Меню Рубрики

Установка efi на мотоцикл

mark2grande71 › Блог › Система Впрыска EFI(Electronic Fuel Injection).

EFI — электронная система впрыска топлива(Electronic Fuel Injection).

Первым коммерческим электронным впрыском топлива (EFI) является система Electrojector, разработанная компанией Bendix, и которая была предложена компанией American Motors Corporation (AMC) на двигателе 327 объемом 5,4 литра установленном на автомобиль Rambler Rebel в 1957 году. Впрыск Electrojector являлся опцией для 327 двигателя. Его мощность составила 288 л.с. (214,8 кВт). Пик крутящего момента сдвинулся на 500 оборотов в минуту вниз, чем аналогичный двигатель с карбюраторным впрыском. Стоимость опции EFI составляла $395 по состоянию на 15 июня 1957 года. С системой Electrojector было продано очень мало автомобилей и не одна из них не являлась серийной. Система EFI установленная в Rambler Rebel отлично зарекомендовала себя при положительных температурах, а при отрицательных наблюдались серьезные проблемы с пуском двигателя.

В 1958-м году компания Chrysler предложила свою систему Electrojector на автомобилях Chrysler 300D, DeSoto Adventurer, Dodge D-500 и Plymouth Fury. Это были первые серийные автомобили оснащенные системой EFI. Эта система EFI была совместно разработана компаниями Chrysler и Bendix. Большинство из 35 автомобилей изначально оборудованные электронной системой впрыска были переоборудованы с 4-карбюраторных систем. Патенты системы впрыска Electrojector впоследствии были проданы компании Bosch.

Компания Bosch разработала электронную систему впрыска топлива D-Jetronic, которая впервые была применена на автомобиле VW 1600TL/E в 1967 году. Это была первая электронная система впрыска топлива, которая для расчета топливо-воздушной смеси использовала показания датчиков частоты вращения двигателя и плотности воздуха во впускном коллекторе. Эта система была адаптирована для автомобилей таких производителей, как VW, Mercedes-Benz, Porsche, Citroën, Saab и Volvo. В 1974-м году Bosch модернизировала систему D-Jetronic до систем K-Jetronic и L-Jetronic, хотя некоторые автомобили (например Volvo 164) продолжали использовать систему D-Jetronic еще на протяжении несколько лет. В 1970 году компания Isuzu вместе с Bosch адаптировали систему впрыском топлива D-Jetronic для автомобиля Isuzu 117 Coupe, которая продавалась только в Японии.

В 1975-м году на автомобиле Cadillac Seville появилась система EFI разработанная компанией Bendix и смоделированная практически аналогична Bosch D-Jetronic. Система L-Jetronic впервые появилась в 1974-м году на автомобиле Porsche 914, которая использует механический счетчик расхода воздуха. Этот подход требует дополнительных датчиков для измерения атмосферного давления и температуры, для того чтобы в конечном итоге вычислить «воздушную массу». L-Jetronic получила широкое распространение на европейских автомобилей того периода, и несколько японских моделей спустя некоторое время.

В Японии в январе 1974-м году Toyota впервые установила систему EFI на двигатель 18R-E, которым опционально оснащался автомобиль Toyota Celica. Система EFI установленная на двигатель 18R-E являлась многоточечной системой впрыска топлива. Nissan предложил электронную многоточечную систему впрыска топлива в 1975 году. Это была система компании Bosch L-Jetronic, установленной на двигатель Nissan L28E и Nissan Fairlady Z, Nissan Cedric и Nissan Gloria. Вскоре Toyota последовала той же технологии в 1978 году, которую опробовала на двигателе 4M-E, устанавливающимся на Toyota Crown, Toyota Supra и Toyota Mark II. В 1980 году в качестве стандартного оборудования Isuzu Piazza и Mitsubishi Starion оснастили электронной системой впрыска топлива, разработанных отдельно обеими компаниями дизельных двигателей. В 1981 году Mazda продемонстрировала систему EFI на автомобиле Mazda Luce с двигателем Mazda FE, а в 1983 Subaru оснастила ею свой двигатель EA81, установленный на автомобиль Subaru Leone. Honda в 1984 разработала собственную систему PGM-FI для Honda Accord и Honda Vigor (двигатель Honda ES3).

В 1980 году Motorola представила первый электронный блок управления двигателем(ECU) ЕЭС III. Он тесно интегрирован с системами управления двигателем, например, впрыском топлива и зажиганием. На сегодняшний день это стандартный подход для управления системами впрыска топлива.

