Меню Рубрики

Установка гидроочистки дизельного топлива диплом

Гидроочистка дизельных топлив

Общая характеристика установки гидроочистки дизельных топлив, назначение ее компонентов. Описание сырья готовой продукции и вспомогательных материалов. Подробное описание технологической схемы процесса очистки, его аналитический контроль и автоматизация.

Подобные документы

Сущность процесса гидроочистки в нефтепереработке. Схема установки гидроочистки дизельных топлив, характеристика сырья и готовой продукции. Описание технологического процесса, его материальный и тепловой баланс. Расчет конструктивных размеров реакторов.

дипломная работа, добавлен 02.12.2011

Установка гидроочистки дизельного топлива как сложная химико-технологическая система, ее основные составляющие блоки. Характеристика ключевых этапов осуществления комбинированного процесса гидроочистки дизельных топлив. Модификация и оптимизация метода.

автореферат, добавлен 24.05.2016

История развития гидрогенизационных процессов и термодинамика процесса гидроочистки. Особенность катализаторов, характеристика сырья и продуктов гидроочистки. Установки, применяемые в настоящее время и специфика абсорбера очистки циркуляционного газа.

реферат, добавлен 28.04.2015

Основные требования к катализаторам гидроочистки. Химизм, превращения серосодержащих, азотсодержащих, кислородсодержащих соединений. Объемная скорость подачи сырья. Аппаратура и оборудование установки гидроочистки дизельных топлив. Виды конверсии газа.

курсовая работа, добавлен 29.04.2014

Изучение процесса проведения гидроочистки дизельных топлив. Характеристика промышленных катализаторов. Рассмотрение химических основ, термодинамики, кинетики процесса, параметров, влияющих на показатели качества. Описание реакции умеренной гидрогенизации.

курсовая работа, добавлен 30.10.2014

Изучение потенциала нефтеперерабатывающих предприятий в Республике Башкортостан. Расчет технико-экономических показателей установки гидроочистки дизельных топлив. Рассмотрение затрат на вспомогательные материалы и топливно-энергетические ресурсы.

курсовая работа, добавлен 03.05.2014

Получение зимних дизельных топлив из нефтяного сырья, способы их реализации в Российской Федерации. Получение смесевых композиций моторных топлив на основе GtL технологии из природных газов. Метод Фишера-Тропша переработки продуктов синтеза углеводородов.

Назначение, краткая характеристика установки для удаления органических сернистых соединений из дизельного топлива путем их деструктивной гидрогенизации. Расчет материального и теплового баланса гидроочистки, затрат на проектирование данного устройства.

дипломная работа, добавлен 28.04.2014

Климатические условия и особенности эксплуатации дизельных двигателей в условиях Севера. Классификация топлив, способы улучшения их низкотемпературных свойств. Исследование дизельных фракций с депрессорными присадками на седиментационную стойкость.

диссертация, добавлен 07.10.2016

Проект установки для гидроочистки керосиновой фракции и получения компонента реактивных топлив, удовлетворяющего требованиям нормативной документации. Характеристика исходного сырья: реагентов, катализаторов, полуфабрикатов, изготовляемой продукции.

источник

Гидроочистка нефтепродуктов

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре.

Это гидрогенизационный процесс очистки сырья (от газа до масел и парафина), получаемого при первичной переработке и при термокаталитических процессах. Применяют для удаления из нефтепродуктов сернистых, азотистых, кислородных, металлорганических и непредельных соединений.

Гидроочистка нефтяных фракций направлена на снижение содержания сернистых, азотистых, кислородных, металлорганических и непредельных соединений в товарных нефтепродуктах.

Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов.

Наиболее распространённый процесс нефтепереработки.

Гидроочистке подвергаются следующие фракции нефти:

1. Бензиновые фракции (прямогонные и каталитического крекинга);

Гидроочистка бензиновых фракций

Различают гидроочистку прямогонных бензиновых фракций и фракций бензина каталитического крекинга.

1. Гидроочистка бензина прямогонных бензиновых фракций.

Направлен на получения гидроочищенных бензиновых фракций — сырья для риформинга.

