Меню Рубрики

Установка ipython notebook mac

Анализ данных (Программная инженерия)/Установка и настройка Python

Содержание

Windows

Установка готового пакета

Можно отдельно установить Python и все необходимые библиотеки и надстройки, однако это слишком долго. Поэтому воспользуемся уже собранным пакетом Python(X,Y).

  1. Загрузим Python(X,Y): страница загрузки, из раздела Current release.
  2. Установим его, причем обязательно не забыв поставить галочку для установки всех плагинов в Python(X,Y).
  3. Все готово.

По непонятным причинам в некоторых случаях установка происходит довольно криво. Попробуйте выполнить следующие команды в своем Python:

Юнит-тесты могут сразу показать, все ли хорошо. Аналогично их стоит запустить для библиотек pandas, pylab, sklearn. Если вдруг вываливается ошибка, то можно попробовать установить Python и библиотеки другим способом.

Установку вручную

Минимальный набор для работы:

  • Python 2.7
  • IPython Notebook
  • NumPy
  • Matplotlib
  • Pandas
  • SciKit-Learn

Лучше ставить 32-битные версии, поскольку 64-битные не всегда работают корректно под Windows. Обратите внимание, что некоторые библиотеки будут иметь дополнительные зависимости в виде других библиотек, их тоже придется поставить.

Запуск IPython Notebook

Попробуем запустить IPython Notebook. Для этого запустим командную строку (нажать win+R и ввести cmd), и введем ipython notebook —pylab inline. Должен открыться браузер с запущенным из текущей директории IPython Notebook. Все ноутбуки будут сохраняться в текущую директорию, из которой был вызван IPython Notebook.

Mac OS X и Linux

Mac OS

Установка Python через brew

официального сайта Если у вас нет питона, то придется поставить brew с вытекающей от туда установкой Xcode. Следуйте указаниям с сайта Homebrew и у вас все получится. Устанавливаем свежую версию Python и virtualenv:

Устанавливаем фортран (нужен для сборки NumPy и SciPy):

Создаем виртуальное окружение:

Устанавливаем необходимые пакеты питона:

Ручная установка Python

Можно попробовать поставить все вручную, список необходимых библиотек см. в разделе для Windows.

Сторонний туториал

Linux

Для сохранения здоровья, используйте Ubuntu 12.04 LTS или выше. Устанавливаем необходимые тулзы для Python:

Устанавливаем пакеты, необходимые для сборки NumPy, SciPy и Matplotlib:

Создаем виртуальное окружение питона (virtualenv).

Ставим необходимые для курса пакеты:

Почему не сделать apt-get install Вы можете сделать что-то вроде

и установить питоновские пакеты в систему из репозитория Debian. Однако, пакеты debian содержат достаточно старые версии python-пакетов (к примеру, IPython Notebook у вас будет значительно менее модный). Свежие версии загружаются утилитой pip из репозитория PyPI.

Запуск IPython Notebook

Для того, чтобы графики встраивались в отчёт, а не открывались в отдельном окне, IPython Notebook нужно запускать следующим образом:

Либо в уже запущенном Notebook выполнить

Использование virtualenv

virtualenv позволяет заключить в отдельный каталог необходимые версии python-пакетов и использовать только их. Используя virtualenv, Вы можете устанавливать свежие версии пакетов из Python Package Index, при этом не получить проблем с несовместимостью версий пакетов с установленными в системе. Нормальным решением также является установка python-пакетов через pip в системные каталоги. Для этого не нужно ничего с virtualenv, но запускать pip при этом следует от рута:

Но напоминаем, пакеты могут конфликтовать с системными, может фейлиться сборка, могут импортироваться старые версии и возникать другие проблемы. Для создания виртуального окружения необходимо сказать

при этом будет создан каталог yourenv с чистым окружением без каких либо пакетов. Для использования виртуального окружения можно использовать команды из соответствующего каталога:

Для того чтобы не говорить префикс yourenv/bin, удобно в текущей сесии командной строки выставить необходимые переменные окружения (активировать виртуальное окружение):

После активации, у приглашения командной строки появится префикс (yourenv). Для того, чтобы деактивировать виртуальное окружение, необходимо сказать

источник

Создание и настройка портативной сборки Jupyter Notebook и Lab на Windows. Часть 1

Всем привет. Когда я начинал изучение Python, устанавливал впервые Jupyter Notebook, потом пытался передать с созданное в нём приложение на предприятие, я часто сталкивался с различными проблемами. То кириллица в имени пользователя мешает, то настройки не перенеслись, то ещё чего-то. Все эти проблемы я преодолел в основном самостоятельно, используя Google и затратив немало времени на их решение.

