Меню Рубрики

Установка гпа что это такое

ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ

ЧТО ЭТО ТАКОЕ?

Все современные типы ГПА оснащены системами автоматики, обеспечивающими пуск и работу агрегата в автоматическом режиме, имеют защиту при возникновении аварийных режимов, сигнализацию о неисправностях, автоматическое поддержание заданной температуры и давления масла при аварийной остановке агрегата и другие конструктивные особенности, обеспечивающие надежность эксплуатации.

Газоперекачивающие агрегаты (ГПА) — это сложные энергетические установки, предназначенные для компримирования природного газа, поступающего на компрессорную станцию по магистральному газопроводу .

ДЛЯ ЧЕГО ОНИ НУЖНЫ?

Задача газоперекачивающих агрегатов на компрессорных станциях — повышение давления голубого топлива до заданной величины. Для транспортировки газа по магистральным газопроводам применяют ГПА с газотурбинными авиационными и судовыми, а также электрическими двигателями. Наиболее распространённым приводом является газотурбинный.

Рабочий процесс газотурбинных агрегатов осуществляется в несколько этапов. Перекачиваемый газ по газопроводу через всасывающий трубопровод ГПА поступает в центробежный нагнетатель. Здесь происходит компримирование газа и его подача в нагнетательный коллектор компрессорной станции. Приводом механизма сжатия газа как раз является газотурбинный двигатель, использующий в качестве топлива очищенный и приведенный к рабочему давлению перекачиваемый газ. Очищенный атмосферный воздух поступает на вход газотурбинного двигателя, снабженного традиционными техническими средствами подготовки и сжигания топливовоздушной смеси. Продукты сгорания, имеющие высокую температуру и давление и, следовательно, обладающие большой энергией, формируют газовый поток, энергия которого, в конечном итоге, преобразуется в механическую работу. Именно она и используется для приведения в действие центробежного нагнетателя. При движении газового потока через проточную часть газотурбинного двигателя уменьшается его энергия, и снижаются температура и давление. После этого отработанный газ через выхлопную систему выходит в атмосферу.

Конструкция агрегатов и уровень их автоматизации обеспечивают работоспособность ГПА без постоянного присутствия персонала. Агрегаты могут работать в климатических зонах с температурой окружающего воздуха от — 55 до + 45 градусов по Цельсию.

Устройство газоперекачивающего агрегата с авиаприводом

КАК ОНИ УСТРОЕНЫ?

Основные элементы газоперекачивающего оборудования — это нагнетатель природного газа (компрессор) и его привод, всасывающее и выхлопное устройства, маслосистема, топливовоздушные коммуникации, автоматика и вспомогательное оборудование.

Классификацию ГПА осложняет многообразие конструкций установок. Однако их можно сгруппировать по функциональному признаку, принципу действия и типу привода.
Функциональный признак определяет область применения агрегатов — на головных, линейных или дожимных компрессорных станциях . Принцип действия ГПА — объемный или динамический — важен при определении производительности КС . По типу привода агрегаты подразделяются на установки с использованием авиационных, электрических и судовых двигателей.

КАК У НАС?

В ООО «Газпром трансгаз Ставрополь» эксплуатируется 12 компрессорных станций с 10 типами газоперекачивающих агрегатов. ГПА оснащены различными видами двигателей: газотурбинными авиационными и судовыми, а также электрическими. Всего в работе на компрессорных станциях Общества 113 газотурбинных установок. Их общая установленная мощность более 1000 МВт. Большая часть ГПА оснащена авиационными двигателями. Мощность агрегатов варьируется от 4 до 18 МВт. Самые мощные ГПА эксплуатируются на ДКС-1.

источник

Газоперекачивающий агрегат (ГПА)

Газоперекачивающий агрегат (ГПА) — предназначен для компримирования природного газа на компрессорных станциях

ГПА состоит из нагнетателя природного газа, привода нагнетателя, всасывающего и выхлопного устройств (в случае газотурбинного привода), систем автоматики, маслосистемы, топливовоздушных и масляных коммуникаций и вспомогательного оборудования.