Процесс гидроочистки бензиновых фракций основан на реакциях гидрогенолиза и частичной деструкции молекул в среде водородсодержащего газа ( ВСГ ), в результате чего органические соединения серы, азота, кислорода, хлора, металлов, содержащиеся в сырье, превращаются в сероводород, аммиак, воду, хлороводород и соответствующие углеводороды

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 850 845
Содержание серы %масс, 1,32 0,2
Йодное число г I2/100 г. 4,0 1,2
Температура застывания, °С −3 −1
Цетановое число 52 53

Параметры процесса: Давление 1,8-2 МПа; Температура 350-420 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-300 м³/м³; Катализатор — никель — молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,40
Фр. 240-360 (180-360)°С 100
ВСГ 0,40
Получено всего: 100,40
Углеводордные газы 0,6
Сероводород 1,2
Бензиновый отгон 1,30
Гидроочищенная фракция 96,9
Потери 0,4

Гидроочистка бензина каталитического крекинга.

Процесс направлен на снижение серы и диеновых углеводородов в товарных бензинах.

показатели сырье продукт
Плотность кг/м3, 759 751
Содержание серы %масс, 0,28 0,1
Йодное число г Br2/100 г. 52 41
Октановое число м.м. 81 80,5

Гидроочистка керосиновых фракций

Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закоксовывают форсунки двигателей.

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 785 778
Содержание серы %масс, 0,46 0,15
Йодное число г I2/100 г. 2,2 0,5
Температура вспышки, °С 30 30
Температура застывания, °С −62 −64

Параметры процесса: Давление 1,5-2,2 МПа; Температура 300-400 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-250 м³/м³; Катализатор -кобальт — молибденовый

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,25
Фр. 140-240 °C 100
ВСГ 0,25
Получено всего: 100,25
Углеводордные газы 0,65
Сероводород 0,2
Бензиновый отгон 1,10
Гидроочищенная фракция 97,9
Потери 0,4

Гидроочистка дизельного топлива

Гидроочистка дизельного топлива направлена на снижение содержания серы и полиароматических углеводоров.

Сернистые соединения сгорая образуют сернистый газ, который с водой образует сернистую кислоту -основной источник кислотных дождей.

Полиароматика снижает цетановое число

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 850 845
Содержание серы %масс, 1,32 0,2
Йодное число г I2/100 г. 4,0 1,2
Температура застывания, °С −3 −1
Цетановое число 52 53

Параметры процесса: Давление 1,8-2 МПа; Температура 350-420 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-300 м³/м³; Катализатор-никель-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,40
Фр. 240-360 (180-360)°С 100
ВСГ 0,40
Получено всего: 100,40
Углеводордные газы 0,6
Сероводород 1,2
Бензиновый отгон 1,30
Гидроочищенная фракция 96,9
Потери 0,4

Гидроочистка вакуумного газойля

Гидроочистка вакуумного газойля направлена на снижение содержания серы и полиароматических углеводородов.

Гидроочищенный газойль является сырьем для каталитического крекинга.

Сернистые соединения отравляют катализатор крекинга, а также ухудшают качество целевого продукта бензина каталитического крекинга (см. Гидроочистка бензиновых фракций).

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 920 885
Содержание серы %масс, 1,6 0,2
Бромное число г Br2/100 г. 0,25 0,05
Температура застывания, °С 27 34

Параметры процесса: Давление 8-9 МПа; Температура 370-410 °C; Содержание водорода в ВСГ — 99 %; Кратность циркуляции водорода >500 м³/м³; Катализатор -никель-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,65
Фр. 350-500 °C 100
ВСГ 0,65
Получено всего: 100,65
Углеводордные газы 1,5
Сероводород 1,5
Бензиновый отгон 1,30
Гидроочищенная фракция 86,75
Дизельная фракция 9,20
Потери 0,4

Гидроочистка нефтяных масел

Гидроочистка нефтяных масел необходима для осветления масел и придания им химической стойкости, антикоррозийности, экологичности.

Читайте также:  Установка виробництва паливних брикетів

Гидроочистка улучшает также индекс вязкости моторных масел.