По мере роста опыта я научился создавать папку, в которой лежит переносимое с одного компьютера на другой виртуальное окружение Python, настройки Jupyter и Matplotlib, портативные программы (ffmpeg и др.) и шрифты. Я мог написать дома программу, скопировать всю эту папку на компьютер предприятия, и быть уверенным, что ничего не потеряется и не сломается на ровном месте. Потом я подумал, что такую папку можно дать и новичку в Python, и он получит полностью настроенную и переносимую среду.

Введение

В последние годы Python стал популярным языком программирования. Его часто используют для написания математических расчётов, анализа больших данных, машинного обучения и построения нейросетей. После появления конструкций asinc и await стало возможным написания быстрых веб-фреймворков. Производительность Python постепенно повышается из релиза в релиз, а использование Cython или Numba может сделать приложение даже более быстрым, чем на других языках программирования. Например, скорость работы веб-фреймворка Vibora (en) сопоставима со скоростью работы решений на Go (en) . В 2018 году Python официально стал языком для изучения в школах и вузах Франции (en) и Казахстана (en) . В России как минимум некоторые кафедры перешли на Python, например, кафедра РК-6 (ru) в МГТУ им. Н.Э. Баумана.

Приступая к изучению Python, новые пользователи порой сталкиваются с трудностями при установке необходимых библиотек и настройке среды программирования. Если имя пользователя Windows содержит не латинские символы, некоторые библиотеки могли не установиться или не запускаться. У начинающих пользователей могут возникать проблемы с настройкой Jupyter Notebook на локальном компьютере. Если он установлен на диске C:\ , как открыть файл на диске D:\ ? Когда я делал первые шаги в Python, мне тоже приходилось преодолевать эту трудности.

Наконец, если все проблемы позади, могут возникнуть трудности передать приложение другому пользователю. Я сталкивался с ситуацией, когда созданное мною виртуальное окружение для Python отказывалось работать на другом компьютере. Кроме того, Jupyter Notebook и Matplotlib хранят свои настройки в папке пользователя, что усложняет перенос приложений, использующих специфичные настройки.

Решением описанных выше проблем будет создание полностью портативной сборки Jupyter Notebook и/или Jupyter Lab на Windows. Она хранит в себе интерпретатор Python, его библиотеки и настройки, настройки всех необходимых сторонних библиотек, включая Matplotlib и Jupyter, не привязано к имени пользователя и не будет ругаться, если вы запустите её на другом компьютере. Мы можем упаковать такую сборку в архив, либо написать скрипт или программу, которая создаст такую же сборку на компьютере абсолютного новичка. Более продвинутым пользователям портативная сборка может быть полезна тем, что она позволяет хранить окружение Python и настройки в библиотек в разных местах. Вы можете разместить папку с настройками в специальное место, которое синхронизируется с облачным хранилищем: Dropbox, облако Mail.ru*, Яндекса или Google. За счёт этого на всех компьютерах автоматически получится локально работающая среда с одинаковыми настройками.

Читайте также:  Установка контактора кми смета

*Да, то самое, клиент которого под Linux больше не коннектится (ru) . Если уберут аналогичный под Windows, мне придётся искать замену. 1 Тб на дороге бесплатно не валяется.

Для простоты восприятия материала я решил описать создание портативной сборки под Windows. Но эта инструкция с минимальными изменениями годится для создания сборки на Linux и Mac OS. Статья в первую очередь предназначена для новичков, поэтому я постарался описать как можно подробнее и проще для восприятия.

Статья состоит из двух частей. В первой части мы создадим портативную сборку, во второй займёмся настройками для Jupyter Notebook, Jupyter Lab, IPython и Matplotlib.

Краткая инструкция по созданию портативной сборки Jupyter

Создайте папку C:\Dev . В ней будут установлены Minconda и портативная сборка Jupyter*.
*Здесь и далее Jupyter = Jupyter Notebook + Juputer Lab.

Скачайте инсталлятор Miniconda с сайта https://conda.io/miniconda (en) . Выберите Python 3 для Windows 64 бит или 32 бит в зависимости от разрядности вашей операционной системы. Установите Miniconda в папку C:\Dev\Miniconda3 .

