Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. При изменении температуры меняется величина прошедшего через раствор света.

Акустические

Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.

Пьезоэлектрические

В датчиках этого типа главным элементов является кварцевый пьезорезонатор.

Монтаж датчиков температуры на технологических трубопроводах и оборудовании как правило выполняется с помощью бобышек, которые привариваются к трубопроводу или агрегату. Аналогичным образом можно контролировать температуру поверхности технологического агрегата, выбрав бобышку необходимой длины. Способ монтажа датчика температуры зависит от диаметра трубопровода, конструктивных особенностей оборудования места установки, габаритов датчиков температуры. Глубина погружения датчиков температуры зависит от длины его монтажной части, которая определяется как — расстояние от рабочего конца до опорной поверхности штуцера (для датчиков температуры с неподвижным штуцером); — расстояние от рабочего конца до головки (для датчиков температуры с передвижным штуцером или без штуцера). Рекомендуемая глубина погружения не менее 5-10 мм ниже оси трубопровода, по которому движется измеряемая среда. При измерении температур более 400°С рекомендуется устанавливать датчики температуры только вертикально. Если датчики температуры имеют длину более 500 мм и установлены горизонтально или под наклоном рекомендуется предусмотреть дополнительное крепление для ДТ. При горизонтальном или наклонном монтаже ДТ его штуцер необходимо направлять вниз. Если трубопровод на котором устанавливается датчик температуры имеет теплоизоляцию необходимо учесть толщину этой изоляции при выборе длины бобышки и длины наружной части датчика температуры. Наружная часть датчика температуры — расстояние от неподвижного штуцера до головки датчика температуры. Рабочая часть поверхностных датчиков температуры должна плотно прилегать к измеряемой поверхности, при этом рекомендуется зачищать измеряемую поверхность до металлического блеска перед установкой датчиков температуры.

Характерные ошибки при монтаже датчиков температуры:

1. Несоблюдение требуемой глубины погружения. 2.Неправильныйвыборместаустановкидатчиковтемпературы.

3.Замена выбранных приборов на другие типы без согласования с проектной организацией.

источник

Установка датчиков средней температуры

ГОСТ Р 53618-2009
(МЭК 60068-3-5:2001)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Требования к характеристикам камер для испытаний технических изделий на стойкость к внешним воздействующим факторам

МЕТОДЫ АТТЕСТАЦИИ КАМЕР (БЕЗ ЗАГРУЗКИ) ДЛЯ ИСПЫТАНИЙ НА СТОЙКОСТЬ К ВОЗДЕЙСТВИЮ ТЕМПЕРАТУРЫ

Requirements for performance of chambers for industrial products environments endurance tests. Certification methods of chambers (without load) for temperature resistance tests

ОКС 19.040
29.020
ОКП 33 0000

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 341 «Внешние воздействия» на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 341 «Внешние воздействия»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 953-ст

4 Настоящий стандарт включает в себя модифицированные основные нормативные положения международного стандарта МЭК 60068-3-5:2001* «Испытания на внешние воздействующие факторы. Часть 3-5: Вспомогательная информация и руководство. Подтверждение характеристик камер температуры» (IEC 60068-3-5:2001 «Environmental testing — Part 3-5: Supporting documentation and guidance — Confirmation of the performance of temperature chambers»).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Сопоставление основных нормативных положений и обозначений методов настоящего стандарта с соответствующими нормативными положениями указанного международного стандарта, а также информация о дополнениях и уточнениях, отражающих потребности национальной экономики Российской Федерации, приведены во введении и приложении Б.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Читайте также:  Установка крана для посудомойки

_______________
* В бумажном оригинале слово «ВВЕДЕНИЕ» выделено курсивом. — Примечание изготовителя базы данных.

I Требования настоящего стандарта относятся к вопросам безопасности, обеспечиваемой стойкостью технических изделий к внешним воздействующим факторам при эксплуатации, транспортировании и хранении.