ГПА различают: по типу нагнетателей — поршневые газомоторные компрессоры (газомотокомпрессоры) и ГПА с центробежными нагнетателями; по типу привода — ГПА с газовым двигателем внутреннего сгорания (газомоторные двигатели), с газотурбинным приводом, с электроприводом.

ГПА с газотурбинным приводом, в свою очередь, подразделяются на агрегаты со стационарной газотурбинной установкой и с приводами от газотурбинных двигателей авиационного и судового типов.

Поршневой газомоторный компрессор — ГПА, состоит из двухтактного или четырехтактного газомоторного двигателя (или электродвигателя) и непосредственно соединённого с ним горизонтального поршневого компрессора. Подразделяются на агрегаты низкого, среднего и высокого давлений.

Компрессоры низкого давления (0,3-2 МПа) используются главным образом на головных компрессорных станциях при транспортировке газа с истощённых месторождений и нефтяного газа с промыслов.

Применяют их также на компрессорных станциях для подачи низконапорных искусственных горючих газов.

Компрессоры среднего давления (2-5 МПа) работают в основном на промежуточных компрессорных станциях для увеличения пропускной способности газопроводов. Агрегаты высокого давления (9,8-12 МПа) устанавливают на компрессорных станциях для закачки газа в подземные хранилища.

Газомотокомпрессоры высокоэффективны в условиях переменных мощностей и степеней сжатия свыше 1,3. Основные достоинства этих ГПА: надёжность в эксплуатации; длительный срок службы; способность работать в широком диапазоне давлений; возможность регулирования производительности за счёт изменения оборотов агрегатов и объёма т.н. вредного пространства в компрессорных цилиндрах, а также возможность создания больших давлений в них. Кпд современных газомотокомпрессоров до 40%. В CCCP были наиболее распространены агрегаты мощностью 221-5510 кВт, за рубежом — 368 и 8100 кВт.

ГПА с центробежным нагнетателем широко применялись в CCCP и за рубежом на магистральных газопроводах в качестве основных агрегатов; их также используют для работы в качестве первой ступени сжатия на подземных хранилищах. Различают центробежные нагнетатели одноступенчатые (неполнонапорные) со степенью сжатия 1,23-1,25 и двухступенчатые (полнонапорные) -1,45-1,7. Центробежные нагнетатели характеризуются значительно большей, чем у поршневых компрессоров, производительностью (12-40 млн. м 3 /сутки).

В них отсутствуют внутренние трущиеся части, требующие смазки (за исключением подшипников), создаётся равномерный (без пульсации) поток газа.

Для их установки (в связи с малым весом и габаритами, а также уравновешенностью вращающихся частей) требуются меньшие помещения и сооружаются облегчённые фундаменты. При применении ГПА с центробежными нагнетателями вследствие их большой производительности упрощается технологическая схема компрессорных станций, уменьшается количество запорной арматуры и др.

Недостаток неполнонапорных центробежных нагнетателей — необходимость включения в работу 2 х последовательно соединённых агрегатов для достижения степени сжатия газа 1,45-1,5. Это приводит к увеличенному расходу топливного газа в газотурбинной установке. Кпд агрегатов с центробежными нагнетателями до 29%, с регенератором тепла до 35%. Приводом ГПА служит газотурбинная установка или электродвигатель. В CCCP изготовливались ГПА с газотурбинным приводом мощностью 6, 10, 16 и 25 тысяч кВт.

Газотурбинные установки авиационного и судового типов отличаются (от стационарных) небольшими габаритами и массой, что позволяет осуществлять их окончательную сборку на заводах-изготовителях и поставлять на компрессорные станции в готовом виде. ГПА с приводом от установок авиационного типа выполняются в блочно-контейнерном варианте . Поставляются на компрессорные станции со встроенными в них системами пожаротушения и взрывобезопасности. В качестве электропривода в ГПА используют асинхронные двигатели мощностью 4500 кВт и синхронные от 4000 до 12500 кВт. Наибольшая эффективность применения ГПА с электроприводом достигается при расположении компрессорных станций не далее 300 км от линии электропередач.