Основные типы электронного впрыска
SPFI (Single Point Fuel Ijection) − Одноточечный инжектор устанавливается в корпусе дроссельной заслонки, в том месте, где в раньше устанавливался карбюратор. Таким образом электронный впрыск выполняется при помощи одной форсунки сразу для всех цилиндров.

Такая схема впрыска была введена в 1940-х годах на больших авиационных двигателях. В автомобильной промышленности на двигателях легковых автомобилях одноточечный инжектор стали устанавливать в 1980-е годы. У разных производителей система имела разные названия, например TBI у General Motors, CFI у Ford, EGI у Mazda. Из-за того, что топливо впрыскивается во впускные каналы, такая схема имеет общее название «мокрый впрыск».

Самый главный плюс системы SPFI состоит в низкой стоимости самой системы. Большинство вспомогательных компонентов карбюратора, таких как воздушный фильтр, впускной коллектор и воздушный тракт могут использоваться совместно с системой SPFI без дополнительных доработок. Система SPFI широко использовалась на американском рынке с 1980-го по 1995-й год, на европейском же была популярна в начале и середине 1990-х годов.

CFI (Continuous Fuel Injection) − Непрерывный впрыск топлива. Топливо впрыскивается непрерывно при помощи одной или нескольких форсунок, но с переменной скоростью. Это главное отличие от большинства систем впрыска, в которых топливо впрыскивается короткими импульсами различной продолжительности каждого импульса.

Читайте также:  Установка порошкового пожаротушения вихрь

Непрерывный впрыск может быть, как одноточечным так и многоточечный, но не может быть непосредственным.
Самая распространенная система непрерывного впрыска K-Jetronic производства Bosch, который появился в 1974-м году. Система K-Jetronic использовалась на протяжении многих лет с 1974-го до середины 1990-х годов такими авто-производителями, как BMW, Lamborghini, Ferrari, Mercedes-Benz, Volkswagen, Ford, Porsche, Audi, Saab, DeLorean, Volvo и Toyota.

CPFI (Central Port Fuel Injection) − Центральный впрыск топлива. Эту систему использовала General Motors с 1992-го по 1996-й год. В ней используются каналы с тарельчатыми клапанами от центрального инжектора для распыления топлива в каждый впускной канал, а не в корпус дроссельной заслонки, как в системе SPFI. Давление топлива аналогично системе SPFI.

MPFI (Multi Point Fuel Injection) − Многоточечный(Мультиточечный) впрыск топлива. Впрыск топлива осуществляется во впускной канал чуть выше от впускного клапана каждого цилиндра, а не в центральной точке впускного коллектора. Система MPFI (или MPI) может быть одновременной или последовательной, т.е. все форсунки работают ассинхронно, каждая из них управляется отдельно CPU двигателя и подает импульс в необходимый момент для каждой форсунки каждого цилиндра.

Многие современные системы EFI используют последовательную систему впрыска топлива MPFI. Но в новых бензиновых двигателях систему MPFI уверенно начинают заменять системы прямого(непосредственного) впрыска.

DFI (Direct Fuel Injection) − Прямой(Непосредственный) впрыск топлива. В двигатель с непосредственным впрыском, в отличие от всех других систем впрыска, топливо впрыскивается непосредственно в камеру сгорания.
Впервые система непосредственного впрыска топлива DFI была применена на двигателе Mitsubishi (GDI − Gasoline Direct Injection). Сегодня эта система впрыска активно применяется на новых двигателях автомобильных производителей Audi (TFSI), Volkswagen (FSI, TSI), Toyota D4 и т.д.

Использование непосредственного впрыска позволяет достичь 15% топливной экономичности и повысить экологичный класс двигателя.

Система DFI достаточно дорога относительно других систем электронного впрыска топлива за счет того, что для обеспечения ее нормальной работы требуется достичь большое давление в топливной магистрали. Для этого используется специальный топливный насос высокого давления(ТНВД). В свою очередь форсунки подвергаются более высокому давлению и температуре, из-за чего для их производства применяются более дорогостоящие материалы. А так же требуются высокоточные электронные системы, чтобы впрыск топлива в цилиндры происходил в строго определенное время. С такой системой весь впускной коллектор становится сухим, что позволяет содержать систему впуска в идеально чистом состоянии.

