Меню Рубрики

Установка детали по упору

Способы установки деталей. Правило шести точек

Установка детали для обработки может быть осуществлена различными способами.

1. Установка детали непосредственно на столе станка (или в универсальном приспособлении) с выверкой ее положения относительно стола станка и инструмента. Этот способ требует много времени, и его применяют в единичном и мелкого размера производится от поверхности А-А, которая в данном случае является серийном производстве, когда экономически нецелесообразно изготовлять специальные приспособления вследствие малой производственной программы.

2. Установка детали на столе станка по разметке. Разметкой называется нанесение на заготовку осей и линий, определяющих положение обрабатываемых поверхностей. При разметке заготовку предварительно покрывают меловой краской; после того как она высохнет, заготовку помещают на разметочную плиту, в призме или на угольнике, и наносят линии на поверхности при помощи штангенрейсмуса, циркуля, угольника, штангенциркуля с острыми губками и других инструментов. Для того чтобы линии были видны в случае удаления краски, вдоль линий наносят керном точки через некоторые промежутки. Разметка имеет целью обозначить на заготовке такое положение обрабатываемых поверхностей, чтобы припуски для всех поверхностей были достаточными.

Разметка требует значительной затраты времени высококвалифицированного специалиста-разметчика, от индивидуальных качеств которого зависит точность разметки. Установка по разметке не обеспечивает высокой точности обработки. Такой способ установки применяется при обработке крупных отливок сложной формы и крупных поковок в единичном и мелкосерийном производстве (главным образом в тяжелом машиностроении).

3. Установка детали в специальном приспособлении. Этот способ установки обеспечивает придание и закрепление определенного положения детали для обработки (причем деталь ориентируется относительно режущего инструмента) с достаточно высокой точностью и с малой затратой времени.

При обработке деталей с применением специальных приспособлений отпадает необходимость разметки заготовок и выверки их положения на станке; таким образом, исключается дорогая и трудоемкая операция, к тому же вносящая погрешности в размеры, зависящие от индивидуальных качеств разметчика.

Установка и закрепление деталей на станках при помощи специальных приспособлений осуществляются значительно легче и быстрее, чем установка и крепление непосредственно на станках. Рациональная конструкция приспособления обеспечивает минимальные затраты времени на установку и на вполне надежное закрепление детали. Применение специального приспособления обеспечивает высокую и наиболее стабильную точность обработки для всех деталей, изготовляемых с его помощью; благодаря этому в наибольшей степени обеспечивается взаимозаменяемость деталей. Помимо того, применение приспособлений позволяет вести обработку при более высоких режимах резания, значительно сокращает вспомогательное время, в том числе и на измерение деталей в процессе обработки, допускает совмещение основного и вспомогательного времени, обеспечивает возможность автоматизации и механизации процесса механической обработки.

Для получения надлежащей точности размеров детали, обрабатываемой при помощи приспособления, необходимо, чтобы само приспособление было изготовлено весьма точно и чтобы из-за неточности отдельных элементов приспособления не происходило нарастания погрешностей при обработке. В связи с этим при определении допусков на размеры приспособлений необходимо назначать такие предельные отклонения, чтобы они были в два раза меньше предельных отклонений обрабатываемой детали. Необходимая точность обработки детали в этом случае будет обеспечена.

Вопрос о целесообразности использования приспособления при обработке детали возникает обычно в единичном и мелкосерийном производстве, так как изготовление приспособления, тем более сложного, для обработки небольшого количества деталей большей частью неэкономично.

Рисунок 3.5 — Схема базирования детали (правило шести точек)

В единичном и мелкосерийном производстве применяются преимущественно нормализованные приспособления; возможно также ис­пользование специализированных приспособлений, при этих видах производства они применяются редко, только в тех случаях, когда без них не представляется возможным выполнить требования технических условий на обработку деталей, так как затраты на изготовление приспособлений не окупаются выгодами, которые они дают. Чем больше выпуск деталей, тем экономически выгоднее применять специальные приспособления, т.к. затраты на их изготовление раскладываются на большее количество деталей.

В крупносерийном и массовом производстве применение приспособлений является обязательным, и в экономическом отношении оно всегда выгодно. При повторяемости одних и тех же деталей, обрабатываемых в больших количествах, специальные приспособления дают технико-экономический эффект, который со значительной выгодой окупает затраты на них.

При этих видах производства в каждом отдельном случае решается лишь вопрос о конструкции приспособления и о том, на какое количество одновременно обрабатываемых деталей следует конструировать приспособление.