Создайте следующую структуру каталогов для портативной сборки Jupyter:

Создайте виртуальное окружение для Python с помощью conda *:

*Вы можете использовать канал conda-forge для установки более свежих библиотек, добавив аргумент -c conda-forge :

Активируйте окружение и установите пакеты Python с помощью pip *:

Примечание: если вам необходимо установить Numpy и Scipy, которые используют библиотеку MKL от Intel для ускорения расчётов, используйте (en) intel-numpy вместо numpy и intel-scipy вместо scipy (устанавливается только в Python 3.6!):

После установки выполните:

*Если возникнут ошибки при установке, попробуйте так:

и после окончания установки

В папке C:\Dev\Jupyter\dist создайте файл setenv.bat , который будет управлять тем, где Jupyter и Matplotlib будут хранить свои настройки:

В папке C:\Dev\Jupyter\dist создайте файл run_jupyter_notebook.bat для запуска Jupyter Notebook с заданными параметрами:

Аналогично, в папке C:\Dev\Jupyter\dist создайте файл run_jupyter_lab.bat для запуска Jupyter Lab с заданными параметрами:

В папке C:\Dev\Jupyter\dist создайте файл enable_extension.bat , который активирует заданное расширение в Jupyter Notebook:

Предположим, что рабочие файлы находятся в папке D:\my-projects . В этой папке создайте ярлыки на файлы run_jupyter_notebook.bat и run_jupyter_lab.bat . После создания каждого из ярлыков зайдите в его свойства и очистите строку «Рабочая папка». Если не очистить — Jupyter не увидит нужную вам папку!

Портативная сборка Jupyter создана и готова к настройке и работе. Для начала работы просто кликните по созданным ярлыкам. Если вы решите не удалять установленную Miniconda, вы можете сократить размер папки C:\Dev\Miniconda3 следующей командой:

После выполнения данной команды нужно зайти в папку C:\Dev\Miniconda3\pkgs и очистить содержимое папки .trash . Только тогда мы действительно сократим размер папки Miniconda3 .

Установка Miniconda (Python 3.7)

Давайте создадим в корне диска C:\ папку Dev . В этой папке я складываю все программы и инструменты для разработки, которые почему-то предпочитают устанавливаться не в C:\Program Files . Например, туда я устанавливаю Ruby, Go, Python, Jupyter, Msys, SQLite Studio и т.д.

Сначала нам необходимо установить Python. У Python есть две ветки: Python 2 и Python 3. Python 2 поддерживается (en) до 2020 года, поэтому будем ставить только Python 3.

Для установки Python 3 обычно обращаются к официальному сайту python.org (en) , откуда скачивают его и устанавливают. Однако мы хотим получить переносимую сборку, поэтому поступим иначе: мы скачаем и установим Miniconda.

Что такое Miniconda? По факту это Python с предустановленным и настроенным менеджером пакетов conda . Консольная программа conda позволит нам создать папку, в которой будет Python нужной нам версии вне зависимости от того, какая версия Python идёт в составе Miniconda. Также с помощью conda в эту папку можно установить практически все известные библиотеки для Python: Numpy, Scipy, Matplotlib, Sympy и т.д. Папка, в которую установлен Python и его библиотеки, называется виртуальным окружением. Библиотеки для Python поставляются в форме специальных архивов, которые называются пакетами.

У conda есть отличительные особенности, из-за которой она удобна и для начинающих и опытных пользователей:

  • Пакеты Python, которые устанавливаются через conda, уже скомпилированы под Windows. Меньше вероятность, что попытка установить его завершится ошибкой*.
  • Вы можете создать виртуальное окружение с той версией Python, которая вам нужна. Не имеет значения, какая версия Python установлена с Miniconda.

*Надо отметить, что ситуация с установкой пакетов в Python из года в год улучшается. Несколько лет назад я не смог установить Numpy через pip (выдавалась ошибка), и я использовал conda . В 2018 году я попробовал последнюю версию pip , и скачался файл с расширением .whl (так называемое «колесо») с уже скомпилированным Numpy, и всё установилось прекрасно.

Итак, нам нужно скачать и установить Miniconda. Для этого пройдём на https://conda.io/miniconda (en) и выберем 64-битную версию для Windows на Python 3. Если у вас 32-битных компьютер, вам следует скачать 32-битную версию.

