Меню Рубрики

Установка ионной имплантации везувий

Раздел 8.1

Оборудование для ионной имплантации.

Преимущества ионного легирования перед термодиффузией (900-1300 °С)

1) Легирование атомами любых веществ независимо от предельной растворимости при любых температурах.

2) Создание в подложке скрытого слоя на некотором состоянии от поверхности подложки.

3) Получение неглубоких (до 1000 А (ангстрем)) легированных слоев в том числе ступенчатых.

4) Легирование подложки через защитный слой.

5) Легирование с высокой точностью глубиной и профилем распределение примесей в подложке путём изменения энергии и дозы вводимых ионов примесей.

К недостатком ионной имплантации можно отнести сложность оборудования и остаточные радиационные дефекты в подложке.

Установки ионной имплантации разделяют на три основных типа:

— больших доз с интенсивными ионными пучками

В установках малых и средних доз интенсивность тока ионного пучка составляют от

единиц микроампер до 500-800 мкА.

В установках больших доз (сильноточных) — от 1 до 200 мА.

Оба типа установок работают в области энергий от 30 до 200 кэВ. Максимальная энергия высокоэнергетических установок может превышать 1 МэВ.

Установки ионной имплантации обычно состоят из источника ионов 1, магнитного масс-сепаратора 3, систем ускорения 6 и сканирования 8 пучка, приемной камеры 9 и вакуумной системы. Основным отличием этих установок является потенциал приёмной камеры, масс-сепаратора и источника ионов относительно друг друга.

Компоновки установок ионной имплантации: а — малых и средних доз, б — с разделением ионов по массам после ускорения, в — сильноточных,

г — высокоэнергетических, д — больших доз; 1 — источник ионов, 2 — система вытягивания и первичного формирования пучка, 3 — магнитный масс-сепаратор, 4 — высоковольтный модуль, 5 — регулируемая диафрагма, б — система ускорения, 7 — фокусирующая линза, 8 -пластины электростатического сканирования и отклонения пучка, 9 — приемная камера

Наиболее широко используется установка малых и средних доз, энергия ионов которой не превышает 200 кэВ, а приемная камера находится под потенциалом земли и магнитная сепарация осуществляется до полного ускорения пучка. Энергия ионов в сепараторе низкая, габариты небольшие, малые магниты, маломощные источники питания электромагнитного сепаратора и ускорительной системы. Установку с разделением ионов по массам после ускорения обычно используют для исследовательских целей. Высокий ток нагрузки высоковольтного источника питания, а также увеличения вторичной электронной эмиссии, повышает опасность облучения рентгеновскими лучами.

— достоинством сильноточной установки является простая система управления и питания источника ионов и электромагнита, малое количество потребляемой энергии высокого напряжения, а недостатком — трудный доступ к приёмной камере, высокий потенциал на ней и сложность автоматизации загрузки — выгрузки пластин.

-Высокоэнергетическая установка позволяет, приложив высокий потенциал к приемной камере, получить сверхвысокую (до 500 кэВ) энергию ионов. При дальнейшем увеличении энергии ионов возникает сильное рентгеновское излучение.

-В установке больших доз источник ионов находится под высоким напряжением, полное их ускорение в системе первичного формирования и большие токи пучка, а также даёт возможность полной автоматизации всех режимов работы.

В качестве рабочих веществ в разрядную камеру источника ионов подают такие газы, как водород, гелий, аргон, азот или газообразные соединения ВFз,РНз и AsFe3. Используя твердые вещества, температура парообразования которых не превышает 1000 °С (олово Сп, галлий Ga, сурьму Сb), их предварительно нагревают, ионизируют пары и подают в источник ионов через натекатель, регулируя скорость испарения изменением температуры нагрева. Твердые вещества, температура парообразования которых превышает 1000 °С, сначала распыляют в атмосфере аргона или ксенона, а затем ионизируют в плазме этого газа.

