Меню Рубрики

Установка гидроочистки дизельных топлив регламент

Гидроочистка нефтепродуктов

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре.

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре.

Это гидрогенизационный процесс очистки сырья (от газа до масел и парафина), получаемого при первичной переработке и при термокаталитических процессах. Применяют для удаления из нефтепродуктов сернистых, азотистых, кислородных, металлорганических и непредельных соединений.

Гидроочистка нефтяных фракций направлена на снижение содержания сернистых, азотистых, кислородных, металлорганических и непредельных соединений в товарных нефтепродуктах.

Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов.

Наиболее распространённый процесс нефтепереработки.

Гидроочистке подвергаются следующие фракции нефти:

1. Бензиновые фракции (прямогонные и каталитического крекинга);

Гидроочистка бензиновых фракций

Различают гидроочистку прямогонных бензиновых фракций и фракций бензина каталитического крекинга.

1. Гидроочистка бензина прямогонных бензиновых фракций.

Направлен на получения гидроочищенных бензиновых фракций — сырья для риформинга.

Процесс гидроочистки бензиновых фракций основан на реакциях гидрогенолиза и частичной деструкции молекул в среде водородсодержащего газа ( ВСГ ), в результате чего органические соединения серы, азота, кислорода, хлора, металлов, содержащиеся в сырье, превращаются в сероводород, аммиак, воду, хлороводород и соответствующие углеводороды

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 850 845
Содержание серы %масс, 1,32 0,2
Йодное число г I2/100 г. 4,0 1,2
Температура застывания, °С −3 −1
Цетановое число 52 53

Параметры процесса: Давление 1,8-2 МПа; Температура 350-420 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-300 м³/м³; Катализатор — никель — молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,40
Фр. 240-360 (180-360)°С 100
ВСГ 0,40
Получено всего: 100,40
Углеводордные газы 0,6
Сероводород 1,2
Бензиновый отгон 1,30
Гидроочищенная фракция 96,9
Потери 0,4

Гидроочистка бензина каталитического крекинга.

Процесс направлен на снижение серы и диеновых углеводородов в товарных бензинах.

показатели сырье продукт
Плотность кг/м3, 759 751
Содержание серы %масс, 0,28 0,1
Йодное число г Br2/100 г. 52 41
Октановое число м.м. 81 80,5

Гидроочистка керосиновых фракций

Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закоксовывают форсунки двигателей.

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 785 778
Содержание серы %масс, 0,46 0,15
Йодное число г I2/100 г. 2,2 0,5
Температура вспышки, °С 30 30
Температура застывания, °С −62 −64

Параметры процесса: Давление 1,5-2,2 МПа; Температура 300-400 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-250 м³/м³; Катализатор -кобальт — молибденовый

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,25
Фр. 140-240 °C 100
ВСГ 0,25
Получено всего: 100,25
Углеводордные газы 0,65
Сероводород 0,2
Бензиновый отгон 1,10
Гидроочищенная фракция 97,9
Потери 0,4

Гидроочистка дизельного топлива

Гидроочистка дизельного топлива направлена на снижение содержания серы и полиароматических углеводоров.

Сернистые соединения сгорая образуют сернистый газ, который с водой образует сернистую кислоту -основной источник кислотных дождей.

Полиароматика снижает цетановое число

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 850 845
Содержание серы %масс, 1,32 0,2
Йодное число г I2/100 г. 4,0 1,2
Температура застывания, °С −3 −1
Цетановое число 52 53

Параметры процесса: Давление 1,8-2 МПа; Температура 350-420 °C; Содержание водорода в ВСГ — 75 %; Кратность циркуляции водорода 180-300 м³/м³; Катализатор-никель-молибденовый.

Типичный материальный баланс процесса:

Гидроочистка вакуумного газойля

Гидроочистка вакуумного газойля направлена на снижение содержания серы и полиароматических углеводородов.

Гидроочищенный газойль является сырьем для каталитического крекинга.

Сернистые соединения отравляют катализатор крекинга, а также ухудшают качество целевого продукта бензина каталитического крекинга (см. Гидроочистка бензиновых фракций).

Качество топлива до и после гидроочистки:

показатели сырье продукт
Плотность кг/м3, 920 885
Содержание серы %масс, 1,6 0,2
Бромное число г Br2/100 г. 0,25 0,05
Температура застывания, °С 27 34

Параметры процесса: Давление 8-9 МПа; Температура 370-410 °C; Содержание водорода в ВСГ — 99 %; Кратность циркуляции водорода >500 м³/м³; Катализатор -никель-молибденовый.