Во многом гидроочистка нефтяных масел аналогична гидроочистке вакуумных газойлей.

источник

Курсовая работа: Гидроочистка дизельного топлива

1. Основы гидроочистки топлив

Моторные топлива — бензин, керосин, дизельное топливо — в основном получаются в процессе переработки нефтей. В зависимости от состава нефтей и способа их переработки моторные топлива могут различаться качеством, не всегда соответствующим требованиям ГОСТа на товарную продукцию.

Цель гидроочистки — улучшение качества продукта или фракции за счет удаления нежелательных примесей, таких, как сера, азот, кислород, смолистые соединения, непредельные углеводороды 3.

В отличие от других гидрогенизационных процессов процесс гидроочистки проходит в сравнительно мягких условиях, однако и ему свойственна совокупность ряда параллельных и последовательных реакций, в которых участвуют все компоненты, содержащиеся в исходной сложной смеси.

Основные реакции гидрирования углеводородов: насыщение алкеновых связей, насыщение ароматических связей, крекинг алканов, деалкилирование алкилбензолов, крекинг цикланов, гидроизомеризация алканов, гидроизомеризация цикланов.

При гидроочистке на алюмокобальтмолибденовом катализаторе не наблюдается заметного гидрирования бензольного кольца. Би-циклические ароматические углеводороды в значительной части гидрируются до тетрадинов, вне зависимости от их исходной концентрации в сырье [3].

Реакция изомеризации парафиновых и нафтеновых углеводородов в зависимости от свойств катализатора наблюдается, в той или иной мере при любых условиях обессеривания 5.

Основные реакции серусодержащих соединений. Реакции каталитического гидрогенолиза сераорганических соединений, лежащие в основе процесса гидроочистки нефтепродуктов, изучены довольно подробно [3]. Меркаптаны, сульфиды и дисульфиды легко гидрируются в соответствующие углеводороды уже при сравнительно мягких условиях. В зависимости от строения сернистых соединений глубина их гидрогенолиза различна. Устойчивость сернистых соединений увеличивается в следующем ряду: меркаптан -1 4-6

Парциальное давление водорода, МПа. 1.8 — 2,0

Для обеспечения требований к гидроочищенному дизельному топливу по температуре вспышки и содержанию сероводорода большое значение имеет правильно подобранный режим стабилизационной колонны. Например, рекомендуется следующий режим:

Кратность орошения (массовая) ….. 2:1

Давление в колонне, МПа. 0,16

на входе сырья в колонну. 220

2.3 Характеристика продуктов

Целевым продуктом процесса гидроочистки является стабильное дизельное топливо. Выход стабильного дизельного топлива в среднем составляет 97% (масс.). Побочными продуктами процесса являются отгон (бензин), углеводородный газ (второй ступени сепарации и стабилизации), сероводород и отдуваемый водородсодержащий газ 3.

Ниже приведены состав и свойства отгона:

Фракционный состав: перегоняется при температуре, РС

Содержание серы, % (масс.). 0,01-0,05

Октановое число (моторный метод). 50

Давление насыщенных паров, МПа . Не выше 0,067

Выход отгона зависит от содержания легких фракций в исходном сырье и составляет 0,5-1,5% (масс.).

Состав углеводородного газа второй ступени сепарации зависит как от характеристики сырья и состава свежего водородсодержащего газа, так и рабочего давления в сепараторе. Состав углеводородного газа стабилизации в основном также зависит от состава свежего водородсодержащего газа. Выход газа колеблется в пределах 0,97-2,3% (масс.) на сырье.

Сероводород получается в результате очистки циркуляционного водородсодержащего и углеводородных газов от сероводорода. Содержание углеводородов в сероводороде, уходящем с установки, не превышает 2% (об.). Выход сероводорода зависит от содержания серы в сырье, глубины очистки сырья и газов и колеблется в пределах 0,5-2,5% (масс.) на сырье. Количество и состав отдуваемого водородсодержащего газа зависит от режима процесса и концентрации водорода в свежем водородсодержащем газе. В качестве «отдува» в топливную сеть сбрасывается очищенный циркуляционный газ.