Масс-сепараторы служат для выделения из общего ионного пучка ионов необходимой массы и заряда. Для экранирования рентгеновского излучения в электродах линз используют специальные материалы (например, свинцовую резину). Кроме того, рентгеновское излучение экранируют постоянными магнитами и металлическими экранами, устанавливаемыми непосредственно в системе однозазорного ускорения.

Наибольшая напряжённость магнитного поля на равновесной траектории составляет 100 кА/м (8000Э) что позволяет разделять ионы в диапазоне масс 1-200 а.е.м. на промежуточной энергии ионов 15 кэВ. Питание обмоток электромагнита осуществляется от стабилизированного источника питания. Магнитная сепарация приводит пучок в моноионное состояние определённого химического элемента с током от десятков до тысячи мкА. Масс-сепораторы на постоянных магнитах с ортогональными магнитными и электрическими полями с одновременным воздействием постоянного и переменного электрических полей. Сепарация ионного пучка основана на взаимодействии движущихся ионов с магнитными и электрическими полями под действием силы Лоренца F=q/c [V,B] сила Лоренца — на 1 элементарный носитель заряда q движущийся со скоростью v в магнитном поле индукцией В.

Фокусируют пучки независимо от массы ионов электростатическими квадрупольными (сдвоенными или строенными) или трехэлектродными линзами.

— Система ускорения (ускоритель) и формирования пучка представляет собой ус­корительную трубку, из кольцевых стеклянных (керамических) изоляторов и металлических электродов, спаянных между собой. Расположением ускорителя относительно других элементов определяются конструкции и габариты установки, а также распределение высоких потенциалов по ее частям. Система сканирования обеспечивает равномерное легирование по всей пластине. В магнитном поле устройства сканирования ионный пучок склоняется на определённый угол. Поскольку отклонять необходимо пучок одинаково заряженных и имеющих одинаковые значения импульсов , то угол отклонения будет зависеть только от напряжённости магнитного поля и его протяжённости вдоль траектории ионов. Форма, размеры полюсных наконечников и межполюсного зазора обеспечивают однородность магнитного поля во всей области его действия на ионный пучок. Частота вращения барабана 20 об/мин. Этим обеспечивается механическое сканирование подложек в горизонтальной, относительно пучка области. После проведения имплантации необходим отжиг пластин с целью уничтожения радиационных дефектов. Лучший отжег — электо — лучевой, лазерный или галогенными лампами. Рентгеновское излучение — вторичные электроны набирают энергию свыше 300 к.э.в. чтобы этого не было высоковольтные системы делят на несколько блоков, а в ионопроводе размещают магнитные ловушки отклоняющие вторичные электроны в оси ионопровода и не позволяющие им набирать высокую энергию. Цилиндр Фарадея используют для измерения дозы и настройки ионной оптики до высокоэнергетического . измерение дозы ионов осуществляется непосредственно с поверхности изолированного подложкодержателя 4 и с размещённой на нём подложки 5. в этом случае доза определяется общим током от зацитных экранов (корпуса цилиндра) и мишени к земле.

Читайте также:  Установка кца для получения водорода

Установка «Везувий- ЗМ»малых и среди их доз, ток пучка которой равен от 10 до 1000 мкА, позволяет легировать полупроводниковые подложки диаметром 75, 100 и 150 мм ионами, обладающими энергией до 150 кэВ. Установка имеет устройство механического и электростатического сканирования пучка. Рабочими веществами являются трехфтористый бор, красный фосфор, металлические цинк и мышьяк. Производительность установки 400 подложек в час; неоднородность дозы имплантации 2 , неоднородность — 1%.

Установка «Везувий-8»предназначена для имплантации больших доз (6,25 * 10 15 ион /см 2 ) ионов массы до 20 а.е.м. и током 2-5 мА при энергии ионов до 100 КэВ для подложек диаметром 75, 100, 150 мм. Ионный разряд возбуждается в магнитном поле напряжённостью Н=15 кА/м (1200 Э), что необходимо для повышения эффективности ионизации газов и паров рабочих веществ. Ионный пучок ускоряется и поступает в масс-сепаратор. Масс-сепаратор представляет собой электромагнит секторного типа с углом поворота пучка 110° радиусом равновесной траектории 300 мм и межполосным зазором 50 мм.