Читайте также:  Установка и настройка wine для debian

Для ГПА всех типов созданы системы автоматики, обеспечивающие пуск и работу агрегата в автоматическом режиме, защиту при возникновении аварийных режимов, сигнализацию о неисправностях и действии защит, контроль объёмной производительности нагнетателя, автоматическое поддержание заданной температуры и давления масла при аварийной остановке агрегата и др.

Каждый тип компрессоров имеет индивидуальные особенности как конструктивного, так и функционального характера. Именно поэтому, когда вы выбираете компрессор для ГПА или дожимной компрессорной установки, важно в полной мере учитывать условия его работы и требования, предъявляемые к его техническим характеристикам.

Наибольшее значение имеют следующие параметры:

  • объем перекачиваемого газа;
  • давление и температура газа на входе/выходе;
  • химический состав и влажность перекачиваемого газа;
  • характеристики места инсталляции ГПА (максимальная и минимальная температура воздуха, высота над уровнем моря);
  • тип используемого привода;
  • предполагаемая годовая наработка в часах;
  • класс исполнения (взрывозащищенный, сейсмостойкий и др.);
  • допустимое содержание масла в газе на выходе;
  • тип автоматики (электрическая или пневматическая).

Определенные виды компрессоров лучше использовать в следующих условиях:

  • Компрессор поршневой — высокие степени повышения давления и высокие абсолютные давления, переменные режимы, сравнительно небольшие потоки и мощности (до 6 МВт).
  • Компрессор винтовой — высокие степени повышения давления при небольших абсолютных давлениях и небольших перепадах давления, переменные режимы, сравнительно небольшие потоки и мощности (до 2000 кВт).
  • Компрессор центробежный — большие потоки и мощности, предпочтительно небольшие степени повышения давления и невысокие абсолютные давления, постоянные режимы.

ГПА различают по типу привода — ГПА c газовым двигателем внутреннего сгорания (газомоторные двигатели), c газотурбинным приводом, c электроприводом.

источник

Все о транспорте газа

Газотурбинная установка (ГТУ) — машина, преобразующая тепловую энергию в механическую и состоящая из одного или нескольких компрессоров (чаще осевого типа), теплового устройства для нагрева рабочего тела, одной или нескольких турбин, системы регулирования и необходимого вспомогательною оборудования (рис. 1). Полезная мощность в ГТУ совершается за счет внутренней энергии газового потока, поступаюшего с большой скоростью на лопатки ротора турбины.

При работе турбины атмосферный воздух засасывается в осевой компрессор 3, сжимается и поступает в камеру сгорания 1. Одновременно часть воздуха направляется в кольцевое пространство между стенкой и корпусом камеры сгорания. Внутрь камеры сгорания непрерывно поступает топливо, сгорающее при постоянном давлении. Поэтому из камеры сгорания непрерывной струей выходят продукты сгорания, направляющиеся в сопла. В соплах энергия давления в результате расширения газа преобразуется в кинетическую энергию газовой струи, поступающей на лопатки турбины. Воздух, омывающий жаровую трубу камеры сгорания, охлаждает ее и, смешиваясь с продуктами сгорания, выходящими из жаровой трубы, также поступает в турбину 2. Примешивание этой доли воздуха к продуктам сгорания, имеющим высокую температуру — около 1800-2000 °С, необходимо для снижения температуры газов до величины, безопасной для металла лопаток газовой турбины. Поэтому общее количество воздуха, сжимаемого втурбокомпрессоре 3, значительно (в 6 раз и более) превышает количество воздуха, теоретически необходимого для сгорания топлива.

Общее представление о принципах работы турбины можно получить при рассмотрении устройства простейшей активной турбины (рис. 2).

На валу 1 насажен диск 2, по ободу которого на равных расстояниях закреплены рабочие лопатки . Слева от рабочих лопаток в корпусе 5 размешено сопло 4, представляющее собой криволинейный канал плав­ного очертания. При постоянном расходе газа за счет сужения канала в пределах сопла скорость потока возрастает, а давление уменьшается от р до р1 . Следовательно, в пределах сопла потенциальная энергия потока превращается в кинетическую.