Miniconda ставится так же, как и обычное Windows приложение:

Запускаем инсталлятор, жмём Next

Соглашаемся с лицензионным соглашением I Agree

Я предпочитаю установку для всех пользователей, потому что это даст мне возможность указать путь для установки. Выбираем пункт «All users»:

Корректируем путь для установки на C:\Dev\Miniconda3 :

Здесь я ставлю оба флажка. Флажок «Add Anaconda to the system PATH environment variable» сделает команду conda доступной в терминале из любого каталога. Если вы этот флажок не поставите, единственное, что изменится, это то, что в терминале вместо conda вам понадобится набрать полный путь к conda.exe . Я не устанавливаю Anaconda, потому что она мне ставит много чего лишнего, поэтому я игнорирую нежелательность установки данного флажка. Если вы поставите этот флажок, а после установки передумаете, вы можете просто удалить conda из системных переменных. Это просто. Но если не знаете, можете загуглить или спросить. Контакты в конце статьи.
Я также ставлю флажок «Register Anaconda as the system Python 3.7». Если какой-то программе вдруг понадобится Python, она будет использовать Python, установленный вместе с Miniconda. Также данный флажок сделает команду python доступной в терминале из любой папки. Данный флажок желательно поставить, если до этого вы не устанавливали Python. Если уже какой-то Python установлен, я бы не советовал ставить этот флажок сейчас, а скорректировать системные переменные при необходимости.
После этого нажимаем Install и начнётся процесс установки:

Читайте также:  Установка конфига дота 2

Во время установки можете нажать Show details. Тем самым вы увидите больше информации о том, что именно происходит во время установки. Но это не обязательно.

Когда установка закончится, появится фраза «Completed», а кнопка Next станет доступной. Жмём Next

В последнем окне нам предлагается узнать про Anaconda Cloud (это первый флажок) и как начать работу с Anaconda (второй флажок). Мне ничего из этого не нужно, поэтому я снимаю все флажки и нажимаю Finish. Установка Miniconda завершена.

После установки Miniconda в папке C:\Dev мы увидим новую папку Miniconda весом примерно 340 Мб. Да, это немало, и она ещё будет раздуваться. Позже я покажу, как быстро и безопасно уменьшать её объём.

Зайдём в папку Miniconda . Немного прокрутив список файлов, мы увидим python.exe . Тот самый Python 3.7, который установился в моём случае (на скриншоте Directory Opus).

Если дважды кликнуть по python.exe — запустится консольное окно, в котором можно вводить команды Python.

Вы можете для теста после >>> ввести:

и нажать Enter. Откроется браузер по умолчанию с комиксом про Python на xkcd.

В папке C:\Dev\Miniconda\Scripts мы найдём conda.exe . Эта та самая консольная команда, с помощью которой мы будем создавать виртуальное окружение Python.

Создание структуры каталогов

Теперь у нас всё готово для того, чтобы начать создание портативной сборки Jupyter Notebook. Для начала создадим следующую структуру каталогов:

В папке Dev создайте папку Jupyter . В свою очередь в папке Jupyter создайте папки dist и projects . В папке dist будет виртуальное окружение Python со всеми необходимыми библиотеками, файлы настроек, дополнительные программы, шрифты — всё, что необходимо для нашей разработки на Python в среде Jupyter Notebook или Jupyter Lab. Папка projects — это место по умолчанию для проектов. Сам я эту папку обычно не использую, и она остаётся пустой. Но если мне понадобится передать программу другому пользователю вместе с настроенным Jupyter, я положу свою программу в эту папку projects , сделаю архив всей папки Jupyter и отправлю архив пользователю.

Папка apps содержит вспомогательные программы. Например, я часто кладу туда портативную версию FFMPEG, которая нужная Matplotlib для создания анимации.

Папка conf содержит настройки различных библиотек. В нашем случае для IPython, Jupyter и Matplotlib.

В папку conf\backup я кладу копии своих файлов настроек на случай, если в будущем где-то напортачу с настройками.

Папка fonts содержит шрифты, которые могут быть использованы, например, в Matplotlib. Лично мне понравились Roboto и PTSerif.

Кроме папок apps , conf и fonts вы можете создать и другие папки на своё усмотрение. Например, папку temp для временных файлов.

Создание переносимого виртуального окружения Python

Создание виртуального окружения с помощью conda

Откройте командную строку (+R → cmd.exe → Enter) и введите*:

*Для установки более свежих версий библиотек можно подключить канал conda-forge через аргумент -c conda-forge :

Если потом понадобится удалить канал conda-forge , зайдите в Проводнике в папку %userprofile% , найдите в ней файл .condarc , откройте его блокнотом и удалите строку conda-forge .