В специальных приспособлениях предусматриваются установочные поверхности для базирования деталей.

Читайте также:  Установка joomla на свой хостинг

Как известно из механики, твердое тело в пространстве имеет шесть степеней свободы: три возможных перемещения (I, II, III, рис. 3.5) вдоль трех произвольно выбранных взаимно перпендикулярных осей координат X, Y и Z и три возможных вращательных движения относительно тех же осей (IV, V, VI). Лишить деталь (тело) каждой из шести степеней свободы можно, прижав деталь к соответственно расположенной неподвижной точке приспособления (или стола станка), называемой одноточечной опорой.

Каждая неподвижная одноточечная опора лишает деталь одной степени свободы, т.е. возможности перемещения тела по направлению нормали к поверхности чела в точке опоры. Для того, чтобы лишить деталь всех шести степеней свободы, она должна базироваться па шести неподвижных точках. Правило шести точек заключается в том, что каждое тело (деталь) должно базироваться на шести неподвижных точках, при этом тело лишается всех шести степеней свободы.

Эти шесть точек должны быть расположены в трех взаимно пер­пендикулярных плоскостях: три опорные точки (1, 2 и 3) в плоскости XOZ две точки (4 и 5) в плоскости YOZ и одна точка (6) в плоскости ХОY.

Три координаты (1, 2, 3) определяют положение детали относительно плоскости YOZ:

а) лишают деталь возможности перемещаться в направлении оси Y;

б) лишают деталь возможности вращаться вокруг осей Х и Z. Таким образом, три координаты (1, 2, 3) лишают деталь трех степеней свободы.

Две координаты (4, 5) определяют положение детали относительно плоскости YOZ:

а) лишают деталь возможности перемещаться в направлении оси X;

б) лишают деталь возможности вращаться вокруг оси Y.

Следовательно, две координаты (4, 5) лишают деталь еще двух степеней свободы.

Одна координата (6) определяет положение детали относительно плоскости ХОY, лишая деталь возможности перемещаться в направлении оси Z, т.е. одна координата (6) лишает деталь еще одной — последней — степени свободы.

Следовательно, для определения положения детали в пространстве необходимо и достаточно иметь шесть опорных точек: 1, 2 и 3 определяют опорную плоскость; 4 и 5 определяют направляющую плоскость; 6 — упорную плоскость.

При большем числе неподвижных опор деталь опирается не на все опоры, а если все же она будет искусственно прижата (притянута) ко всем неподвижным опорам, то она будет деформирована действием зажимов.

Для надежного закрепления при обработке деталь должна быть прижата одновременно ко всем шести опорным точкам.

При базировании цилиндрической детали на призме (рис, 3.6) она лишается четырех степеней свободы четырьмя неподвижными одноточечными опорами (1. 2, 3 и 4) и остальных двух степеней свободы — от перемещения детали вдоль призмы и вращения детали вокруг своей оси — лишается одноточечными опорами (5 и 6), для чего в точке 5 необходимо поставить упор, а в точке 6 — шпонку.

При обработке деталей с плоскими поверхностями, особенно черными или предварительно грубо обработанными, базирующие поверхности приспособления заменяют опорными штифтами, так как поверхности обрабатываемой детали и поверхности приспособления (или станка) вследствие погрешностей их изготовления будут при установке соприкасаться не всеми точками, а только некоторыми.

1,2,3,4,5,6- одноточечные опоры

Рисунок 3.6 — Базирование цилиндрической детали на призме

Три опорных штифта заменяют опорную плоскость, два — направляющую плоскость и один штифт — упорную плоскость; шесть точек в виде штифтов определяют положение детали, устанавливаемой на плоские поверхности.

Иногда деталь устанавливается для обработки одновременно по двум поверхностям — двум плоским или двум цилиндрическим или по одной плоской и одной цилиндрической. При этом две плоские поверхности могут быть взаимно параллельными или перпендикулярными. При установке по двум поверхностям вместо полных поверхностей применяются опорные штифты, которые могут быть неподвижными или регулируемыми.

Применение опорных штифтов вместо плоских поверхностей имеет ряд преимуществ, к числу которых относятся следующие:

— опорная поверхность штифта ввиду ее малых размеров не засоряется стружкой,

— точность обработки опорной (установочной) поверхности штифта достигается легче, чем точность обработки плоской поверхности;

— правильность и точность установки детали обеспечивается легче, чем при установке на плоскую поверхность;

— в случае износа штифты легко заменить.

Следует отметить, что при использовании в качестве установочной базы точно обработанной поверхности вместо опорных штифтов применяют скаленные опорные пластины, которые устраняют возможность получения вмятин.