Настоящий стандарт является частью комплекса стандартов «Методы испытаний на стойкость к внешним воздействующим факторам машин, приборов и других технических изделий» (комплекс ГОСТ 30630 ), состав которого приведен в ГОСТ 30630.0.0-99 (приложение Е).

Настоящий стандарт включает в себя модифицированные основные нормативные положения международного стандарта МЭК 60068-3-5:2001 «Испытания на внешние воздействующие факторы. Часть 3-5: Вспомогательная информация и руководство. Подтверждение характеристик камер температуры».

Стандарты МЭК, устанавливающие положения и методы испытаний изделий на стойкость к воздействию внешних факторов (стойкость, прочность), объединены серией стандартов МЭК 60068 «Испытания на воздействие внешних факторов», состоящей из трех частей:

60068-1 «Общие положения и руководство»;

60068-2 «Испытания»;

60068-3 «Основополагающая информация».

Стандарты МЭК 60068-2 и МЭК 60068-3, в свою очередь, состоят из ряда стандартов, нормирующих конкретные методы испытаний или (и) устанавливающих технически отработанные рекомендации по применению методов испытаний на стойкость, содержат ряд существенных недостатков, главным из которых, как правило, является отсутствие увязки между методами и режимами испытаний и условиями и сроками эксплуатации, что требует корректировки указанных стандартов.

Эти недостатки являются одной из причин того, что указанные стандарты пока не использованы многими техническими комитетами МЭК для введения в стандарты МЭК на группы изделий (например, серия стандартов МЭК 60068 практически не введены в стандарты МЭК на сильноточные и крупногабаритные изделия).

Таким образом, в настоящее время невозможно полное использование стандартов МЭК по внешним воздействиям в качестве национальных и межгосударственных стандартов.

II Кроме указанного выше, в составе подгруппы стандартов МЭК 60068-3 имеется ряд стандартов, относящихся к подтверждению характеристик и аттестации испытательного оборудования, в частности камер для испытания технических изделий на стойкость к климатическим внешним воздействующим факторам.

Стандарты этого ряда содержат, как правило, современные методы аттестации камер и могут быть использованы практически полностью с дополнениями и уточнениями, сформулированными на основании опыта проведения соответствующих работ и отражающими потребности экономики страны. Эти дополнения и уточнения выделены в тексте стандарта курсивом.*
_______________
* В бумажном оригинале обозначения и номера стандартов и нормативных документов в разделе «Предисловие» приводятся обычным шрифтом, остальные по тексту документа выделены курсивом. — Примечание изготовителя базы данных.

Эти дополнения и уточнения относятся к следующему:

— введено двойное наименование стандарта;

— уточнена область применения стандарта (раздел 1);

— уточнены нормативные ссылки (раздел 2 дополнен ссылками на национальные и межгосударственные стандарты);

— уточнены определения некоторых терминов в соответствии с требованиями действующих межгосударственных стандартов, а также в соответствии с дополнительными показателями, введенными в настоящий стандарт;

— стандарт дополнен следующими основными требованиями по вопросам:

а) во вновь введенном разделе сформулированы операции аттестации (в соответствии с заменяемым ГОСТ 25051.2* «Камеры тепла и холода испытательные. Методы аттестации» );
______________
* На территории Российской Федерации документ не действует. Действует ГОСТ Р 53618-2009 , здесь и далее по тексту. — Примечание изготовителя базы данных.

б) аттестации камер цилиндрической формы (новые требования);

в) подтверждения пригодности камер к эксплуатации, например — порядок проведения внешнего осмотра, проверки заземления (в соответствии с заменяемым ГОСТ 25051.2 );

г) номенклатуры основных характеристик камер (в соответствии с заменяемым ГОСТ 25051.2 ), а также расширение минимальной номенклатуры характеристик, определяемых при первичной, периодической и повторной аттестациях, за счет применения промежуточных значений испытательных температур, и необходимости учета особенностей камер различной конструкции;

д) номенклатуры операций, выполняемых при аттестации камер (в соответствии с заменяемым ГОСТ 25051.2 );

е) выбора наиболее рационального метода оценки эффективности системы нагрева и охлаждения камер, а также различные методы определения скоростей нагрева и охлаждения камер и рекомендации по их применению (приложение А);

ж) введена рекомендация по применению изготовителями камер методик настоящего стандарта;

з) установлен порядок работы камеры с учетом поправки к показаниям задающей измерительной системы камеры, если необходимость такой поправки установлена при предыдущей аттестации камеры.