При выходе из сопла поток газа попадает на рабочие лопатки под та­ким углом наклона a 1 , который обеспечивает плавное скольжение по­тока в межлопаточных каналах. При движении потока вдоль изогнутого контура рабочих лопаток возникают элементарные силы, результирую­щая которых представляет собой усилие, вращающее лопатки, т. е. ме­ханическую работу. Механическая работа потокагаза на лопатках опре­деляется только вращающим усилием и частотой вращения. При враща­тельном движении рабочих лопаток скорость газа при выходе из них меньше скорости на входе. Это означает, что на рабочих лопатках проис­ходит второе превращение энергии — кинетическая энергия потока газа частично переходит в механическую энергию вращения лопаток.

Турбины, в которых поток газа движется параллельно валу, назы­вают аксиальными, а турбины, в которых поток газа движется перпен­дикулярно к валу, — радиальными. Заводы выпускают в основном аксиальные газовые турбины.

Смежные ряды сопел и рабочих лопаток образуют одну ступень давления. Поэтому турбину такого типа называют одноступенчатой. Диаметр диска 2, измеренный по средней высоте рабочих лопаток d , называют расчетным диаметром ступени давления. Между вращающими­ся и неподвижными деталями всегда имеются зазоры (см. рис. 2) в ра­диальном и аксиальном направлениях.

На графике изменения давления и абсолютных скоростей газа в ак­тивной одноступенчатой турбине (см. рис. 2) видно, что давление падает только в соплах, где и происходит увеличение абсолютной скорости по­тока с с до с1 . На рабочих лопатках, в зазоре между соплами и лопат­ками давление практически постоянно. Отдельные ступени или турбины в целом, в которых давление потока газа на рабочих лопатках остается постоянным, называются активными. Те же ступени или турбины в це­лом, в которых давление меняется и в соплах и на рабочих лопатках, называются реактивными.

При однократном расширении в соплах одноступенчатой гурбины скоростью газа при входе его на рабочие лопатки оказывается настолько большой, что на одном ряду лопаток достаточно полно использовать ее нельзя. Поэтому одноступенчатые турбины применяют в основном для привода различных вспомогательных устройств.

На рис.3 в продольном разрезе и развертке по окружности проточ­ной части дана схема активной турбины с двумя ступенями скорости. (Обозначения 1 соответствуют обозначениям на рис. 2). Газ из перво­го ряда рабочих лопаток поступает в неподвижные напщие ло­патки 7. Эти лопатки сходны по профилю с рабочими лопатками, но изогнуты в противоположную сторону. Направляющие лопатки крепят в корпусе 5 турбины против сопел. Далее газ поступает на второй ряд рабочих лопаток 6. Такой двукратный пропуск потока по рабочим лопаткам позволяет уменьшить потерю кинетической энергии с выходной скоростью и этим увеличить к.п.д. На графике изменения давления и абсолютных скоростей газа по ступеням турбины (см. рис. 3) видно, что расширение газа происходит только в соплах, т. е. эта турбина является активной. Поэтому абсолютная скорость потока газа достигает максимального значения с 1 , при выходе из сопел. Далее поток газа попадает на рабочие лопатки первой ступени скорости, где совершает работу. Абсолютная скорость при выходе с 2 еще довольно велика. Поток далее попадает в направляющие лопатки, где его абсолютная скорость несколько уменьшается от с2 до с` 1 за счет потерь, а затем газ поступает нa рабочие лопатки второй ступени Здесь совершается дополнительная работа, соответствующая уменьшению абсолютной скорости от c` 1 до с` 2 . Во всех зазорах давление принимается постоянным.

Читайте также:  Установка изготовления топливных брикетов из опилок

Наклон линии абсолютной скорости на рабочих лопатках первой и второй ступеней и на направляющих лопатках различен. Это связано с тем, что на рабочих лопатках скорость уменьшается и при превращении в механическую работу и ввиду потерь, между тем как в направляющих лопатках уменьшение скорости происходит только за счет потерь.