На отечественных нефтеперерабатывающих предприятиях гидроочистку средних дистиллятов проводят преимущественно на установках Л-24-5, Л-24-6, Л-24-7, ЛЧ-24-2000 и ЛК-6У.

3.1.1 Описание установки Л-24-6

Установка Л-24-6 состоит из двух самостоятельных блоков для одновременной переработки двух видов сырья.

Характерной особенностью установки является наличие раздельной системы циркуляции водородсодержащего газа в обоих блоках. Это дает возможность «каскадного» использования его в другом блоке, перерабатывающем сырье, для которого не требуется высокая концентрация водорода в циркуляционном газе.

При гидроочистке в качестве свежего водорода применяется избыточный водородсодержащий газ с установки каталитического риформинга или технический водород со специальных водородных установок.

Смесь сырья с водородсодержащим газом, нагретую в теплообменнике и печи, подвергают гидроочистке в реакторах над АКМ катализатором. Избыточную теплоту реакции отводят путем введения реакторы так называемого холодного циркуляционного газа.

Из реакторов газо-продуктовая смесь после охлаждения поступает сепаратор высокого давления. Выделившийся газ, очищенный абсорбере раствором МЭА, вновь возвращается в цикл.

Для поддержания заданной концентрации водорода на входе блок часть циркуляционного газа отдувается и добавляется соответствующее количество свежего водорода.

Гидрогенизат из сепаратора высокого давления после дросселирования направляется в сепаратор низкого давления и после подогрева в теплообменнике — в стабилизационную колонну.

Дизельное топливо при выходе из колонны разделяется на два потока: один из них, пройдя печь, в виде рециркулята возвращается в колонну, а второй после охлаждения поступает на защелачивание и водную промывку.

Очищенное дизельное топливо выводится с установки. Верхний гродукт колонны стабилизации охлаждается в конденсаторе-холодильнике и разделяется в сепараторе на углеводородный газ, отгон и воду; часть отгона возвращается в колонну на орошение, а другая теть после защелачивания и водной промывки выводится с установки.

На ряде заводов внедрен узел отдува сероводорода из бензина чищенным углеводородным газом. Углеводородный газ подвергается раздельной очистке от сероводорода раствором МЭА: газ из сепааратора низкого давления очищается в абсорбере под давлением ) 0,5 МПа; газ из бензинового сепаратора очищается от сероводорода при 0,13 МПа, затем используется как топливо для печей.

Насыщенный раствор МЭА регенерируется в отгонной колонне, из которой уходит смесь сероводорода и паров воды. После охлаждения в конденсаторе-холодильнике она разделяется в сепараторе. Сероводород выводится с установки для получения серной кислоты или элементарной серы, а вода подается на орошение в отгонную колонну. После отгонной колонны регенерированный раствор охлаждается в теплообменнике, холодильнике и возвращается в цикл. Температурный режим отгонной колонны поддерживается подачей пара в рибойлер.

При потере активности катализатора проводится его газовоздушная или паровоздушная регенерация.

3.1.2 Основное оборудование

Реактор с аксиальным вводом сырья сверху вниз. Корпус реактора изнутри футерован; реактор не имеет защитного стакана. Диаметр реактора 2600 мм.

Продуктово-сырьевые теплообменники кожухотрубчатые, одноходовые по трубному пространству, уплотнения сильфонные на плавающей головке. Диаметр корпуса 800 мм.

Трубчатые печи шатрового типа со сварным змеевиком в зоне огневого нагрева.

Колонные аппараты различного диаметра с желобчатыми тарелками или насадкой из колец Рашига.

Холодильники высокого давления типа «труба в трубе» для готового продукта, установленные на открытой площадке.

Поршневые компрессоры марки 5ВП-16/70.

3.1.3 Экономические показатели

На гидроочистку 1 т сырья расходуется:

газ (при нормальных условиях), м 3 …. 4,2

3.2.1 Описание технологической схемы

Принципиальная технологическая схема установки Г–24/1 представлена на рисунке 1.