У с т а н о в к а «Везувий9» используют для имплантации многозарядных ионов. При этом энергия однозарядных ионов фосфора, мышьяка, сурьмы составляет 0,6 МэВ. двухзарядных — 1.2 МэВ, а трехзарядных — 1.8 МэВ. Источник ионов позволяет получать пучки двухзарядных ионов этих веществ интенсивностью до 600 мкА, а трехзарядных —-до 150 мкЛ. Суммарное ускоряющее напряжение составляет 600 кВ. В установке использовано двухкоординатное механическое сканирование подложек диаметром 76 и 100 мм относительно неподвижного пучка ионов. В высоковольтной системе установки, разделенной на два блока, имеются магнитные ловушки, ограничивающие энергию вторичных электронов до 200 кэВ.

Установка «Везувий 9М»является модернизированным вариантом высокоэнергетической установки ионной имплантации «Везувип-9». Модернизация расширила технологические возможности и повысила надежность установки. Так. установка «Везувий-9М» оснащена более эффективными источниками многозарядных ионов, повышающими ток двухзарядных ионов фосфора, мышьяка и сурьмы до 400 мкЛ. Кроме того, они позволяют получить для имплантации ионы тяжелых элементов с кратностью заряда 4,5 и расширяют набор ионов, используемых для высокоэнергетической имплантации.

1 — привод вращения контейнера, 2 — нагреватель, 3 — контейнер с кассетами, 4 — приемная камера, 5 — дозиметр, 6 полупроводниковая подложка, 7 — вакуумный щелевой затвор, 8 — азотная ловушка, 9 -система однозазорного ускорения, 10 — настроечный цилиндр Фарадея, 11 — устройство электромагнитного сканирования, 12 — электромагнитный масс-сепаратор, 13 — источник ионов

Цилиндр фарадея: 1, 2 — заземленная и подавляющая диафрагмы, 3 — корпус цилиндра, 4 —подложко-держатель, 5 — подложка

NRтурбомолекулярный насос

источник

Промышленные установки ионного легирования

Автоматизированная промышленная установка ионной имплантации малых и средних доз «Везувий-7М» с индивидуальной обработкой пластин и безмаслянной откачкой имеет неоднородность легирования 1% и предназначена для производства полупроводниковых приборов с минимальными размерами элементов (менее 2 мкм). Диапазон доз, обеспечиваемый установкой, 10 10 – 10 15 см -2 , максимальный ток пучка при энергии 100 кэВ для В+ — 300мкА, для Р+ — 500 мкА, для As+ — 300 мкА, энергия имплантации от 2220 до 100 кэВ, диаметр обрабатываемых пластин 76, 100, 125 мм, производительность для пластин 76 мм при дозе 6,25*10 12 , см -2 – 40 шт/ч, потребляемая мощность 10кВА, габариты 1570х5000х1000, масса 3900 кг.

Установка сконструирована по схеме с послеускорением сепарированного на энергии экстракции пучка. В ней применены модифицированные ионные дуговые источники источники с прямоканальным катодом, встраиваемые в масс-сепаратор, что увеличивает время непрерывной работы установки без разгерметизации до 100 ч. В источнике используют газообразные (BF3, PF5, AsH3) и твердые (красный фосфор, металлический мышьяк) рабочие вещества.

Масс-сепаратор, собранный на постоянных магнитах с напряженностью однородного магнитного поля Н=24*10 4 А/м, имеет разные углы поворота для различных ионов (для В — 90°, для Р — 60º), малые габариты ионного источника позволяют быстро менять вещества. Хорошее выделение пучков В+ и Р+ обеспечивается установкой диафрагмы шириной 2 см на расстоянии 15 см от выхода магнита.