Рассмотрим эту команду. Сначала идёт полный путь к conda.exe . Если при установке Minconda вы поставили галочку «Add Anaconda to the system PATH environment variable», вместо полного пути достаточно написать просто conda .

Слово create даёт команду создания нового окружения. Аргумент -p говорит о том, что это окружение должно быть создано там, где мы укажем, а не в папке C:\Dev\Miniconda3\envs . В примере прописан полный путь и название будущей папки pyenv3.7-win64 (расшифровка: python 3.7 environment for Windows 64-bit). Если у вас командная строка открыта в папке dist или вы с помощью команды cd заранее перешли в эту папку, вместо полного пути можно было написать просто pyenv3.7-win64 .

Аргумент —copy сообщает conda , что в виртуальном окружении должны быть установлены сами пакеты. В противном случае пакет будет установлен в папке C:\Dev\Miniconda3 , а в виртуальном окружении будет ссылка на него. Вы не заметите эту подмену, пока не попробуете запустить виртуальное окружение на другом компьютере.

Далее идёт перечисление пакетов. Прежде всего мы должны установить сам Python третьей версии. Также я обязательно указываю conda . Т.е. программа conda будет установлена дважды: в составе Miniconda и в виртуальном окружении. Установка conda в виртуальном окружении увеличивает его размер совсем чуть-чуть, но даст возможность пользователю обновить пакеты в виртуальном окружении на компьютере, где Miniconda не установлена. Это делает виртуальное окружение полностью автономным. Вы можете даже деинсталлировать Miniconda после создания виртуального окружения, и оно продолжит работать как ни в чём не бывало. Я, правда, оставляю Miniconda на тот случай, если какому-то приложению понадобится Python.

Вообще, кроме Python и conda можно было сразу указать необходимые пакеты, но в 2018 году я перестал так делать и вместо этого стал использовать для установки пакетов pip . Во-первых, новейшие версии pip стали скачивать .whl файлы с уже скомпилированными библиотеками, и проблемы с установкой ряда библиотек исчезли. Во-вторых, размер виртуального окружения при установке пакетов через pip получается в 3 раза меньше, чем при установке пакетов через conda .

Исправление ошибки HTTP 000 CONNECTION FAILED при создании виртуального окружения

У одного из пользователей при выполнении команды

столкнулся с ошибкой следующего содержания:

Мне потребовался не один час, чтобы разобраться с ней, потому что на первый взгляд проблема либо с некорректной установкой Miniconda либо с сетью. У некоторых корпоративных пользователей действительно был заблокирован этот ресурс, но проблема происходила у пользователя дома. Переустановка Miniconda не помогла.

В итоге оказалось, что данная ошибка означает, что conda.exe не нашло файл openssl.exe . В итоге было применено следующее решение:

Создали папку C:\Dev\openssl .

В папке C:\Dev\Miniconda3\pkgs нашли папку, название которой начинается с openssl . Например, openssl-1.1.1a-he774522_0 . Если папок несколько, выбираем ту, у которой в названии номер больше.

В найденной папке ищем файл openssl.exe и копируем openssl.exe и все файлы и папки, которые лежат вместе с openssl.exe , в C:\Dev\openssl .

Читайте также:  Установка гбо в бердске

В Проводнике Windows заходим в «Этот компьютер» (где перечисляются все диски на компьютере). В свободном месте правым кликом мыши открываем контекстное меню и выбираем в самом низу пункт «Свойства».

В открывшемся окне находим «Дополнительные параметры системы»:

На вкладке «Дополнительно» находим кнопку Переменные среды:

Для Windows 7 и 8: в разделе «Переменные среды для пользователя» дважды кликаем по переменной Path . Если в конце строки отсутствует точка с запятой, поставим её, и в конце этой строки допишем:

Для Windows 10: в разделе «Переменные среды для пользователя» дважды кликаем по переменной Path . В итоге должно появиться такое окно:


Нажимаем кнопку «Создать» и вставляем путь C:\Dev\openssl .

Закройте и откройте командную строку снова. Теперь всё должно работать. Если вдруг не заработало — надо гуглить ошибку или обращаться на форумы.

Активация виртуального окружения

Когда создание виртуального окружения закончится, окно будет выглядеть примерно так:

После создания виртуального окружения установим пакеты через pip . Сначала необходимо активировать виртуальное окружение. Для этого в окне команд введите:

В результате вы должны получить примерно следующее:

Слово (base) в начале строки как указывает на то, что мы вошли в нужное нам виртуальное окружение.