Исходное сырье – прямогонное дизельное топливо из резервуаров сырьевого парка забирается насосом Н–1 (Н–4) и подается в тройник смешения потока, где смешивается с циркулирующим водородсодержащим газом (ВСГ), поступающего с выкида циркуляционных компрессоров В – 1(В–2). Расход сырья в тройник смешения регулируется клапаном, установленном на линии подачи сырья от насоса Н–1 (Н–4) в тройник смешения. При понижении расхода сырья до 2,5 м3/ч закрывается клапан-отсекатель 173-1, установленный на сырьевой линии до тройников смешения. Для предотвращения попадания сырья обратным ходом в линию водородсодержащего газа при аварийных остановках компрессоров, циркулирующий ВСГ входит в тройник смешения через обратный клапан (Рис. 1).

Газосырьевая смесь из тройника смешения поступает в межтрубное пространство теплообменника Т-1/1, где нагревается до температуры 120÷140 °С за счет тепла гидроочищенного топлива, откачиваемого с установки. Из теплообменника Т-1/1 газосырьевая смесь поступает в межтрубное пространство теплообменника Т-2/1, где нагревается до температуры 200-230°С за счет тепла продуктов реакции из реактора Р-1, которые проходят через трубное пространство Т-2/1. Температура нагрева регистрируется.

Окончательный нагрев газосырьевой смеси до температуры реакции 280-4000С осуществляется в трубчатой печи П-1 с горелками беспламенного горения.

Рисунок 1 – Технологическая схема установки Г-24/1

Газосырьевая смесь проходит вначале через конвекционную часть печи (18 труб), затем нагревается в радиантной части (20 труб).

Температура газосырьевой смеси на выходе из печи П-1 регулируется, клапаном установленным на линии подачи топливного газа к форсункам печи. ПАЗ печи предусматривает отсечение подачи топливного газа клапаном – отсекателем.

Нагретая газосырьевая смесь из печи П-1 поступает в верхнюю часть реактора Р-1, заполненного катализатором. В реакторе под давлением 2,5-4,5 МПа и температуре 280¸400 0 С на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/см². Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.

Горячая смесь продуктов реакции и водородсодержащего газа (гидрогенизат) выходит снизу реактора Р-1, проходит через трубное пространство теплообменника Т-2/1, где отдает часть тепла газосырьевой смеси и с температурой не более 300 0С поступает в высокотемпературный сепаратор высокого давления Е-1/1.

Температура ввода гидрогенизата из теплообменника Т-2/1 в сепаратор Е-1/1 регулируется клапаном, который установлен на линии подачи гидрогенизата из реактора Р-1 в сепаратор минуя теплообменник Т-2/1 (на байпасных линиях теплообменников).

В сепараторе Е-1/1 происходит отделение водородсодержащего газа от жидкой фазы (гидрогенизата).

Выделившийся газ из высокотемпературного сепаратора высокого давления Е-1/1 выходит сверху и после охлаждения оборотной водой в межтрубном пространстве холодильника Т-3/1 до температуры не более 50 0С поступает в сепаратор высокого давления Е-2/1, где происходит отделение водородсодержащего газа от жидкой углеводородной фазы, образовавшейся после охлаждения в холодильнике Т-3/1.

Водородсодержащий газ сверху из сепаратора Е-2/1 поступает в низ абсорбера К-3 для очистки раствором моноэтаноламина от сероводорода. После очистки в абсорбере К-3 ВСГ через сепаратор Е-3 поступает на всас компрессора В-1(В-2) и далее в тройник смешения.

Гидрогенизат с низа сепаратора Е-1/1 самотеком поступает в отпарную колонну К-1/1.

Уровень жидкости в сепараторе Е-1/1 регулируется клапаном, который установлен на линии гидрогенизата из Е-1/1 в К-1/1.

Накопившийся в низу сепаратора Е-2/1 конденсат выводится в сепаратор С-3 или на 13 тарелку колонны К-1/1. Уровень жидкости в сепараторе Е-2/1 поддерживается клапаном, который установлен на линии гидрогенизата из Е-2/1.