III При разработке указанной в разделе II группы стандартов возникла новая проблема, не существовавшая ранее при разработке стандартов СССР и не существующая в настоящее время при разработке международных стандартов. Проблема вызвана различиями в способах измерения и регулировки температуры, применявшихся в камерах, выпускаемых 3-4 десятилетия назад, и в камерах современной конструкции. Регулировка температурных показателей в старых камерах осуществлялась при помощи электроконтактной системы управления (контактные термометры — реле — электрические контакторы в силовых цепях), работающих на принципе частичного или полного отключения/включения силовых блоков. В современных камерах применяется полностью электронная система регулирующих блоков и тиристорная система регулирования силовых блоков. При этом методы измерений показателей характеристик камер установлены только для такого способа регулирования. В старых камерах особенности их конструкции вызвали необходимость применения других способов измерения параметров камеры (менее точных и более субъективных, например, безальтернативное использование только стрелочных приборов) и других показателей характеристик камеры, не применяемых для современных камер.

Кроме того, некоторые свойства камеры традиционно определялись для старых камер и для новых камер несколько отличающимися друг от друга показателями. Например, в ГОСТ 25051.2 показатель «неравномерность распределения температуры в полезном объеме камеры» отражает то же состояние камеры, что и показатель «градиент температуры» в международных стандартах.

Следует учесть, что при существующих условиях на многих, даже передовых предприятиях для испытаний продукции до сих пор применяют камеры старой конструкции (менее точные, чем современные, но пригодные для использования). Поэтому в разрабатываемых стандартах возникла необходимость сочетания и разграничения показателей, применяемых для современных и для старых камер. Этот вопрос был решен путем установления двух групп показателей. Первая группа представляет собой показатели, установленные в международных стандартах; вторая группа — показатели, применявшиеся в стандартах СССР (теперь межгосударственных) и ныне действующих, российских стандартах для камер старой конструкции (в настоящем стандарте см. 8.3.1.7 (показатели, обозначенные*, Приложение А).

Применение этих показателей как критериев пригодности камеры по результатам аттестации зависит от того, значение каких показателей установлены в нормативной или эксплуатационной документации как нормативные. При этом показатели первой группы измеряют при аттестации любых камер (для новых как критерии, для старых как информационные для сравнения с показателями современных камер); измерение показателей второй группы для старых камер является обязательным; для новых камер может быть приведено как информационное, если это принято в программе аттестации.

Читайте также:  Установка гур на волгу 406

Если для старой камеры проведена модернизация системы измерений или полная модернизация (системы измерений и системы регулирования температуры, в т.ч. силовых блоков), для таких камер применяют (соответственно частично или полностью) показатели первой группы. При этом значения критериев годности устанавливают по результатам повторной аттестации, которую проводят по программе первичной аттестации с применением показателей первой группы.

IV В указанную в разделе II настоящего введения группу стандартов по аттестации климатических камер входит МЭК 60068-3-11:2007 «Испытания на внешние воздействующие факторы. Часть 3-11: Вспомогательная информация и руководство. Вычисление неопределенностей условий в климатических испытательных камерах».

1 Область применения

Настоящий стандарт распространяется на методы аттестации камер полезным объемом свыше 0,025 м , имеющих форму параллелепипеда (куба) и цилиндра (далее — камеры), для испытаний технических изделий всех видов на стойкость к воздействию температуры. Испытания проводят с целью определения соответствия этих камер требованиям, установленным в технических условиях или в эксплуатационной документации, и нормативных документах на методы испытаний по ГОСТ 30630.0.0 (приложению Е), ГОСТ Р 51368 , а также другим стандартам на испытания.