После диафрагмы с помощью одиночной (трехэлектродной) линзы пучок дополнительно фокусируют. Стандартная металлофарфоровая ускорительная трубка, на выходе которой установлен охлаждаемый регулируемый коллиматор, служит для ускорения пучка. Сканирование пучка — электростатическое двухкоординатное.

Дополнительное использование линз на входе и выходе отклоняющей системы снижает электронные нагрузки на высоковольтные блоки питания, уменьшает вторичную электронную эмиссию, повышает рентгенобезопасность установки и нейтрализует пространственный заряд пучка в области его отклонения и сканирования.

В приемной камере размещены четыре датчика в виде цилиндров Фарадея, которые позволяют осуществлять контроль однородности имплантации, настройку пучка на центр мишени и амплитуд сканирования. Дозы измеряют «глубоким » цилиндром Фарадея, дном которого служит подложкодержатель с пластиной.

В установке применена продольная приемная камера квазинепрерывной индивидуальной обработки с шлюзованием пластин. Основными ее достоинствами являются: короткий тракт перемещения пластин под углом 45º; отсутствие дополнительного вибратора, малые габариты и масса. Благодаря продольной конструкции в чистой зоне камеры может находиться только приемная и передающая кассеты.

Вакуумная система состоит из двух унифицированнных модулей, оснащенных турбомолекулярными насосами ТМН-1500, азотными криоловушками, стандартной запасной аппаратурой и измерительными блокировочными вакуумметрами. Форвакуумную откачку осуществляют насосами НВР-16Д и 2НВР-5Д (каждый по два) для системы шлюзования приемной камеры.

Сильноточная установка «Везувий-8»

Предназначена для имплантации больших доз ионов с массой до 200 а.е.м. и током 2—5 мА, при энер­гии до 100 кэВ в производстве интегральных схем на .пластинах 76, 100, 150 мм.

Установка создана по схеме с послеускорением и ра­ботает в двух режимах — полуавтоматическом — от опе­ратора и автоматическом — от внешней управляющей ЭВМ. Диапазон энергии установки от 10 до 100 кэВ для легирующих ионов В+, Р+, Аз+, 2п + , ЗЬ+, ток ионного пучка 2 мА для В+, 5 мА для Р+, 2 мА для Аз+, 2п+, ЗЬ+, производительность при дозе 6,25-10 15 см -2 100 шт/ч, неоднородность дозы имплантации менее 2%, режим обработки — групповой, сканирование по оси X — меха­ническое, по оси У — электромагнитное, температура подогрева легирующих пластин до 400 °С (встроенными нагревателями).

Читайте также:  Установка бортового компьютера jetta

На установке применяют ионный дуговой источник с прямоканальным катодом. Для получения ионов В+ ис­пользуют ВFз, напуск которого в источник осуществля­ют через игольчатый натекатель. Ионы Р+, Zп + , Аs+ и SЬ+ получают из твердых веществ, испаряемых в тигле. Ионный пучок извлекают поперек магнитного поля, ис­пользуя трехэлектронную щелевую оптику при напряже­нии вытягивания 15 кВ. На установке применяют элект­ромагнитный масс-сепаратор с двойной фокусировкой пучка, который представляет собой секторный электро­магнит с углом поворота пучка 110°. Для уменьшения аберрации и оптимальной фокусировки в конструкции полюсных наконечников предусмотрена регулировка уг­ла входа пучка в масс-сепаратор и выхода из него в пределах ± 150°.

1- ионный источник, 2- масс-сепаратор, 3- система первичной фокусировки, 4 – экран, 5 –система ускорения, 6 – ионопровод, 7 – вакуумный затвор, 8 – диафрагма, 9 – датчики, 10 – вакуумная камера, 11 – приёмная камера, 12 – контрольно-измерительные приборы, 13 – механический привод барабана

Электромагнит ионного источника выполнен вместе с масс-

Электромагнит ионного источника выполнен вместе с масс-сепаратором; магнитопроводом ионного источника является внешнее ярмо масс-сепаратора. Такая кон­струкция значительно облегчает обслуживание и доступ к ионному источнику.