Рабочие лопатки ступеней скорости для уменьшения стоимости и упрощения конструкции почти всегда ставят на общем диске, который называют диском Кертиса. Принцип работы реактивных и комбинированных турбин.

В реальных ГТУ, эксплуатируемых на компрессорных станциях, используют в основном комбинированные ступени, т.е. ступени с определенной степенью реакции. Поток газа воздействует на рабочие лопатки реактивной турбины не только но причине изменения скорости, приобретенной в соплах (активное усилие), но также и вследствие реакции потока газа. Это воздействие возникает в них при уменьшении давления и увеличении за счет этого относительной скорости (реактивное усилие) . Реактивное усилие аналогично отдаче ружья при выстреле.

источник

Назначение ГПА и его компоновка на КС. Основные узлы агрегата, их назначение и устройство.

Газоперекачивающий агрегат — сложная энергетическая установка, предназначенная для компремирования природного газа, поступающего на КС по магистральному газопроводу.

На рис. 2.25 приведена принципиальная схема ГПА с газотурбинным приводом, где показаны все основные узлы, входящие в агрегат:

Рис. 3.25. Приниципиальная схема компоновки ГПА:

— воздух до осевого компрессора; — воздух до рекуператора; — воздух после рекуператора; — выхлопные газы; — пусковой газ; — топливный газ; — импульсный газ; — технологический газ; — масло.

1. Воздухозаборная камера (ВЗК) нужна для подготовки циклового воздуха, поступающего из атмосферы на вход осевого компрессора. На разных типах ГПА воздухозаборные камеры имеют различные конструкции, но все предназначены для очистки поступающего воздуха и понижения уровня шума в районе ВЗК.

2. Пусковое устройство (турбодетандер, воздушный или электрический стартер) необходимо для первоначального раскручивания осевого компрессора (ОК) и турбины высокого давления (ТВД) в момент пуска ГПА.

3. Осевой компрессор предназначен для подачи необходимого количества воздуха в камеру сгорания газотурбинной установки.

4. Турбина высокого давления служит приводом осевого компрессора и находится с ним на одном валу.

5. Турбина низкого давления (ТНД) служит для привода центробежного нагнетателя.

6. Нагнетатель природного газа представляет собой центробежный газовый компрессор без наличия промежуточного охлаждения и предназначен для компремирования природного газа.

8. Регенератор (воздухоподогреватель) представляет собой теплообменный аппарат для повышения температуры воздуха, поступающего после ОК в камеру сгорания (КС), и тем самым снижения расхода топливного газа по агрегату.

9. Камера сгорания предназначена для сжигания топливного газа в потоке воздуха и получения продуктов сгорания с расчетными параметрами (давление, температура) на входе в ТВД.

10. Блок подготовки пускового и топливного газа представляет собой комплекс устройств, при помощи которых часть газа, отбираемого из магистрального газопровода, очищается от механических примесей и влаги, доводится до необходимых параметров, обусловленных требованиями эксплуатации газоперекачивающих агрегатов.

11. Аппараты воздушного охлаждения масла предназначены для охлаждения смазочного масла после подшипников турбин и нагнетателя.

Кроме того, каждый ГПА снабжен системой регулирования основных параметров агрегата, системами агрегатной автоматики, автоматического пожаротушения, обнаружения загазованности помещения и др.

Рассмотрим компоновку и общий вид газоперекачивающего агрегата на примере ГПА-Ц-16 (Рис. 1.15). Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 5,5 — 7,5 МПа.

Газоперекачивающий агрегат полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до + 45 градусов Цельсия.

Агрегат состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации (Рис. 1.16).

• турбоблок с газотурбинным двигателем НК-16СТ и центробежным нагнетателем НЦ-16;

• воздухоочистительное устройство (ВОУ);

• шумоглушитель всасывающего тракта;

• два блока маслоохладителей;

• шумоглушители выхлопного тракта;

• блок фильтров топливного газа;

• система подогрева циклового воздуха;

• система пожаротушения; система обогрева контейнера.