Методы, установленные в настоящем стандарте, следует применять для аттестации камер (без их загрузки) для испытаний на воздействие любых климатических внешних воздействующих факторов (далее — климатических ВВФ), в которых одним из воспроизводимых факторов является температура в диапазоне от минус 200 °С до плюс 350 °С.

Стандарт не распространяется на методы аттестации камер для испытаний на воздействие температуры и пониженного давления.
_______________
При применении настоящего стандарта рекомендуется учитывать требования ГОСТ Р 53616-2009 .

Методы настоящего стандарта рекомендуется применять при испытании камер у изготовителя.

Требования разделов 3-11 и приложения А относятся к вопросам безопасности и являются обязательными.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.568-97 Государственная система обеспечения единства измерений. Аттестация испытательного оборудования. Основные положения

ГОСТ Р 8.585-2001 Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования

ГОСТ ИСО Р 10012-2008* Менеджмент организации. Системы менеджмента измерений. Требования к процессам измерений и измерительному оборудованию
______________
* Вероятно ошибка оригинала. Следует читать: ГОСТ Р ИСО 10012-2008. — Примечание изготовителя базы данных.

ГОСТ Р 51317.2.5-2000 Совместимость технических средств электромагнитная. Электромагнитная обстановка. Классификация электромагнитных помех в местах размещения технических средств

ГОСТ Р 51368-99 Методы испытаний на стойкость к климатическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытание на устойчивость к воздействию температуры

ГОСТ Р 53616-2009 (МЭК 60068-3-6:2001) Требования к характеристикам камер для испытаний технических изделий на стойкость к внешним воздействующим факторам. Методы аттестации камер (без загрузки) для испытаний на стойкость к воздействию влажности

ГОСТ Р 54082-2010 * Требования к характеристикам камер для испытаний технических изделий на стойкость к внешним воздействующим факторам. Методы обработки результатов аттестации камер
_______________
* В настоящее время в официальных источниках информация о принятии данного документа отсутствует. — Примечание изготовителя базы данных.

ГОСТ 8461-2009* Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки
______________
* Вероятно ошибка оригинала. Следует читать: ГОСТ 8.461-2009, здесь и далее по тексту. — Примечание изготовителя базы данных.

ГОСТ 6651-2009 Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний

ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 16504-81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 26883-86 Внешние воздействующие факторы. Термины и определения

ГОСТ 30630.0.0-99 Методы испытаний на стойкость к внешним воздействующим факторам машин, приборов и других технических изделий

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

3.1 В настоящем стандарте применены термины с соответствующими определениями и сокращениями, относящиеся к областям:

— общих понятий ВВФ: по ГОСТ 15150 , ГОСТ 26883 ;

— общие вопросы испытаний: ГОСТ 16504 ;

— испытаний на стойкость к ВВФ: по ГОСТ 30630.0.0 ;

— аттестация испытательного оборудования: по ГОСТ Р 8.568 .

3.2 Термины, используемые в настоящем стандарте, в основном определены в 3.1.

Для удобства использования настоящего стандарта ниже приведены определения некоторых терминов с указанием их источников и, при необходимости, с указанием отличий от источников.

Кроме того, ниже приведен ряд дополнительных терминов, применяемых только в настоящем стандарте.

При этом при аттестации принимают, что требования о постоянстве значений определяемой характеристики в любой точке полезного объема камеры сводятся к значению характеристик для каждого датчика, установленного в полезном объеме.

3.2.1 камера для испытаний на воздействие температуры: Объем или пространство, в некоторой части которого могут быть достигнуты значения температуры в диапазоне, установленном в технических условиях или эксплуатационной документации на камеру и (или) в методах испытаний на воздействие температуры.

3.2.2 полезный объем камеры: Часть камеры, в которой можно поддерживать заданные условия при установившемся режиме в пределах установленных допусков (см. рисунок 1).

Примечания

1. В МЭК 60068-3-5 данный термин называется «рабочий объем».