В отпарной колонне К-1/1 происходит отгон легких углеводородов, растворенных углеводородных газов и сероводорода за счет подачи перегретого водяного пара и снижения давления. В колонне К-1/1 имеются 13 тарелок S-образного типа. Подача сырья предусмотрена на 13, 10 и 7 тарелки.

В низ колонны К – 1/1 подается перегретый водяной пар. Схема получения перегретого водяного пара имеет следующий вид: от паровой гребенки печи П-1 острый водяной пар с давлением до 12 кгс/см² поступает в змеевики пароперегревателей в печи П-1, где нагревается до температуры 240 0С. Далее перегретый пар через маточник подаётся под нижнюю тарелку колонны К-1/1. Расход перегретого пара в колонны регулируется клапаном, установленном на линии подачи пара в К-1/1.

Отогнанные в отпарной колонне К-1/1 легкие фракции, уходящие вместе с водяным паром сверху колонны с температурой до 180 0С поступают в межтрубное пространство холодильников Т-5/1, Т-5/2, где происходит конденсация и охлаждение. Далее сконденсированный продукт и углеводородный газ с температурой до 50 0С поступают в сепаратор С-3.

С низа отпарной колонны К-1/1 гидроочищенное топливо, содержащее следы воды самотеком поступает в колонну вакуумной сушки К-2/1. Так же возможен вывод продукта помимо колонны К-2/1 напрямую в товарный парк. Уровень в К-1/1 регулируется клапаном, который установлен на перетоке гидрогенизата из К-1/1 в К-2/1.

В колонне К-2/1 происходит испарение воды под вакуумом. Вакуум создается с помощью двухступенчатого эжектора Э-1. На эжектор подается острый пар.

Оборотная вода подается в холодильник эжектора для охлаждения и конденсации паров из К-2/1 и стекает по барометрической трубе, опущенной под слой воды, в ящик барометрической трубы Е-31/1 для обеспечения гидрозатвора.

Готовое гидроочищенное топливо с низа колонны вакуумной осушки К-2/1 поступает на прием насоса Н-5 (Н–8) и прокачивается насосом через трубное пространство теплообменника Т-1/1, где охлаждается, нагревая газосырьевую смесь, проходящую через межтрубное пространство Т-1/1.

После теплообменника Т-1/1 гидроочищенное топливо охлаждается в межтрубном пространстве холодильника Т-8/1 до температуры не более 60 0С.

Далее гидроочищенное дизельное топливо выводится в резервуары товарного парка.

3.2.2 Режим работы реактора

В реакторе на поверхности катализатора происходит гидрирование серо-, азото-, кислородосодержащих органических соединений и непредельных углеводородов. Так как эти реакции протекают с выделением тепла, то температура в реакторах может повышаться. Температура и давление по высоте слоя катализатора, на входе и выходе из реактора регистрируется. По изменению перепада давления в реакторе определяют степень закоксованности катализатора. Допускается перепад давления в реакторе не более 6 кгс/см². Увеличение перепада давления по слою катализатора с одновременным увеличением содержания серы в гидроочищенном топливе указывает на снижение активности катализатора.

Оптимальный режим работы реактора:

Температура сырья на входе в реактор 320–360 °С

Давление на входе в реактор 4,0–4,5 МПа

Кратность циркуляции ВСГ 200–300 нм3/м3

Объемная скорость подачи сырья 2,0–4,0 ч-1

3.2.3 Характеристика производственной среды. Анализ опасностей и производственных вредностей

Установка Г-24/1 предназначена для гидроочистки масел или дизельного топлива путем деструктивной гидрогенизацией сернистых соединений на алюмокобальтмолибденовом катализаторе в среде водорода. По технологическим условиям (давление до 5.0МПа и температуре до 400°С), жидкая фаза в технологическом оборудовании, в основном, находится в перегретом состоянии, т.к. обращается в объеме аппаратов и трубопроводов при высоких температурах и давлениях, кроме того, в оборудовании присутствуют различные углеводородные газы.

Полная разгерметизация технологического оборудования с перегретой жидкостью сопровождается переходом большой части этой жидкости в парообразное состояние и образованием взрывопожароопасных облаков. Взрывы подобных облаков обладают большой разрушительной силой и сопровождаются серьезными последствиями.