Типичный материальный баланс процесса:

Продукция Выход % на сырье
Взято всего: 100,65
Фр. 350-500 °C 100
ВСГ 0,65
Получено всего: 100,65
Углеводордные газы 1,5
Сероводород 1,5
Бензиновый отгон 1,30
Гидроочищенная фракция 86,75
Дизельная фракция 9,20
Потери 0,4

Гидроочистка нефтяных масел

Гидроочистка нефтяных масел необходима для осветления масел и придания им химической стойкости, антикоррозийности, экологичности.

Гидроочистка улучшает также индекс вязкости моторных масел.

Во многом гидроочистка нефтяных масел аналогична гидроочистке вакуумных газойлей.

источник

Гидроочистки дизельного топлива на установке

Ввиду жестких экологических требований к дизельному топливу практически на всех нефтеперерабатывающих заводах проводят гидроочистку дизельного топлива. На рис. 9 приведена принципиальная схема установки ЛЧ-24-2000 производительностью 2 млн. т в год по сырью.

Сырье смешивается с циркуляционным водородсодержащим газом ЛЧ-24-2000. Полученную смесь нагревают в сырьевом теплообменнике, а затем в трубчатой печи до температуры 360-400 о С и направляют в реактор Р-1. Реакционную смесь после реактора частично охлаждается в сырьевых теплообменниках (до 210-230 о С), а затем направляют в горячий сепаратор С-1, где отделяется водородсодержащий газ, который направляют в холодильник и затем в холодный сепаратор С-2. В холодном сепараторе водородсодержащий газ полностью отделяется от гидрогенизата и направляют в абсорбер К-2 на моноэтаноламиновую очистку от сероводорода. Очищенный водородсодержащий газ направляют в систему циркуляции, а отработанный моноэтаноламин на регенерацию.

Гидрогенизат из сепараторов С-1 и С-2 нагревают в теплообменнике и подают в стабилизационную колонну К-1. В низ колонны подают нагреты в печи П-1 отдувочный водородсодержащий газ для удаления легкокипящих углеводородов (бензиновой) фракции.

Рисунок – 9 Принципиальная технологическая схема установки гидроочистки дизельной фракции ЛЧ-24-2000.

I—сырье; II — свежий водородсодержащий газ; III — гидрогенизат; IV— бензиновая фракция; V — углеводородный газ на очистку; VI — отдувочный водородсодержащий газ; VII — регенерированный моноэтаноламин; VIII— отработанный моноэтаноламин на регенерацию.

Таким образом, в результате гидроочистки дизельной фракции получено, % масс.: 96.9 – гидроочищенное топливо; 1.3 – отгон; 0.6 – углеводородный газ; 1.2 – сероводород; 0.4 — потери. Всего 100.4% (с учетом использованного водорода).

Гидрокрекинг— это каталитический процесс под давлением водорода, предназначенный для получения из нефтяного сырья (имеющего более высокую молекулярную массу, чем получаемые целевые продукты) светлых нефтепродуктов (бензина, керосина, ди­зельного топлива), а также сжиженных газов С3 — С4.

Используя гидрокрекинг, можно получить широкий ассортимент нефтепродуктов практически из любого нефтяного сырья путем подбора соответствующих катализаторов и условий. Гидрокрекинг является одним из наиболее эффективных и гибких процессов нефтепере­работки.

Химические основы процесса. Качество получаемых продуктов гидрокрекинга определяются в основном свойства­ми катализатора (гидрирующей и кислотной активностью). Катализаторы гидрокрекинга могут иметь высокую гидрирующую и относительно низкую кислотную ак­тивность, а также относительно невысокую гидрирующую и высокую кислотную активность.

Превращения алканов. При использовании монофункциональных гидрирующих катализаторах (не обладающих кислотными свойствами), из линейных алканов получаются другие линейные алканы с меньшей молекулярной массой.

В тоже время при использовании кислотных и бифункциональных катализаторов алканы подвергаются крекингу и изомеризации по гетеролитическому механизму. На катализаторах с высокой кислотной и умеренной гидрирующей активностью гидрокрекинг идет с высокой скоростью, причем образуется много низкомолекулярных изоалканов.

Читайте также:  Установки для измельчения древесных отходов

Превращения циклоалканов. В присутствии гидрирую­щих катализаторов, незамещенные и метилзамещенные моноциклоалканы превращаются главным образом в алканы линейного и изостроения.