Турбоблок включает в себя следующие сборочные единицы: контейнер; приводной двигатель НК-16СТ, установленный на подмоторной раме; выхлопную улитку; переходник; нагнетатель и муфту, передающую вращение от свободной турбины двигателя к нагнетателю. Кроме того, в турбоблоке размещены отдельные сборочные единицы маслосистемы, системы обогрева, автоматического пожаротушения, обогрева циклового воздуха и автоматического управления агрегатом.

Контейнер при помощи герметичной перегородки разделен на два изолированных помещения: отсек двигателя и отсек нагнетателя. Отсеки представляют собой сварные каркасы из профильного проката с закрепленными на них панелями. В отсеках имеются двери и расположены кронштейны для крепления навесного оборудования.

Для проведения ремонтных и регламентных работ в отсеке нагнетателя установлен ручной передвижной кран грузоподъемностью 5 тонн и ручная таль грузоподъемностью 1 тонна.

Улитка предназначена для плавного торможения и поворота на 90° потока выхлопных газов приводного двигателя с последующим выбросом их через выхлопное устройство в атмосферу.

Читайте также:  Установка git server centos


Муфта предназначена для передачи крутящего момента от силовой турбины двигателя к нагнетателю. Состоит из четырех основных частей: упругой муфты со стороны ротора силовой турбины; промежуточного вала; зубчатой муфты со стороны ротора нагнетателя; кожуха муфты. Конструкция муфты позволяет компенсировать радиальные и осевые смещения, возникающие от тепловых расширений роторов и от неточности центровки при монтаже, а также гасить возможные резонансные колебания, возникающие в процессе работы агрегата.

Воздухоочистительное устройство предназначено для очистки от пыли и других механических включений циклового воздуха, поступающего из атмосферы в компрессор двигателя. Воздухоочистительное устройство (ВОУ) рассчитано на совместную работу с системой подогрева циклового воздуха, работающей по принципу подмешивания горячих выхлопных газов к всасываемому атмосферному воздуху на входе ВОУ.

ВОУ состоит из камеры, фильтрующих элементов, короба отсоса пыли, вентиляторов отсоса пыли, патрубков, настила, байпасных клапанов и решеток для подогрева циклового воздуха.

Очистка воздуха производится в инерционно-жалюзийных сепараторах. Запыленный атмосферный воздух засасывается в фильтрующие элементы через прямоугольные окна в стенках камеры ВОУ. За счет резкого поворота потока в фильтрующих элементах происходит сепарационное разделение воздушного потока. Поток очищенного воздуха, изменив направление в вертикальных листах фильтрующих элементов, поступает через шумоглушители в осевой компрессор двигателя.

На задней стенке камеры ВОУ размещены два байпасных клапана (БК) и герметично закрывающаяся дверь.

Открываются клапаны автоматически при достижении разрежения в камере ВОУ 800 Па. При снижении разрежения до 500 Па клапаны закрываются.

Камера всасывания служит для направления очищенного в ВОУ атмосферного воздуха к осевому компрессору двигателя. Всасывающая камера состоит из двух основных частей: камеры и рамы, собираемых при монтаже.

Камера представляет собой цельносварной каркас, выполненный из профильного проката. В проемы каркаса камеры установлен шумоглушитель, представляющий собой специальные щиты, заполненные теплоизоляционными звукопоглощающими матами из супертонкого базальтового волокна. Внутренняя сторона щитов обшита перфорированным стальным листом.

В центральных проемах задней и передней стенок установлены ворота, которые служат для закатки и выкатки двигателя при его замене.

На внутренних воротах камеры закреплена лемниската, обеспечивающая направленный поток воздуха к двигателю.

Рама представляет собой цельносварную конструкцию прямоугольной формы, на которую при монтаже устанавливается камера.

Промежуточный блок предназначен для формирования равномерного потока воздуха непосредственно перед входным направляющим аппаратом осевого компрессора двигателя.

Выхлопное устройство с шумоглушением служит для выброса выхлопных газов и снижения шума выхлопа двигателя.

Устройство состоит из диффузора, проставки и шумоглушителя. Выхлопное устройство поддерживается опорой.