Для сканирования интенсивного ионного пучка в вер­тикальном направлении используют электромагнитное устройство, в магнитном поле которого ионны-й пучок отклоняется на определенный угол.

Система ускорения выполнена в виде однозазорного ускоряющего промежутка, образуемого двумя изолиро­ванными друг от друга щелевыми электродами специаль­ной формы. Один электрод находится под потенциалом земли, на другой подается ускоряющее напряжение. Злектрическую изоляцию осуществляют прямоугольным изолятором с развитой наружной поверхностью.

В установке применена приемная камера со сменны­ми кассетами, позволяющими разместить на контейнерах 100 пластин 0 75 мм или 54 пластины 0 100 мм, или 24 пластины 0 150 мм. Во время имплантации контейнер •непрерывно и равномерно вращается с частотой враще­ния 20 об/мин вокруг вертикальной оси, осуществляя механическое сканирование пластин в горизонтальном направлении.

Равномерность имплантации и измерение дозы произ­водят универсальным дозиметром, датчики которого подключены к приборам контроля равномерности ионно­го тока на позиции имплантации; любой из датчиков можно подключить к блоку измерения дозы.

Установку откачивают паромасляным высоковакуум-яым агрегатом АВП-250/630; в зоне приемной камеры используют заливную криогенную ловушку. Вакуумной системой управляют в двух режимах: полуавтоматичес­ком— по заданной программе, автоматическом — с .подачей команд от внешней ЭВМ «Электроника-100И».

источник

Оборудование для элионной обработки

Оборудование для ионной имплантации.

Преимущества ионного легирования перед термодиффузией (900-1300 °С)

1) Легирование атомами любых веществ независимо от предельной растворимости при любых температурах.

2) Создание в подложке скрытого слоя на некотором состоянии от поверхности подложки.

3) Получение неглубоких (до 1000 А (ангстрем)) легированных слоев в том числе ступенчатых.

4) Легирование подложки через защитный слой.

5) Легирование с высокой точностью глубиной и профилем распределение примесей в подложке путём изменения энергии и дозы вводимых ионов примесей.

К недостатком ионной имплантации можно отнести сложность оборудования и остаточные радиационные дефекты в подложке.

Установки ионной имплантации разделяют на три основных типа:

— больших доз с интенсивными ионными пучками

В установках малых и средних доз интенсивность тока ионного пучка составляют от

единиц микроампер до 500-800 мкА.

В установках больших доз (сильноточных) — от 1 до 200 мА.

Оба типа установок работают в области энергий от 30 до 200 кэВ. Максимальная энергия высокоэнергетических установок может превышать 1 МэВ.

Установки ионной имплантации обычно состоят из источника ионов 1, магнитного масс-сепаратора 3, систем ускорения 6 и сканирования 8 пучка, приемной камеры 9 и вакуумной системы. Основным отличием этих установок является потенциал приёмной камеры, масс-сепаратора и источника ионов относительно друг друга.

Компоновки установок ионной имплантации: а — малых и средних доз, б — с разделением ионов по массам после ускорения, в — сильноточных,

г — высокоэнергетических, д — больших доз; 1 — источник ионов, 2 — система вытягивания и первичного формирования пучка, 3 — магнитный масс-сепаратор, 4 — высоковольтный модуль, 5 — регулируемая диафрагма, б — система ускорения, 7 — фокусирующая линза, 8 -пластины электростатического сканирования и отклонения пучка, 9 — приемная камера

Наиболее широко используется установка малых и средних доз, энергия ионов которой не превышает 200 кэВ, а приемная камера находится под потенциалом земли и магнитная сепарация осуществляется до полного ускорения пучка. Энергия ионов в сепараторе низкая, габариты небольшие, малые магниты, маломощные источники питания электромагнитного сепаратора и ускорительной системы. Установку с разделением ионов по массам после ускорения обычно используют для исследовательских целей. Высокий ток нагрузки высоковольтного источника питания, а также увеличения вторичной электронной эмиссии, повышает опасность облучения рентгеновскими лучами.