источник

DeHb › Блог › Как настроить ThunderMax EFI

Всё сугубо личный опыт на технике знакомого.

Исходные данные:
1. 103-й харлей полностью в стоке.
2. Штатные мозги + штатный выпуск с миниатюрными кислородниками.
3. Мозги ThunderMax.

Итак поехали по порядку что нужно сделать:
1. Переварить систему выпуска под новые кислородные широкополосные датчики и смонтировать её.

2. Подключить мозги к харлею и инициализировать их (3 цикла по 30 секунд включенного зажигания + 30 секунд выключенного зажигания).

4. Подключить мозги к ноуту. Включить зажигание. Провести регистрацию мозгов. При запросе обновления прошивки подключить зарядное устройство на аккумулятор и дождаться обновления (

5. Выбрать именно ваш Харлей. Особенно обратите внимание на раздел откуда вы собираетесь добавить карты:
Wire — электронный дроссель
Cable — обычный тросиковый привод заслонки (наш случай).

Выбираем ваш мотоцикл и щёлкаем в списке дважды.

Проверяем еще раз описание и щёлкаем Load BaseMap для загрузки штатных карт.

6. Залить карты в харлей, покрутив по желанию базовые настройки. Я изменил холостые на 850об/мин и поскольку выхлоп был сделан прямоточным и избавлен от каталика — включил функцию отслеживающую выстрелов (Pops)

Затем откорректировал спидометр под мою версию

7. Завести и попробовать покататься. Посмотреть на реакцию. Если всё нормально — прокатиться 30 минут в различных режимах работы двигателя и перейти к пункту 11.

8. Если наблюдается детонация, пробуете исправить лёгким способом — корректировкой тайминга, относительно температуры. У меня детонация на 95-ом тольяттинском бензине исчезла только после того как полностью опустил полку (-6 градусов от BaseMap).

9. Подключить мозги к ноутбуку и сбросить карты автонастройки через меню Map Editing\Clear «Learned Fuel Adjustments (CLP OFFSET)»

10. Проехать 30 минут в городском режиме и режиме за городом с плавным увеличением газа и резким. Чтобы двигатель поработал во всех режимах.

11. Подключить ноутбук и провести автоподстройку.

источник

Suzuki Jimny [miji*motors] › Бортжурнал › Настройка двигателя, основы EFI.

EFI — electric fuel injection — это и есть элетронные «мозги», управляющие работой наших двигателей, пришедшие на смену карбюраторным системам.

Когда я только начал вникать в настройку ЭБУ VEMS, столкнулся с тем, что профильная литература по ДВС на русском языке имеет больше академический характер, описывает базовые устройство и процессы в ДВС глубоко научным языком, а литературы по EFI на русском языке практически и нет. Книг по EFI на английском языке в достатке, но она доступна только на всяких Амазонах в бумажном виде, к тому же, как правило, ориентирована на людей, которые уже имеют какое-то представление о теме и владеют всей массой отраслевых терминов.

Читайте также:  Установка креплений на лыжи лайн

Поэтому когда мне попался мануал по настройке ЭБУ MegaSquirt, я ему очень обрадовался, для меня он и стал тем самым стартовым «Тюнинг EFI для тупых».

MegaSquirt — это проект открытого (как open source) блока управления ДВС. Вы можете сами потравить плату, напаять на нее детальки, прошить прошивку и получить свой собственный ЭБУ практически под любой двигатель. VEMS — это более продвинутый коммерческий клон проекта MegaSquirt, поэтому можно сказать, что проекты родственные.

Тут я выложу вольный перевод этого мануала. Специалистам текст ничего нового не расскажет, но, уверен, поможет тем, кто решится на аналогичный шаг, к тому же и мне самому для себя не помешает лишний раз какие-то вещи еще раз проговорить и обмыслить.
И опять же — даже тем, кто не собирается сам настраивать двигатель, даст еще одно понимание об устройстве автомобиля.
Это не учебник с рекомендациями, как получить лучшую производительность ДВС. Это вводный текст для понимания, что такое тюнинг EFI.
Ссылка на оригинальный мануал будет в конце поста. Если знаете английский, переходите сразу к нему.

И еще раз оговорюсь — я не являюсь проф. мотористом, если заметите какие-то неточности, прошу указывать, буду поправлять текст.