2. Геометрический центр полезного объема совпадает с геометрическим центром камеры.

Рисунок 1 — Полезный объем

Рисунок 1 — Полезный объем

3.2.3 контроллер: Цифровое задающее, измеряющее, регулирующее устройство, поддерживающее заданные значения параметров камеры.

3.2.4 контрольная точка: Место установки датчика температуры при аттестации рядом с датчиком температуры камеры.

3.2.5 заданное значение температуры: Требуемое значение температуры, установленное контроллером камеры или другим задающим устройством.

Читайте также:  Установка радиатора вариатора lancer x

3.2.6 стабилизация режима (установившийся режим): Состояние, при котором характеристики колебаний значений основного фактора режима в любой точке полезного объема постоянны (см. 8.3.1.3 примечание).

Примечания

1 Основной фактор режима может быть простым или составным. Например, при испытаниях на воздействие температуры (в частности, в настоящем стандарте) основным фактором режима является температура (простой фактор); при испытаниях на воздействия влажности воздуха, основным фактором режима является сочетание относительной влажности и температуры воздуха (составной фактор); в этом случае обе составляющие фактора (значения температуры и относительной влажности) требуется измерять по отдельности.

2 По отношению к этому понятию применяют также понятие «стационарный режим».

3.2.7 характеристики колебаний температуры в точках полезного объема камеры: Амплитуда и период колебаний температуры.

3.2.8 достигнутое значение температуры: Значение температуры, соответствующее заданному , установившееся в камере после стабилизации (см. 8.3.1.2).

Примечание — Принимается, что достигнутое значение температуры наблюдается после стабилизации в каждой точке полезного объема камеры.

3.2.9 базовое значение температуры: Значение температуры (из диапазона, установленного в ГОСТ 15150 в составе нормальных климатических условий испытаний), с которого начинается отсчет продолжительности времени нагрева или охлаждения камеры до достигнутого значения температуры.

Примечание — В настоящем стандарте в качестве базового значения температуры принято 23 °С с допуском ±2 °С (если иное значение или более узкие допуски не установлены в нормативной или эксплуатационной документации на камеру), соответствующее одному из арбитражных значений температуры по ГОСТ 15150 .

3.2.10 предельное значение температуры: Верхнее и нижнее значения температуры для полного диапазона температур, установленных в нормативной или эксплуатационной документации на камеру.

3.2.11 промежуточные значения испытательных температур: Промежуточные (между верхним и нижним предельными значениями температур) значения температур, устанавливаемые в программе аттестации.

Примечание — В некоторых нормативных документах (например, ГОСТ 25051.2 ) этот термин назывался «характерные температуры».

3.2.12 полный интервал времени нагрева и охлаждения камеры от базового до достигнутого (соответствующего заданному) значения температуры: Полная продолжительность времени, исчисляемая от момента подачи команды на изменение значения температуры от базового до заданного до момента стабилизации температуры на достигнутом значении (соответствующем заданному).

3.2.13 отклонение достигнутого значения температуры в камере от заданного: Разность между достигнутым в камере значением температуры (соответствующем заданному) и заданным значением температуры, установленным на контроллере для данного режима.

Примечания

1 Следует учитывать, что при установлении или изменении температурного режима камеры при помощи контроллера устанавливают заданное значение температуры, а необходимые измерения проводят после стабилизации на уровне достигнутого значения температуры, которое может не совпасть с заданным. В этом случае в настоящем стандарте применяют формулировку типа «достигнутое значение температуры (соответствующее заданному)». Ранее применявшаяся по поводу этого случая формулировка «за заданное значение температуры принимают среднюю температуру в контрольной точке» является неправильной и более применяться не должна.

2 Если указанное в настоящем пункте отклонение имеет место, то при задании температуры в камере должна учитываться поправка к установке контроллера в соответствии с 8.3.1.1.

3.2.14 среднее значение температуры камеры: Значение температуры, вычисляемое как среднее из средних значений показаний всех датчиков, специально применяемых при аттестации и размещенных в полезном объеме камеры.