— достоинством сильноточной установки является простая система управления и питания источника ионов и электромагнита, малое количество потребляемой энергии высокого напряжения, а недостатком — трудный доступ к приёмной камере, высокий потенциал на ней и сложность автоматизации загрузки — выгрузки пластин.

-Высокоэнергетическая установка позволяет, приложив высокий потенциал к приемной камере, получить сверхвысокую (до 500 кэВ) энергию ионов. При дальнейшем увеличении энергии ионов возникает сильное рентгеновское излучение.

-В установке больших доз источник ионов находится под высоким напряжением, полное их ускорение в системе первичного формирования и большие токи пучка, а также даёт возможность полной автоматизации всех режимов работы.

Читайте также:  Установка подушки безопасности на инфинити

В качестве рабочих веществ в разрядную камеру источника ионов подают такие газы, как водород, гелий, аргон, азот или газообразные соединения ВFз,РНз и AsFe3. Используя твердые вещества, температура парообразования которых не превышает 1000 °С (олово Сп, галлий Ga, сурьму Сb), их предварительно нагревают, ионизируют пары и подают в источник ионов через натекатель, регулируя скорость испарения изменением температуры нагрева. Твердые вещества, температура парообразования которых превышает 1000 °С, сначала распыляют в атмосфере аргона или ксенона, а затем ионизируют в плазме этого газа.

Масс-сепараторы служат для выделения из общего ионного пучка ионов необходимой массы и заряда. Для экранирования рентгеновского излучения в электродах линз используют специальные материалы (например, свинцовую резину). Кроме того, рентгеновское излучение экранируют постоянными магнитами и металлическими экранами, устанавливаемыми непосредственно в системе однозазорного ускорения.

Наибольшая напряжённость магнитного поля на равновесной траектории составляет 100 кА/м (8000Э) что позволяет разделять ионы в диапазоне масс 1-200 а.е.м. на промежуточной энергии ионов 15 кэВ. Питание обмоток электромагнита осуществляется от стабилизированного источника питания. Магнитная сепарация приводит пучок в моноионное состояние определённого химического элемента с током от десятков до тысячи мкА. Масс-сепораторы на постоянных магнитах с ортогональными магнитными и электрическими полями с одновременным воздействием постоянного и переменного электрических полей. Сепарация ионного пучка основана на взаимодействии движущихся ионов с магнитными и электрическими полями под действием силы Лоренца F=q/c [V,B] сила Лоренца — на 1 элементарный носитель заряда q движущийся со скоростью v в магнитном поле индукцией В.

Фокусируют пучки независимо от массы ионов электростатическими квадрупольными (сдвоенными или строенными) или трехэлектродными линзами.

— Система ускорения (ускоритель) и формирования пучка представляет собой ус­корительную трубку, из кольцевых стеклянных (керамических) изоляторов и металлических электродов, спаянных между собой. Расположением ускорителя относительно других элементов определяются конструкции и габариты установки, а также распределение высоких потенциалов по ее частям. Система сканирования обеспечивает равномерное легирование по всей пластине. В магнитном поле устройства сканирования ионный пучок склоняется на определённый угол. Поскольку отклонять необходимо пучок одинаково заряженных и имеющих одинаковые значения импульсов , то угол отклонения будет зависеть только от напряжённости магнитного поля и его протяжённости вдоль траектории ионов. Форма, размеры полюсных наконечников и межполюсного зазора обеспечивают однородность магнитного поля во всей области его действия на ионный пучок. Частота вращения барабана 20 об/мин. Этим обеспечивается механическое сканирование подложек в горизонтальной, относительно пучка области. После проведения имплантации необходим отжиг пластин с целью уничтожения радиационных дефектов. Лучший отжег — электо — лучевой, лазерный или галогенными лампами. Рентгеновское излучение — вторичные электроны набирают энергию свыше 300 к.э.в. чтобы этого не было высоковольтные системы делят на несколько блоков, а в ионопроводе размещают магнитные ловушки отклоняющие вторичные электроны в оси ионопровода и не позволяющие им набирать высокую энергию. Цилиндр Фарадея используют для измерения дозы и настройки ионной оптики до высокоэнергетического . измерение дозы ионов осуществляется непосредственно с поверхности изолированного подложкодержателя 4 и с размещённой на нём подложки 5. в этом случае доза определяется общим током от зацитных экранов (корпуса цилиндра) и мишени к земле.