Нижеследующие примеры иллюстрируют различные случаи установки детали по двум поверхностям (рис. 3.7).

Читайте также:  Установка бассейна атлантик пул

На рис 3.7.а показана установка детали по двум параллельным плоскостям. Деталь 5 устанавливают на одну (из двух параллельных) плоскость (А), а другая плоскость (Б) подпирается самоустанавливающимся штифтом 1 с пружиной 2. Положение фиксируется винтом 3 через вкладыш 4. Стрелками показано направление сил зажатия.

Рисунок 3.7 — Схемы установки деталей по различным поверхностям

На рис. 3.7.б изображена установка детали 1 по двум взаимно пер­пендикулярным плоскостям. Одна поверхность детали опирается на плоскую поверхность 2, а другая — на поверхность 3.

Установка детали па плоскость и цилиндрическую поверхности показана на рис. 3.7.в.

На рис. 3.7.г изображена установка детали на цилиндрическую поверхность — палец 1 и плоскую поверхность 2, причем деталь подклинивается клином 3.

Если деталь не подклинить, то она вследствие погрешности обработки не будет плотно прилегать к поверхности 1, или не наденется на палец.

При установке детали на срезанный палец 1, как показано на рис. 3.7.д, деталь опирается на поверхность 2 без помощи клина.

Если деталь 1 имеет два отверстия и должна быть установлена па два пальца 2 и 3, то один из них (2) должен быть срезанным (рис. 3.7, е), иначе точно установить деталь не представится возможным вследствие неизбежной неточности обработки; при этом для облегчения установки один палец должен быть короче другого.

Цилиндрические детали (валики, втулки и т.п.) при сверлении и (фрезеровании) базируются обычно своими наружными цилиндрическими поверхностями на опорные призмы, которые изготовляют преимущественно с углом α = 90° (см. рис. 3.6), хотя иногда встречаются призмы с углом 60 и 120°.

Ступенчатые цилиндрические детали нельзя устанавливать на две неподвижные призмы, т.к. неточность размеров диаметров, получаемое при обработке, будет изменять положение оси детали по высоте; при такой установке затруднительно также достигнуть точного положения оси детали в горизонтальной плоскости.

Потому при установке ступенчатой цилиндрической детали (валика) рис. 3.7.ж следует применять одну призму неподвижную (1) (и более длинную), а другую — регулируемую (2).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9902 — | 7550 — или читать все.

источник

УСТАНОВКА И ЗАКРЕПЛЕНИЕ ДЕТАЛЕЙ

В зависимости от заданной точности, размеров и конфигурации деталей их

обрабатывают на токарных станках в центрах и в патронах, на угольниках и

Обработка в центрах. Самым распространенным способом обработки деталей

типа валов является обработка в центрах, при этом в торцовых поверхностях заготовки делают центровые отверстия. Для передачи заготовке вращения служат поводковый патрон и хомутик, закрепляемый винтом на конце заготовки. Свободный конец хомутика с помощью паза или пальца поводкового патрона приводит деталь во вращение.

Преимуществом обработки в центрах является то, что при установке детали

отпадает какая-либо необходимость в ее выверке.

На токарных станках применяются различные типы центров.

При чистовом точении с большими скоростями и незначительными нагрузками центра следует оснащать вставками из твердого сплава марки ВК6, при

получистовом точении со средними скоростями и нагрузками — марки Т5К10, при черновом точении с небольшими скоростями, но значительными нагрузками — марки ВК8.

Задний центр токарного станка в отличие от переднего играет роль подшипника, так как между ним и заготовкой происходит относительное движение, а

следовательно, и трение. Поэтому при обработке деталей на больших скоростях (v >75 м/мин) применяют вращающиеся задние центра с шарико- или роликоподшипниками, конструкции которых стандартизованы для малых, средних и тяжелых нагрузок.

Недостатком вращающихся центров является их малая жесткость и склонность вызывать вибрации при резании, в особенности при некотором износе и увеличении зазоров в подшипниках.

В процессе обработки деталь нагревается и длина ее увеличивается, что

приводит к повышению нагрузки на центра и к искривлению детали. Во избежание искривления в некоторых современных станках применяется такая конструкция пиноли задней бабки, которая дает возможность свободного удлинения детали (благодаря введению компенсирующих устройств с тарельчатыми пружинами).

Базирование деталей на центрах станка не обеспечивает стабильного положения их вдоль оси, так как глубина центровых отверстий может быть различной.