При использовании катализаторов с высокой кислотностьюи низкой гидри­рующей активностью превалируют реакции изомери­зации шестичленных циклоалканов в пятичленные. При этом происходит изменение поло­жения заместителей.

При гидрокрекинге циклоалканы с длинными алкильными боковыми цепями подвергаются в основном изо­меризации и распаду алкильных заместителей. При этом у бициклических циклоалканов раскрывается одно кольцо и они превращаются в моноциклические с высоким вы­ходом производных пентана.

Превращения алкенов. При гидрокрекинге на кислотных центрах ката­лизатора алкены изомеризуются и подверга­ются распаду по β-правилу. При этом на гид­рирующих центрах происходит насыщение алкенов— как исход­ных, так и образовавшихся при распаде. То есть из линейных алкенов при гидрокрекинге сначала образуются низкомолекулярные алекны линейного и изостроения, а затем они првращаются на гидрирующих центрах в низкомолекулярные алканы линейного и изостроения.

Превращения аренов. Впроцессе гидрокрекинга на катализаторах с высокой гидри­рующей и низкой кислотной активностью происходит гидрирование ареновых колец. При этом замещенные арены гидрируются труднее, чем незамещенные. Следует отметить, что наряду с последовательным гидрированием ароматических колец происходит расщепление образовавшихся насыщенных ко­лец и выделение алкилзамещенных аренов.

При использовании катализаторов с высокой кислотной и низкой гидрирую­щей активностью превращения аренов во многом аналогичны каталитическому крекингу. Незамещенные моно­циклические арены стабильны. При этом метил- и этилбензолы в основном вступают в реакции изомеризации по положению заместителей, а алкилбензолы с более длинными цепями деалкилируются. При отрыве алкильных заместителей образуются алкильные карбкатионы, которые после изомеризации подвергаются β-распаду и насыщаются по схеме, описанной для гидрокрекинга алканов, с образованием смеси низкомолекулярных алканов нормального и изостроения. Важно отметить, что в результате гидрокрекинга полициклических аренов происходит раскрытие ароматических колец и в значительном количестве образуются производные тетралина и индана.

Катализаторы процесса. Креки­рующую и изомеризующую функции кислотного компонента катализатора выполняют цеолиты, ок­сид алюминия, алюмосиликаты. При этом для усиления кислотности в ка­тализатор вводят галоген, а также оксидные добавки и др.

Металлы VIII группы (Pt, Pd, Ni, Co, Fe) , а также оксиды или сульфиды некоторых металлов VI группы (Мо, W) являются гидрирующим компонентом катализатора. Для повышения активности перед использованием металлы VIII группы восста­навливают водородом, а оксидные молибден- и вольфрамсодержащие катализаторы сульфидируют; кроме того, для активиро­вания катализаторов используют также разнообразные промо­торы (рений, родий, иридий и др.).

Важно отметить, что сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами.

Макрокинетика процесса.На первой стадии макрокинетика аналогична процессам, протекающим при гидроочистке. Одновременно происходит гид­рирование алкенов. Затем полициклические арены и циклоалканы гидрируются в заме­щенные моноциклические, а алканы подвергаются изомеризации и расщеплению.

Важно отметить, что температура проведения гидрокрекинга 300—425°С является оптимальная. Если понизить температуру реакции будут протекать с малой скоростью, а чрезмерное повышение температуры огра­ничивается термодинамическими факторами реакции гидриро­вания и увеличением скорости коксообразованияи повышением выхода легких фракций и газа. При давлении менее 5 МПа начинается интенсивное закоксовывание катализатора. Поэтому для тяжелых газойлей и тем более остаточного сырья для предотвращения обрат­ной реакции дегидрирования циклоалкановых колец в полицик­лических системах требуется более высокое давление водорода (до 20— 30 МПа).

Гидрокрекинг в промышленности. В промышленности широко используются следующие виды гидрогенизационных процессов:

— гидрокрекинг бензиновых фракций для получения сжиженного нефтяного газа, углеводородов С4—С5 изостроения, в нефтехимическом синтезе и при выработке легкого высокооктанового компонента автомобильных бензинов;

— гидрокрекинг средних дистиллятов (прямогонных и вторичного происхождения) с температурой кипения 200—350 0 С для получения бензинов и реактивных топлив;

Читайте также:  Установок для брикетирования торфа

гидрокрекинг атмосферного и вакуумного газойлей, газойлей коксования и каталитического крекинга для получения бензинов, реактивного и дизельного топлив;

— гидрокрекинг высококипящих нефтяных дистиллятов для получения реактивных и дизельных топлив, смазочных масел, малосернистых котельных топлив и сырья каталитического крекинга;

селективный гидрокрекинг бензинов с целью повышения октановых чисел;

селективный гидрокрекинг реактивных и дизельных топлив с целью сни­жения температуры застывания;

селективный гидрокрекинг масляных фракций — для улуч­шения цвета, стабильности и снижения температуры засты­вания;

— гидродеароматизация и гидродепарафинизация.