Установка «Везувий- ЗМ»малых и среди их доз, ток пучка которой равен от 10 до 1000 мкА, позволяет легировать полупроводниковые подложки диаметром 75, 100 и 150 мм ионами, обладающими энергией до 150 кэВ. Установка имеет устройство механического и электростатического сканирования пучка. Рабочими веществами являются трехфтористый бор, красный фосфор, металлические цинк и мышьяк. Производительность установки 400 подложек в час; неоднородность дозы имплантации 2 , неоднородность — 1%.

Установка «Везувий-8»предназначена для имплантации больших доз (6,25 * 10 15 ион /см 2 ) ионов массы до 20 а.е.м. и током 2-5 мА при энергии ионов до 100 КэВ для подложек диаметром 75, 100, 150 мм. Ионный разряд возбуждается в магнитном поле напряжённостью Н=15 кА/м (1200 Э), что необходимо для повышения эффективности ионизации газов и паров рабочих веществ. Ионный пучок ускоряется и поступает в масс-сепаратор. Масс-сепаратор представляет собой электромагнит секторного типа с углом поворота пучка 110° радиусом равновесной траектории 300 мм и межполосным зазором 50 мм.

У с т а н о в к а «Везувий9» используют для имплантации многозарядных ионов. При этом энергия однозарядных ионов фосфора, мышьяка, сурьмы составляет 0,6 МэВ. двухзарядных — 1.2 МэВ, а трехзарядных — 1.8 МэВ. Источник ионов позволяет получать пучки двухзарядных ионов этих веществ интенсивностью до 600 мкА, а трехзарядных —-до 150 мкЛ. Суммарное ускоряющее напряжение составляет 600 кВ. В установке использовано двухкоординатное механическое сканирование подложек диаметром 76 и 100 мм относительно неподвижного пучка ионов. В высоковольтной системе установки, разделенной на два блока, имеются магнитные ловушки, ограничивающие энергию вторичных электронов до 200 кэВ.

Установка «Везувий 9М»является модернизированным вариантом высокоэнергетической установки ионной имплантации «Везувип-9». Модернизация расширила технологические возможности и повысила надежность установки. Так. установка «Везувий-9М» оснащена более эффективными источниками многозарядных ионов, повышающими ток двухзарядных ионов фосфора, мышьяка и сурьмы до 400 мкЛ. Кроме того, они позволяют получить для имплантации ионы тяжелых элементов с кратностью заряда 4,5 и расширяют набор ионов, используемых для высокоэнергетической имплантации.

1 — привод вращения контейнера, 2 — нагреватель, 3 — контейнер с кассетами, 4 — приемная камера, 5 — дозиметр, 6 полупроводниковая подложка, 7 — вакуумный щелевой затвор, 8 — азотная ловушка, 9 -система однозазорного ускорения, 10 — настроечный цилиндр Фарадея, 11 — устройство электромагнитного сканирования, 12 — электромагнитный масс-сепаратор, 13 — источник ионов

Цилиндр фарадея: 1, 2 — заземленная и подавляющая диафрагмы, 3 — корпус цилиндра, 4 —подложко-держатель, 5 — подложка

NRтурбомолекулярный насос

источник

Добавить комментарий