Наиболее тяжелые последствия могут быть в результате аварии при мгновенной разгерметизации оборудования и выброса смеси водородсодержащих паров жидких углеводородов из технологических блоков. Образовавшееся углеводородное парогазовое облако, которое может содержать все количество вещества, находящегося в блоке, способно загореться или взорваться при наличии источника зажигания, в качестве которого, может выступать нагревательная печь.

При разливе жидких углеводородов происходит испарение углеводородов с поверхности разлития. Объем образующегося парогазового облака углеводородов значительно меньше, чем при разгерметизации оборудования с перегретой жидкостью и при наличии инициатора загорания выгорает по поверхности разлития, что может привести к перегреву емкостного оборудования, трубопроводов и металлоконструкций, находящихся в близи очага пожара.

Основными факторами опасности на установке являются:

— горючесть, взрывоопасность и токсичность продуктов, применяемых и получаемых на установке, наличие их в аппарате в большом количестве;

— возможность образования зарядов статического электричества при движении газов и жидкостей по трубопроводам и в аппаратах;

— наличие электротехнических устройств высокого напряжения;

— применение в технологическом процессе нагревательных печей, где продукт нагревается до высоких температур и находится под давлением;

— наличие насосов и компрессоров, нагнетающих токсичные и взрывоопасные продукты;

— наличие нагретых до высоких температур поверхностей

Характеристика вредных и взрывопожароопасных веществ, применяемых, обращаемых и получаемых на установке Г–24/1.

3.2.4 Мероприятия по обеспечению безопасности производства

Для обеспечения безопасности производства каждый сотрудник проходит инструктаж.

Для обеспечения безаварийной работы установки и достижения минимального уровня взрывопожароопасности процесса предусмотрены следующие мероприятия:

— процесс осуществляется по непрерывной схеме и в герметичных аппаратах;

— все стадии технологического процесса непрерывны и склонны к устойчивому протеканию;

— вся технологическая схема установки разделена на 6 технологических блоков (№ 1, 2/1, 2/2, 2/3, 3, 4), которые, в случае возникновения аварии или инцидента, могут быть отключены друг от друга отсекателями, запорной арматурой, системой защиты и блокировок;

— при соблюдении правил эксплуатации процесс не обладает возможностью взрыва внутри технологической аппаратуры;

— для перемещения легковоспламеняющихся жидкостей применены герметичные центробежные насосы с двойным торцевым уплотнением типа «ТРЕМ»;

— применяемые, обращающиеся и получаемые вещества не обладают способностью быстро и спонтанно полимеризоваться, реагировать с водой, саморазогреваться и самовоспламеняться, не склонны к непроизвольному термическому разложению при высоких температурах и давлениях;

— не применяются продукты и теплоносители, несовместимые между собой;

— на установке отсутствуют открытые поверхности аппаратов и трубопроводов с температурой выше температуры самовоспламенения обращаемых веществ;

— контроль и управление процессом осуществляется автоматически и дистанционно из операторной с использованием электронной системы приборов;

— по параметрам, определяющим взрывопожароопасность процесса, предусмотрена противоаварийная автоматическая система защиты, предупредительная сигнализация и аварийная система блокировок;

— на аппаратах, где возможно повышение давления до максимально допустимого, установлены предохранительные клапаны;

— предусмотрены система аварийного освобождения аппаратов от нефтепродукта в аварийную емкость и аварийный сброс на факел;

— на наружной установке, где расположено оборудование, в котором обращаются взрывопожароопасные вещества, предусмотрены датчики загазованности, сигналы от которых поступают в операторную.

Согласно ГОСТ 12.1.044-91 на установке предусмотрены следующие средства пожаротушения:

— первичные средства пожаротушения (огнетушители – пенные ОХП-10, корюшковые ОПУ-10,ОПС-10г, углекислотные ОУ-5,ОУ-8; кошмы, ящики с песком, лопаты и т.д.);

— стационарная система пенотушения открытой насосной;

— водяная оросительная система колонных аппаратов;

— лафетные стволы на лафетных вышках (4 вышки);

— пожарные краны в помещении компрессорной.