Гидрокрекинг вакуумного дистиллята на установки 68-2к

Как было сказано выше, гидрокрекинг является эффективным и исключительно гибким ка­талитическим процессом. Этот процесс позволяет оптимально решить проблему глубокой переработки вакуумных дистиллятов, в результате, которого получается различные виды моторных топлив, соответствующих современ­ным требованиям. На рис. 10 приведена принципиальная схема установки одноступенчатого гидрокрекинга 68-2к производительностью 1 млн.т по дизельному топливу и 0.63 млн. т по реактивному топливу.

Эти установки работают на нескольких НПЗ России применительно к переработке вакуумных газойлей 350-500°С с содержанием металлов не более 2 м.д. и под давлением около 15МПа.

Для проведения одноступенчатого процесса гидрокрекинга вакуумных дистиллятов используют реактор, имеющий несколько слоев (до пяти ) катализаторов нескольких типов. При этом градиент температур в каждом слое не должен превышать 25°С, между отдельными слоями катализатор. Для выполнения этого условия предусмот­рен ввод охлаждающего водородсодержащего газа между слоями катализатора через контактно распределительные устройства, обеспечивающие тепло- и массообмен между газом и реагирующим потоком над слоем катализатора.

Смесь сырья (с пределами выкипания 350-500°С) с рециркулируемым гидрокрекинг-остаток и водородсодержащим газом, нагревают сначала в теплообменниках, затем в печи П-1 до температуры реакции (300—425°С является оптимальная) и подаютвреакторы Р-1.

Реакционную смесь, входящую и реактора, охлаждают в сырьевых теплообменниках, затем в воздушных холодильниках и с температурой 45-55°С направляют в сепаратор высокого давления С-1.

Рисунок – 10Принципиальная технологическая схема установки одноступенчатого гидрокрекинга 68-2к.

I — сырье; II — водородсодержащий газ; III — дизельное топливо; IV — легкий бензин; V — тяжелый бензин; VI — тяжелый газойль; VII — углеводородные газы на ГФУ; VIII — газы отдува; IX — регенерированный раствор моноэтаноламин; X — отработанный моноэтаноламин на регене­рацию; XI — водяной пар

В сепараторе происходит отделение водородсодержащего газа от нестабильного гидрогенизата. Водородсодержащий газ направляют в абсорбер К-4, где происходит его очистка от сероводорода моноэталамином. Очищенный водородсодержащий газ компрессором подают на циркуляцию. Отработанный моноэтаноламин направляют на регенерацию. Нестабильный гидрогенизат через редукционный клапан направляют в сепаратор низкго давления С-2. В сепараторе выделяют часть углеводородных газов от гидрогенизата. Затем гидрогенезат подают через теплообменники в стабилизационную колоннуК-1 для отгонки углеводородных газов и легкого бензина. Затем стабильный гидрогенизат разделяют в атмосферной колонне К-2 на тяжелый бензин и дизель­ную фракцию. Эту фракция отбирают через отпарную колонну К-3, а кубовую жидкость ( фракцию >360 °С) частично используют как рециркулят, а основное количество выводят с установки. Кубовая жидкость может быть использована как сырье для пиролиза, в качестве основы смазочных масел и т. д.

Таким образом, в результате гидрокрекинга фракции 350-500°С получено, % масс.: 88.03 – дизельное топливо; 1.28 – легкий бензин; 1.19 – углеводородный газ; 3.03 – сероводород; 8.53 – тяжелый бензин. Всего 102.06% (с учетом использованного водорода).

1. Требования, предъявляемые к сырью гидрокрекинга.

2. Характеристика продукции гидрорекинга..

3. Технологическая схема установки гидрорекинга..

4. Характеристика сырья и продукции гидроочистки.

5. Технологическая схема установки гидроочистки

6. Катализаторы гидроочистки и гидрокрекинга.

источник

Добавить комментарий