Примечание — Среднее значение температуры для каждого датчика вычисляют по результатам измерений в соответствии с 5.1.4.

3.2.15 скорость изменения температуры: Скорость, в градусах Цельсия в минуту, изменения температуры между двумя ее достигнутыми значениями, измеренными в центре полезного объема.

Примечание — В настоящем стандарте применяют два вида скорости изменения температуры: скорость изменения температуры по МЭК 60068-3-5:2001 и скорость изменения температуры по методу 2 (см. приложение А).

3.2.16 градиент температуры: Разность между максимальным и минимальным средними значениями температуры (после стабилизации) в двух любых точках полезного объема камеры (см. рисунок 2).

Примечания:

1 Ранее применялось понятие «неравномерность распределения температуры».

2 Этот показатель оценивает максимальную неравномерность средних значений в полезном объеме камеры.

Рисунок 2 — Пример температурных различий

Рисунок 2 — Пример температурных различий

3.2.17 колебания температуры: Различие (после стабилизации) между максимальными и минимальными мгновенными значениями температуры в любой точке полезного объема в течение заданного интервала времени для данного режима (см. рисунок 2).

3.2.18 вариация температуры в полезном объеме камеры: Разность между средними значениями температур (после стабилизации), вычисленными для датчика, расположенного в центре полезного объема камеры, и для каждого из датчиков, расположенных в других точках полезного объема камеры, в любой интервал времени для конкретного режима испытаний (см. рисунок 1).

Примечание — Этот показатель аналогичен ранее применявшемуся термину «Отклонение температуры в полезном объеме камеры».

3.2.19 загрузка: Образец или макет образца, помещаемый в камеру при испытании.

3.2.20 продолжительность времени тепловой реакции (системы измерения): Продолжительность времени, которое требуется для изменения показаний датчика (системы измерения) на определенный процент от полного изменения показаний датчика (системы измерения) при ступенчатом изменении температуры среды.

Примечание — Конкретное значение заданного процента, например 50%, указывают в наименовании показателя. Например: «пятидесятипроцентная продолжительность времени тепловой реакции датчика». В ГОСТ 6651 указанное понятие называют «Время термической реакции».

3.2.21 относительная разность между температурой стенок и температурой воздуха в полезном объеме камеры: Разность между значением температуры какой-либо стенки камеры и средним значением температуры камеры, полученными за один период времени.

3.2.22 среднее значение скорости циркуляции воздуха в полезном объеме камеры: Среднее арифметическое из средних значений результатов измерений в каждой точке полезного объема по 7.3.2.

Примечание — для перечисления а) 7.3.2.1 средним значением скорости циркуляции воздуха в полезном объеме камеры является среднее значение показаний в одной точке.

3.2.23 неравномерность распределения скоростей воздуха в полезном объеме камеры: Разность между средними значениями скорости воздуха в тех двух точках полезного объема камеры, где значения этих скоростей соответственно наибольшее и наименьшее.

3.3 Сокращения

НД — нормативная документация;

ПА — программа аттестации;

ПИ — программа испытаний;

ТУ — технические условия;

ЭД — эксплуатационная документация.

4 Общие положения

4.1 Порядок проведения аттестации

Порядок и правила применения и проведения первичной, периодической и повторной аттестаций — по ГОСТ Р 8.568 . При этом при проведении повторной аттестации объем проверяемых характеристик, указываемых в ПА, определяют в зависимости от конкретных причин, которые могут вызвать изменения характеристик воспроизведения условий испытаний и которые явились причиной проведения повторной аттестации.

4.2 Перечень операций

При проведении аттестации камер выполняют операции, указанные в таблице 1.

Перечень конкретных операций, выполняемых в соответствии с таблицей 1 при проведении аттестации, устанавливают в ПА.

Таблица 1

Номер раздела, подраздела настоящего стандарта

1 Выбор средств измерений, применяемых при аттестации:

источник

Добавить комментарий