Диффузор предназначен для плавного снижения скорости выхлопных газов и представляет собой цельносварную конструкцию, состоящую из каркаса, внутренние проемы которого заполнены звукопоглощающим материалом.

Проставка представляет собой сварную конструкцию и служит для отбора выхлопных газов, идущих на обогрев всасывающего тракта.

Блок маслоохладителей предназначен для охлаждения масла, циркулирующего в системах смазки и уплотнения агрегата.

Блок маслоохладителей работает следующим образом: атмосферный воздух вентиляторами блока засасывается и продувается через теплообменные секции, отбирая тепло с поверхности оребрения труб, а затем поступает во внутрь контейнера и через жалюзи выбрасывается в атмосферу. Открытие жалюзи происходит за счет наличия избыточного давления (поддува) в объеме контейнера блока маслоохладителей, создаваемого вентиляторами. Поддержание требуемой температуры масла происходит автоматически при помощи регуляторов температуры и за счет включения по очереди вентиляторов.

Блок вентиляции предназначен для размещения оборудования, обеспечивающего вентиляцию отсека двигателя и просос атмосферного воздуха через маслоохладители при отсутствии электроэнергии.

В нормальном режиме работы блока вентиляции воздух из атмосферы засасывается осевыми вентиляторами, проходит через маслоохладители и через жалюзи в блоках вентиляции и маслоохладителей выбрасывается наружу. Жалюзи открыты под воздействием избыточного давления внутри блоков. Заслонки в этом случае закрыты и отсекают блок вентиляция от всасывающего тракта двигателя. Центробежный вентилятор забирает очищенный после ВОУ воздух из шумоглушителя и подает его в отсек двигателя.

В аварийном режиме работы заслонки поворачиваются на 90° и блок вентиляции соединяется со всасывающим трактом двигателя. Воздух из атмосферы за счет разрежения, создаваемого двигателем в блоках вентиляции и маслоохладителей, просасывается через вентиляторные отверстия, через аппараты воздушного охлаждения масла и затем через открытые заслонки в блоке вентиляции поступает на вход в двигатель. Жалюзи в блоках маслоохладителей и вентиляции при этом закрыты.

Блок маслоагрегатов предназначен для размещения маслоагрегатов и арматуры маслосистемы, что позволяет производить их обслуживание при работе ГПА.

Блок автоматики служит для размещения приборных щитов и другого оборудования систем автоматического управления ГПА.

Блок фильтров топливного газа предназначен для очистки газа от возможных загрязнений в трубопроводах между станционным блоком подготовки топливного и пускового газа и входа в камеру сгорания двигателя. В блоке установлено два фильтра, обвязка которых позволяет включать в работу фильтры поочередно или оба одновременно.

Блок пожаротушения служит для размещения установки автоматического газового пожаротушения, вытяжного вентилятора, арматуры и других устройств. Подача огнегасящего вещества производится через штуцера в боковых стенках отсека.

Автоматическая система пожаротушения обеспечивает противопожарную защиту отсеков двигателя и нагнетателя за счет своевременного обнаружения очага возгорания и последующего подавления его путем автоматической подачи огнегасящего вещества — хладона 114В2.

Полный заряд хладона составляет 480 кг, при этом рабочий и резервный заряды — по 240 кг. Давление хладона в баллонах при температуре 25°С составляет 12,5 МПа.

Для обнаружения пожара и выдачи команды в систему управления в отсеках двигателя и нагнетателя установлены соответствующие датчики.

Система обогрева предназначена для разогрева агрегата в холодное время года перед пуском и для обеспечения нормальных климатических условий при работе приборов и оборудования, установленных в отсеках контейнера. Обогрев осуществляется горячим воздухом, отбираемым от работающего двигателя за компрессором высокого давления (температура 280°С).

Система подогрева циклового воздуха предназначена для предотвращения обледенения всасывающего тракта двигателя в диапазоне температур атмосферного воздуха от +7 до -10 °С. Подогрев циклового воздуха осуществляется подачей на вход воздухоочистительного устройства горячих газов из выхлопной шахты агрегата.

источник

Добавить комментарий

Adblock
detector