Чтобы обеспечить одинаковое базирование всех деталей вдоль оси при

различной глубине центровых отверстий в передней бабке токарного и

Читайте также:  Установка изготовления тонированного с

многорезцового станков, применяют плавающие центра. При установке той же детали на плавающий передний центр положение левого торца вала для заготовок всей партии будет определяться упором и сохраняться постоянным В этом случае установочная и измерительная базы совместятся, и погрешность базирования будет равна нулю.

Применение поводкового патрона с хомутиком связано с рядом недостатков. К ним относятся: большое вспомогательное время на установку и снятие хомутика; невозможность обработки детали по всей длине без ее перестановки; трудность обеспечения безопасных условий работы из-за выступающих частей у хомутика и поводкового патрона и т. п.

Указанных недостатков не имеют быстродействующие поводковые устройства современных конструкций, которые обеспечивают как правильное базирование детали, так и передачу крутящего момента без использования хомутика.

При обработке длинных деталей, когда отношение длины детали к ее диаметру l:d>12—15, применяют люнеты. Различают подвижные и неподвижные люнеты.

Нежесткие ступенчатые и особо тяжелые детали обрабатывают с помощью

неподвижного люнета, который устанавливают и закрепляют на станине станка.

При обработке нежестких гладких цилиндрических деталей на станке с высотой центров менее 500 мм применяют подвижный люнет, который устанавливается и закрепляется на суппорте и в процессе работы перемещается вместе с ним.

Для установки детали с неподвижным люнетом необходимо проточить на ней шейку под кулачки люнета. Так как шейка является для детали

дополнительной базой, то она должна быть обработана с минимальными

отклонениями от геометрической формы. Если в качестве заготовки применяют холоднотянутый прокат, то кулачки люнета устанавливают по необработанной поверхности.

При обработке особо нежестких валов, когда проточить шейку под кулачки

люнета трудно, вместо нее используют втулку с обработанной наружной

поверхностью. Такая втулка закрепляется на валу с помощью восьми болтов (по четыре у каждого конца втулки). Положение ее относительно центровой линии станка проверяется по ее наружной поверхности и регулируется при помощи ввернутых болтов. Наружная поверхность такой втулки и будет являться опорой для кулачков люнета.

При обработке детали с подвижным люнетом шейку протачивать на ней не

надо, так как базой для установки кулачков 1 люнета служит обработанная поверхность, по которой они и перемещаются. При использовании подвижного люнета расстояние а между точкой приложения усилия резания и опорой, создаваемой кулачками, остается постоянным в течение всей обработки детали.

Обработка в патронах. В патронах обрабатываются, как правило, жесткие и

Для закрепления тонкостенных втулок с обработанными наружными

поверхностями применяют дополнительные кулачки с увеличенными рабочими поверхностями.

Для установки тонких дисков при обработке торцовых поверхностей

применяют электромагнитные патроны и патроны с постоянными магнитами.

Обработка на угольниках. В тех случаях, когда форма детали не позволяет

установить и закрепить ее в патроне или непосредственно на планшайбе, применяют дополнительное устройство в виде угольника, который крепится непосредственно к планшайбе. На угольниках с несимметричным расположением вращающихся масс относительно оси шпинделя необходимо произвести балансировку путем прикрепления к планшайбе груза.

Обработка на оправках. При обтачивании наружных поверхностей у деталей с уже точно обработанным отверстием для установки и закрепления их применяют оправки. Имеются различные конструкции оправок.

Коническая. Средняя часть оправки изготовляется с очень небольшой конусностью — 1/2000.

Диаметр D1 делается несколько меньше наименьшего возможного диаметра отверстия обрабатываемой детали. Деталь насаживается на оправку ударами медного молотка или под прессом и удерживается на ней силой трения. Недостатком конусной оправки является то, что положение детали на ней зависит от величины допуска на изготовление. Для работы на настроенном станке такая оправка непригодна.

Чтобы снять обработанную деталь с оправки, достаточно немного отвернуть

гайку и убрать шайбу, имеющую вырез. Диаметр D2 рабочей части оправки выполняется по скользящей посадке 7 квалитета. Таким образом, возможная погрешность установки детали лежит в пределах зазора при указанной посадке и данном диаметре отверстия в детали.

Разжимные оправки применяют для закрепления деталей, у которых разница в диаметрах отверстий может доходить до 0,5—2,0 мм.

Оправки с тарельчатыми пружинами являются более точными, чем рассмотренные выше. Они применяются для закрепления небольших деталей.

Дата добавления: 2015-06-04 ; Просмотров: 1839 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник