Меню Рубрики

Установка гасителей вибрации на провод

Вибрация и пляска проводов на воздушных ЛЭП

Для передачи электрического тока на большие расстояния используются воздушные и кабельные линии высокого напряжения. Протяженность таких линий электропередач может достигать нескольких километров, на которых установлены высоковольтные опоры для отделения проводов от земли. В местах крепления обеспечивается достаточно жесткая фиксация, но в пролетах опор провода могут свободно колебаться. При воздействии определенных внешних факторов на воздушных линиях возникает вибрация и пляска проводов, способная как повредить сами устройства, так и нарушить нормальный режим работы энергосистемы.

Определение

Под вибрацией следует понимать перемещения провода в вертикальной плоскости, которые характеризуются сравнительно небольшой амплитудой движения – в пределах нескольких сантиметров, но не более диаметра провода для двойной амплитуды или 0,005 от длины волны вибрации. При этом частота таких перемещений в вертикальной плоскости может достигать от 3 до 150 Гц. Наибольший вред интенсивной вибрации – быстрое изнашивание металла в местах частого перегиба.

Как видите на рисунке 1, в точке 1 происходит частый излом, который приводит к усталости металла с дальнейшим отпуском, что и обуславливает потерю жесткости проводов, и обрывы отдельных жил.

Под пляской проводов подразумевается вертикальное перемещение с частотой от 0,2 до 2Гц. Амплитуда колебаний во время пляски может достигать от 0,3 до 5м, а при расстоянии между опорами в 200 — 500м амплитуда пляски достигает 10 – 14м. Такому явлению могут подвергаться любые ЛЭП и их элементы (фазные провода, грозозащитные троса и т.д.). Но в низковольтных линиях до 6-10кВ за счет малого расстояния между опорами явление незначительно.

Отличие вибрации от пляски проводов.

Физически и вибрация, и пляска проводов представляют собой перемещение в вертикальной плоскости. Их основное отличие в размере возникающей при колебаниях волны и в ее частоте. Так вибрация характеризуется значительно большей частотой колебания проводов, в сравнении с пляской. Но вибрация имеет несоизмеримо меньшую амплитуду, чем пляска, благодаря чему она не несет такой угрозы для линии.

Причины возникновения

Все причины возникновения и пляски, и вибрации можно разделить на:

  • воздействие воздушного потока – наиболее частая и опасная причина, поскольку имеет продолжительное воздействие и приводит к нарастанию амплитуды и частоты;
  • коммутационные процессы – при подаче напряжения в сеть или при подключении нагрузки переходные процессы обуславливают скачек электромагнитного поля, приводящего провода в движение;
  • механическая нагрузка – обуславливается всевозможными ударами или движением предметов, к примеру, токоприемником электроподвижного состава по контактной сети.

Следует отметить, что движение линий во время переходного процесса носит разовый характер, и дальнейшие собственные колебания постепенно угасают. То же происходит и с механической нагрузкой, в отличии от воздуха, который не только может дуть в течении продолжительного времени, но и менять свой угол и интенсивность. Поэтому наиболее значимой причиной для всех типов линий является воздушный поток.

Возникновение вибрации и пляски от воздушного потока

Воздействие ветра происходит при любом направлении потока, как в горизонтальной плоскости, так и под каким-то углом. Основной причиной колебаний является неравномерная скорость, с которой воздух огибает провод, из-за чего в верхней и нижней точке возникает разность давления.

Рис. 2: воздействие воздуха на провод

Посмотрите на рисунок 2, здесь приведен пример, когда воздух огибает окружность из точки А в точку Б. Воздушный поток в этом месте закручивается, и возникают завихрения. Это приводит к возникновению сил, давящих не только со стороны ветра, но и в вертикальной плоскости. В нижней точке давление становится меньшим, чем в верхней и при совпадении вихрей с собственными колебаниями возникают горизонтальные перемещения провода.

Следует отметить, что такая ситуация возможна лишь при относительно небольших скоростях воздушных потоков – от 0,5 до 7м/с, так как при увеличении скорости потоки движутся иначе. Но прекращение ветра, увы, не означает окончание вибрации, так как из-за большой протяженности линий в них возникают собственные колебания, которые уже не требуют поддержания, а продолжаются за счет резонансных явлений. И, если вибрация носит незаметный характер, то при пляске, волны станут куда более значительными и опасными.

Читайте также:  Установка ксенона в птф субару

Физика процесса

Во время пляски в местах подвешивания к опоре линия крепится жестко, поэтому в таких узлах не возникает никаких колебаний. А в местах провеса проводов амплитуда колебаний становиться максимальной.

Рис. 3: функция колебания проводов в пролете

При достижении максимума пляски в пиковой точке провиса возникает, так называемая, стоячая волна. Данное явление характеризуется величиной амплитуды кратной или равной длине пролета. Наиболее опасные перемещения возникают на скоростях в 0,6 – 0,8 м/с, а при нарастании скорости воздушного потока более 5 – 8 м/с динамические нагрузки слишком малы из-за незначительной амплитуды.

Но, помимо амплитуды вибрации вторым по значимости параметром является их частота, которую можно определить по формуле:

f = (0,185×V)/d, где

  • f – это частота колебаний;
  • 0,185 – постоянная Струхаля;
  • V – скорость аэродинамического потока;
  • d – диаметр провода.

Как видите из формулы, чем меньшего сечения торсы применяются в ЛЭП, тем с большей частотой они будут колебаться. На практике, частота колебаний обуславливает и интенсивность пляски, из-за чего диапазон наиболее опасных частот для линии составляет от 0,2 до 2 Гц.

Следует отметить, что ситуация может значительно ухудшаться за счет погодных факторов, которые влияют не только на воздушные потоки, но и на состояние провода. Наиболее значимым из них является гололед, так как он возникает с подветренной стороны и характеризуется искажением формы провода. При этом вибрирующие провода подвергаются воздействию поднимающей силы Vy, приложенной к отложениям гололеда. Она дополнительно усугубляет ситуацию при вибрации и пляске.

Рис. 4: влияние гололеда на колебания

Провод совершает не только горизонтальные колебания, но и вращательные движения, а в узлах и точках фиксации из-за обледенения происходит повреждение металла.

Опасность

Пляска и вибрация имеют схожую природу, но отличаются по интенсивности. Тем не менее, оба явления могут нести такие виды опасности для ЛЭП:

  • Распушивание — повреждение проводов, при котором медные, алюминиевые или стальные тросы теряют утяжку и механическую прочность;
  • Перекрытие воздушного промежутка – в случае движения смежных фаз с различной амплитудой, волны могут приближаться достаточно близко друг к другу, из-за чего произойдет пробой и возникновение дуги;
  • Схлестывание проводов – являются более опасным развитием предыдущей ситуации, когда параллельные линии касаются друг друга и создают электрический контакт с протеканием токов короткого замыкания и оплавлением металла;
  • Обрыв проводов – может возникать как результат короткого замыкания, так и множественных обрывов отдельных проволок, разрушенных многократными вибрациями или пляской.

Как видите, все потенциальные опасности могут запросто привести к нарушению нормального электроснабжения и материальным затратам на восстановление. Также не забывайте, что любая аварийная ситуация потенциально несет угрозу человеку, как выполняющему работу в электроустановках, так и находящемуся поблизости. Поэтому для предотвращения опасных воздействий разработаны методы борьбы с вибрацией и пляской, направленные на гашение колебаний.

Методы борьбы

Условия, при которых следует применять защитные меры для гашения амплитуды вибрации, оговаривает п.2.5.85 ПУЭ. При этом учитываются такие параметры, как:

  • Длина пролета;
  • Материал проводника и его сечение;
  • Механическое напряжение в расщепленных и одиночных проводах.

Конкретные методы борьбы регламентируются методическими указаниями РД 34.20.182-90. Для гашения вибрации и пляски устанавливаются специальные устройства.

Рис. 5: пример установки гасителей вибрации

По типу и конструктивным особенностям гасители пляски и вибрации подразделяются на три типа:

  • Петлевые гасители — применяются для проводов напряжением в 6 – 10 кВ и выполняются в виде гибкой распорки. В зависимости от числа петель и конструкции распорок может быть одно- или трехпетлевым. В качестве петлевого зажима используется проволока или крепежные детали.
  • Спиральные – самые эффективные, но и самые дорогие модели для борьбы с высоко- и низкочастотной вибрацией. Из-за дороговизны их редко применяют, хотя они и дают равномерное распределение нагрузки по всей длине гасителя.
  • Мостовые – имеют специальные грузы, которым передается вибрация от раскачивающегося провода и ими же поглощается. Отличаются простотой монтажа и дальнейшего обслуживания.
Читайте также:  Установка звонка в квартиру смета

В линиях от 330 до 750 кВ применяется расщепление фазы, при котором все провода соединяются распорками. Несмотря на то, что такое соединение само может выступать в роли гасителя вибрации, на практике этого не достаточно. Поэтому в главе 5 РД 34.20.182-90 приведены способы борьбы с вибрацией и пляской для различных линий и условий, в которых они могут эксплуатироваться.

источник

Вибрация и пляска проводов на воздушных линиях электропередачи

При изучении работы проводов воздушных линий в естественных условиях, помимо обычных изменений, вызываемых в работе проводов проводов действием гололеда, ветра и температуры, представляет интерес явления вибраций и пляски проводов.

Вибрация проводов в вертикальной плоскости наблюдается при малых скоростях ветра и заключается в появлении в проводах продольных (стоячих) и преимущественно блуждающих волн с амплитудой до 50 мм и частотой 5 — 50 гц. Следствием вибрации являются изломы проволок проводов, самоотвертывание болтов опор, расстройство частей арматуры гирлянд изоляторов и т. п.

Для борьбы с вибрацией применяют усиление проводов при помощи обмотки их в местах закрепления, автовибрационные зажимы и глушители (демпферы).

В воздушных линиях встречается, хотя и более редко, другое, менее изученное явление — пляска проводов, т. е. колебание проводов с большой амплитудой, вызывающее схлестывание проводов различных фаз, а следовательно, и выпадение линии из работы.

При обтекании проводов потоком воздуха, направленным поперек оси линии или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. Периодически происходят отрывы ветра от провода и образование вихрей противоположного направления.

Отрыв вихря в нижней части вызывает появление кругового потока с подветренной стороны, причем скорость потока v в точке А становится больше, чем в точке В. В результате появляется вертикальная составляющая давления ветра.

При совпадении частоты образования вихрей с одной из частот собственных колебании натянутого провода последний начинает колебаться в вертикальной плоскости. При этом одни точки больше всего отклоняются от положения равновесия, образуя пучность волны, а другие — остаются на месте, образуя так называемые узлы. В узлах происходят только угловые перемещения провода.

Такие колебания провода с амплитудой, не превышающей 0,005 длины полуволны или двух диаметров провода, называются вибрацией .

Рис 1. Образование вихря за проводом

Вибрация проводов возникает при скоростях ветра 0,6—0,8 м/с; при увеличении скорости ветра увеличиваются частота вибрации и число волн в пролете, при скорости ветра свыше 5—8 м/с амплитуды вибрации настолько малы, что не опасны для провода.

Опыт эксплуатации показывает, что вибрация проводов наблюдается чаще всего на линиях, проходящих по открытой и ровной местности. На участках линий в лесной и пересеченной местности продолжительность и интенсивность вибраций значительно меньше.

Вибрация проводов наблюдается, как правило, в пролетах длиной более 120 м и усиливается с увеличением пролетов. Особенно опасна вибрация на переходах через реки и водные пространства с пролетами длиной более 500 м.

Опасность вибрации заключается в обрывах отдельных проволок на участках их выхода из зажимов. Эти обрывы происходят вследствие того, что переменные напряжения от периодических изгибов проволок в результате вибрации накладываются на основные растягивающие напряжения в подвешенном проводе. Если последние напряжения невелики, то суммарные напряжения не достигают предела, при котором происходит разрушение проволок от усталости.

Рис. 2. Волны вибрации на проводе в пролете

На основании наблюдений и исследований установлено, что опасность разрушения проводов зависит от так называемого средне-эксплуатационного напряжения (напряжения при среднегодовой температуре и отсутствии дополнительных нагрузок).

Регистратор вибраций ALCOA “SCOLAR III”, смонтированный на спиральном поддерживающем зажиме

Методы борьбы с вибрацией проводов

Согласно ПУЭ одиночные алюминиевые и сталеалюминиевые провода сечением до 95 мм2 в пролетах длиной более 80 м, сечением 120 — 240 мм2 в пролетах более 100 м, сечением 300 мм2 и более в пролетах более 120 м, стальные провода и тросы всех сечений в пролетах более 120 м должны быть защищены от вибрации, если напряжение при среднегодовой температуре превышает: 3,5 даН/мм2 (кгс/мм2) в алюминиевых проводах, 4,0 даН/мм2 в сталеалюминиевых проводах, 18,0 даН/мм2 в стальных проводах и тросах.

Читайте также:  Установка бортового камня при ремонте дорог

В пролетах меньше указанных выше защита от вибрации не требуется. Защита от вибрации не нужна также на линиях с расщеплением фазы на два провода, если напряжение при среднегодовой температуре не превышает 4,0 даН/мм2 в алюминиевых и, 4,5 даН/мм2 в сталеалюминиевых проводах.

Фаза с расщеплением на три и четыре провода, как правило, не требует защиты от вибрации. Участки любых линий, защищенные от поперечных ветров, не подлежат защите от вибрации. На больших переходах рек и водных пространств защита необходима независимо от напряжения в проводах.

Как правило, снижение напряжений в проводах линий до значений, при которых не требуется защиты от вибрации, экономически невыгодно. Поэтому на линиях напряжением 35 — 330 кВ обычно устанавливаются виброгасители, выполненные в виде двух грузов, подвешенных на стальном тросе .

Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода.

На ряде линий для защиты от вибрации применяются армирующие прутки, выполненные из того же материала, что и провод, и наматываемые на провод в месте его закрепления в зажиме на длине 1,5 — 3,0 м.

Диаметр прутков уменьшается в обе стороны от середины зажима. Армирующие прутки увеличивают жесткость провода и уменьшают вероятность его повреждения от вибрации. Однако наиболее эффективным средством борьбы с вибрацией являются виброгасители.

Для защиты от вибрации одиночных сталеалюминиевых проводов сечением 25—70 мм2 и алюминиевых сечением до 95 мм2 рекомендуются гасители петлевого типа (демпфирующие петли) , подвешиваемые под проводом (под поддерживающим зажимом) в виде петли длиной 1,0—1,35 м из провода того же сечения.

В зарубежной практике петлевые гасители из одной или нескольких последовательных петель применяются также для защиты проводов больших сечений, в том числе и проводов на больших переходах.

Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 — 14 м, и большой длиной волны. На линиях с одиночными проводами чаще всего наблюдается пляска с одной волной, т. е. с двумя полуволнами в пролете (рис. 4), на линиях с расщепленными проводами — с одной полуволной в пролете.

В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом (до 10 — 20°) от вертикали.

Диаметры эллипса зависят от стрелы провеса: при пляске с одной полуволной в пролете большой диаметр эллипса может достигать 60 — 90% стрелы провеса, при пляске с двумя полуволнами — 30 — 45% стрелы провеса. Малый диаметр эллипса обычно составляет 10 — 50% длины большого диаметра.

Как правило, пляска проводов наблюдается при гололеде. Гололед отлагается на проводах преимущественно с подветренной стороны, вследствие чего провод получает неправильную форму.

При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается. В результате возникает подъемная сила Vy, вызывающая пляску провода.

Опасность пляски заключается в том, что колебания проводов отдельных фаз, а также проводов и тросов происходят несинхронно; часто наблюдаются случаи, когда провода перемещаются в противоположных направлениях и сближаются или даже схлестываются.

При этом происходят электрические разряды, вызывающие оплавление отдельных проволок, а иногда и обрывы проводов. Наблюдались также случаи, когда провода линий 500 кВ поднимались до уровня тросов и схлестывались с ними.

Рис. 4: а — волны пляски на проводе в пролете, б — провод, покрытый гололедом, в воздушном потоке друг с другом.

Удовлетворительные результаты эксплуатации опытных линий с гасителями пляски пока недостаточны для уменьшения расстояний между проводами.

На некоторых зарубежных линиях с недостаточными расстояниями между проводами разных фаз установлены изолирующие распорки, исключающие возможность схлестывания проводов при пляске.

источник

Добавить комментарий

Adblock
detector