Итак.
1. Как работают двигатели внутреннего сгорания (ДВС).
ДВС так называются, потому что топливо сгорает внутри рабочего пространства двигателя, в отличие от, например, паровых двигателей. Самолетные двигатели — тоже ДВС, но топливо в них не зажигается искрой, там топливо горит все время. Мы начнем с объяснения, как работает 4-х тактный ДВС.

Процесс работы ДВС имеет три базовых составляющих, которыми мы можем манипулировать и тем самым оптимизировать работу ДВС в разных условиях:
— Объем воздуха, поступающего в двигатель
— Объем топлива, поступающего в двигатель, которое будет смешано с воздухом
— Момент возникновения искры, которая инициирует горение воздушно-топливной смеси.

ДВС может иметь один и больше цилиндров. Цилиндр содержит движущийся поршень, поршень через шатун соединен с коленчатым валом, движение поршня вращает коленвал. Это мы знаем.

Работа каждого цилиндра ДВС делится на 4 такта (залипалка с демонстрацией).

Такт #1. Intake — впуск.
За этот такт воздух через впускной клапан и топливо через форсунку поступают в цилиндр.
Объем поступающего топлива зависит от объема поступающего воздуха в пропорциях, необходимых данным условиям работы ДВС.
Процесс выяснянения оптимального соотношения воздух/топливо (также угла зажигания) — это и есть наш тюнинг.
Отсюда термин AFR — air/fuel ratio — соотношение воздух/топливо.
Также тут надо запомнить термин WOT — wide open throttle — полностью открытый дроссель. Проще говоря — газ в пол, и в двигатель поступает столько воздуха, сколько он может впустить.

Такт #2. Compression — cжатие.
На этом этапе клапан впуска закрыватся, и по мере движения вверх поршень сжимает воздушно-топливную смесь. Смесь лучше горит сжатой, и тут играет роль та самая степень сжатия, за которую переживают владельцы ДВС.

— Spark! — тут возникает искра —
Само по себе тактом не является, но очень важное событие.

Такт #3. Power stroke — такт рабочего хода
Топливо горит, газы нагреваются, расшираются и толкают поршень.
Топливо сгорает не мгновенно, поэтому искра происходить чуть раньше, чем поршень окажется в верней точке. Поэтому момент возникновения искры называется УОЗ — угол опережения зажигания.

Здесь запоминаем две аббревиатуры — BTDC — before top dead center — до верхней мертвой точки. И ADTC — after top dead — после верхней мертвой точки. Это обозначает, когда происходит событие — до или после того, как поршень окажется в самом верху.

Такт #4. Exhaust — выпуск.
Поршень поднимается вверх, открывается клапан выпуска и отработанные газы покидают цилиндр в выхлопную трубу.

В определенный срез времени цилиндры выполняют разные такты, приводят в движение коленвал, создают крутящий момент, который передается на маховик, с маховика на КПП и дальше до колёс.

Такты работы клапанов впуска и выпуска определяются распредвалом, который механический связан с коленвалом.
В каком положении находятся валы и цилиндры в данный момент — определяется по ротору на колевале, который выглядит, как шестерня с зубъями и пропусками между ними.
Сузуковский M13A имеет ротор 36-2-2-2 (произносится 36 минус 2 минус 2 минус 2), что роднит его с субаровскими двигателями. Что именно это означает — пропустим. Достаточно запомнить, что это просто конфигурационная особенность двигателя, которая определяет события для «мозгов», типа азбука морзе, по которой «мозги» знают, что в каком положении находятся валы. Сигналы этой азбуки называются триггеры (trigger), на коленвале — primiry trigger, на распредвале — secondary trigger.

Еще один важный термин, который надо освоить, это стехиометрия, он из химии.
Стехиометрической смесью — stoichiometric AFR — называют такое соотношение воздуха и топлива, при котором топливо сгорает полностью. Для бензина это 14.7:1, а для пропана, например, 15.7:1.
То есть надо 14.7 порций воздуха на одну порцию бензина, чтобы в выхлопе не осталось бензина. Такая вот кулинария.
Для чего это нужно? Это нужно для понимания, какую именно мы имеем смесь — богатую или бедную, и насколько именно.

Читайте также:  Установка биос на материнку

С этим связана работа того самого лямбда зонда, который видит избыток воздуха или бензина в выхлопе. Если воздуха больше, то AFR больше 14.7, значит смесь бедная.
Если бензина больше, AFR меньше 14.7, значит смесь богатая.