— для печей предусмотрена система паротушения, а вокруг печей предусмотрена паровая завеса, включающаяся автоматически по сигналу загазованности на наружной установке.

Для предотвращения несчастных случаев, заболеваний и отравлений, связанных с производством, весь обслуживающий персонал установки обеспечивается следующими средствами защиты:

— специальной одеждой – хлопчатобумажные костюмы, рукавицы комбинированные, защитные очки, ботинки кожаные, диэлектрические калоши и перчатки для машинистов;

— резиновый фартук, резиновые перчатки для работы с раствором МЭА;

— фильтрующими противогазами марки «БКФ», защищающими органы дыхания от кислых и органических паров и газов (ГОСТ 12.4.041–2001);

— шланговыми противогазами ПШ-1, ПШ-2 отвечающие требованиям ГОСТ 12.4.041-2001, комплектом масок и спасательным поясом с веревкой для работы при высоких концентрациях газа в воздухе (более 0,5 % об. или при концентрации кислорода менее 18 % об.) или при работе внутри емкостей, колонн, колодцев и при ямках;

— аварийным запасом фильтрующих противогазов;

— медицинской аптечкой с необходимым набором медикаментов для оказания пострадавшему первой медицинской помощи.

В качестве защитной одежды на установке согласно ГОСТ 12.4.016-75 и ГОСТ 12.4.017-76 предусматривается комплект специальной одежды: х/б костюм, кожаные ботинки, рукавицы, куртка и брюки ватные.

Для предотвращения возникновения зарядов статического электричества, защиты от вторичных проявлений молнии предусмотрены следующие мероприятия:

— каждая система аппаратов, трубопроводов, представляет собой на всем протяжении непрерывную электрическую цепь, которая в пределах установки заземляется не менее, чем в двух местах;

— для защиты зданий и сооружений от прямых ударов молний, соглас-но РД 34.21.122–87, а также ПУЭ аппараты с толщиной стенок более 4 мм присоединены к защитному заземлению не более 4 Ом;

— для защиты людей от поражения электрическим током на установке, в соответствии с ПУЭ, предусмотрено защитное заземление и зануление электрооборудования;

— при вводе жидкости в аппараты по возможности исключено разбрызгивание (ввод под слой жидкости);

— скорость движения продуктов в аппаратах и трубопроводах не превышает значений, предусмотренных проектом.

— при нормальной эксплуатации установки все оборудование и коммуникации находятся при избыточном давлении нефтепродуктов и их паров, что исключает возможность образования в аппаратах и трубопроводах взрывоопасных смесей. При остановке установки аппараты и трубопроводы заполняются техническим азотом.

Список использованных источников

1. Ахметов С.А. Технология глубокой переработки нефти и газа. — Уфа: Гилем, 2002. — 669 с.

2. Черножуков Н.И. Очистка и разделение нефтяного сырья, производство товарных нефтепродуктов. – М.: Химия, 1978. – 423с.

3. Магарил Р.З. Теоретические основы химических процессов переработки нефти. — М.: Химия, 1976. – 311 с.

4. Аспель Н.Б., Демкина Г.Г. Гидроочистка моторных топлив. – М.: Химия, 1977.- 158 с.

5. Танатаров М.А., Ахметшина М.Н. и др. Технологические расчеты установок переработки нефти.- М.: Химия, 1987г. – 351 с.

6. Багиров И.Т. Современные установки первичной переработки нефти.- М.: Химия, 1974. — 237 с.

7. Ластовкин Г.А. Справочник нефтепереработчика. — М., 1986. — 649 с.

8. Эрих В.Н. Химия и технология нефти и газа. — М.: Химия, 1977. — 424 с.

9. Каминский Э.Ф. Глубокая переработка нефти. — Уфа, 2001. — 385 с.

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Гидроочистка дизельного топлива
Раздел: Промышленность, производство
Тип: курсовая работа Добавлен 04:04:51 16 июня 2010 Похожие работы
Просмотров: 9474 Комментариев: 15 Оценило: 8 человек Средний балл: 4.4 Оценка: 4 Скачать