Существует два вида лямбда зондов — узкополосные (NBO2) и широкополосные (WBO2).
Первый тип стоит, как правило, в обычных гражданских автомобилях и показывает значения в узком диапазоне. Обычным машинам и не нужно знать больше.
Второй тип — WBO2 — позволяет показать точное значение AFR в широком диапазоне. Вот он и является инструментом #1 при тюнинге или просто замерах смеси ДВС. Только по нему и можно точно настроить топливную карту и карту углов опережения зажигания (они взаимо зависимы).

Однако, стехиометрическая смесь 14.7 не является самой оптимальной для всех режимов работы двигателя, иногда нам нужно богатить, чтобы получить больше мощности под нагрузкой. Иногда нужно обеднять смесь, когда нагрузки нет и нужно поэкономить топливо.

График, отображающий максимальную отдачу смеси воздух-бензин.

источник

Уход за мотором с системой впрыска топлива

Сегодня повсеместно можно встретить в продаже лодочный моторы с системой впрыска топлива (электронное управление впрыском топлива EFI). Они достаточно сложны и их можно назвать чудом современной техники. (Обслуживание и уход за лодочным мотором).

Изначально электронные системы впрыска топлива EFI разрабатывались для автомобильной промышленности. Они отлично выполняют свою работу уже не одно десятилетие и остаются очень надежными. Работают практически безотказно. И не так давно эти системы впрыска перекочевали на воду, а точнее на подвесные лодочный моторы. Для справки сразу заметим, что скорость движение электронов по проводам составляет 300 000 км/сек. и вот с такой скоростью электронные блоки управления EFI управляют распределением топлива. Направляют точно отмеренные порции топлива в строго определенные интервалы времени. Это дает заметные улучшения характеристик мотора, экономит топливо, выхлопные газы очищаются и соответственно снижается загрязнение окружающей среды.

Системой EFI управляет бортовой электронный блок. По сути это микрокомпьютер. И кроме системы подачи топлива, электронным способом управляются и другие жизненно важные функции мотора. Сама система EFI состоит из модулей управления ECM, которые в свою очередь могут быть запрограммированы или перепрограммированы. Из-за таких гибких возможностей по настройке всей системы в целом электронное управление мотором, а в частности EFI стало очень популярным в автостроении и моторостроении.

Что нужно для эффективной работы лодочного мотора с системой EFI?

Особых усилий для поддержания работы лодочного мотора с системой EFI не требуется. В обязательном порядке при покупке лодочного мотора с этой системой и перед запуском его, внимательно изучить руководство пользователя и следовать всем требованиям и рекомендациям, указанным там. Читая руководство вы обнаружите, что система EFI не требует какого либо текущего обслуживания, кроме небольших операций, которые чем то напоминают обслуживание карбюратора в двигателе.

Очистка

Чистое топливо является залогом надежной работы не только системы EFI, но и всего мотора в целом. Для предотвращения загрязнения в системе впрыска EFI устанавливаются топливные фильтры. Эти фильтры гораздо надежнее, чем обычные, которые стоят в топливной системе мотора. Их поры значительно меньше и они фильтруют значительно больше загрязнений в топливе.

Повреждение форсунки впрыска от грязи или влаги является одной из самых страшных угроз для системы впрыска EFI. Топливные форсунки как рза отвечают за впрыск под давление определенной порции топлива в камеру сгорания. Если форсунки загрязнены или повреждены, то изменяются параметры впрыска топлива или впрыск вообще перестает работать. Влага, попавшая в инжектор, может привести к коррозии, что затруднит прохождение топлива.

Электропитание

Как вы понимаете, для любой электронной системы нужен электроток. Соответственно для электронной системы EFI он тоже нужен. В связи с этим, важное значение в лодочных моторах с этой системой имеет состояние аккумуляторной батареи и всей системы электропитания в целом. Обязательно нужно позаботиться и следить за чистотой и качеством контактов и всех проводников системы, т.к. именно от них зависит качество электрических импульсов, которые поступают на компоненты ECM и побуждают их к работе. Конечно, достаточно проблематично защитить электросистему от воды в море, но все же она должна оставаться всегда сухой, что бы четко выполнять свои функции.

Разработки последних лет в сфере электронного впрыска EFI еще больше подняли эффективность этой системы. Она все менее нуждается в обслуживании, но периодических осмотр никогда не повредит и продлит срок службы как самой системы, так и мотора в целом.

источник

Добавить комментарий

Adblock
detector