Установка пакетов Python в виртуальном окружении

Теперь можно установить пакеты*:

Аргумент —no-cache-dir сообщает pip , что не следует кешировать скачанные пакеты. Это позволит нам не увеличивать размер папки виртуального окружения.

*Существует разработанная Intel библиотека MKL (Math Kernel Library) (en) , которая ускоряет работу на больших данных для популярных библиотек Python, в частности, Numpy и Scipy. Если вы хотите установить Numpy и Scipy, которые используют MKL, следует использовать (en) intel-numpy вместо numpy и intel-scipy вместо scipy :

У меня получилось установить intel-numpy и intel-scipy только в виртуальном окружении с Python 3.6. Если вы хотите использовать Numpy и Scipy с MKL в окружении с Python 3.7, необходимо использовать команду:

Если вы не уверены, что ставить, используйте просто numpy и scipy .

Если в процессе установки через pip возникнут ошибки, попробуйте установить проблемные пакеты через conda . Пример:

Выход из виртуального окружения Python

После того, как установка завершена, необходимо выйти из виртуального окружения. Для этого в командной строке наберите*:

*Раньше я набирал просто deactivate , но это почему-то устарело, и надо набирать conda.bat deactivate . Даже conda deactivate будет неправильно.

Подготовка портативной сборки Jupyter к запуску

Создадим несколько .bat файлов, которые будут заставят Jupyter и Matplotlib хранить настройки в папке dist\config , а также будут управлять запуском Jupyter Notebook и Jupyter Lab.

Настройка переменных окружения для Jupyter, IPython и Matplotlib

Каталоги размещения настроек определяются переменными среды Windows. Изменив эти переменные, мы заставим Jupyter и Matplotlib хранить свои файлы там, где это нужно именно нам. В папке C:\Dev\Jupyter\dist создайте файл setenv.bat следующего содержания:

Разберём, что делается в этом файле.

Команда @echo off необходима для того, чтобы в командной строке не выводилось сообщение при выполнении каждой строки нашего файла.

Команда set создаёт переменную. Конструкция %

dp0 означает полный путь к setenv.bat . Обратите внимание, что пробелов до и после знака = быть не должно.

Затем мы настраиваем переменные для Jupyter:

  • JUPYTER_CONFIG_DIR — папка для файлов конфигурации Jupyter (документация (en) ),
  • JUPYTER_DATA_DIR — папка для устанавливаемых файлов данных (расширения и ядра ( kernel ) для Jupyter) (документация (en) ),
  • JUPYTER_RUNTIME_DIR — папка для исполняемых файлов Jupyter ( runtime files ) (документация (en) ),
  • IPYTHONDIR — папка для файлов конфигурации IPython (документация (en) ),
  • MPLCONFIGDIR — папка, где Matplotlib хранит свои настройки и кэш (документация (en) ).

Если вы планируете создавать анимации с Matplotlib, вам понадобится FFMPEG (ru) . Я скачиваю (en) zip архив FFMPEG, распаковываю его содержание C:\Dev\Jupyter\dist\apps\ffmpeg .

Строка, которая начинается с REM — комментарий. Matplotlib почему-то ищет FFMPEG только в %PATH% . Я записываю путь к FFMPEG в начало %PATH , а не в его конец, чтобы при поиске первым нашёлся тот FFMPEG, который я положил в dist\apps .

Создание файла для запуска Jupyter с настройками пользователя

В папке C:\Dev\Jupyter\dist создайте файл run_jupyter_notebook.bat следующего содержания:

Аналогично, в папке C:\Dev\Jupyter\dist создайте файл run_jupyter_lab.bat следующего содержания:

Каждый из этих файлов сначала выполняет setenv.bat , т.е. настраивает переменные окружения, потом запускает Jupyte Notebook или Jupyter Lab и указывает ему, где папка с нашими файлами для проекта.

Предположим, что есть папка D:\my-projects , в которой мы будем хранить файлы Jupyter Notebook или Lab. В этой папке создайте ярлыки на файлы run_jupyter_notebook.bat и run_jupyter_lab.bat . После этого в обязательном порядке откройте свойства каждого из этих ярлыков и сделайте пустой строку «Рабочая папка». Если вы этого не сделаете — Jupyter не увидит вашу папку!

После того, как это сделали, можете кликнуть дважды по любому из ярлыков. Сначала появится новое окно командной строки, потом откроется браузер по умолчанию и в нём запустится Jupyter Notebook или Lab в новой вкладке. Поздравляю: квест пройден!

Дополнительные файлы для выполнения служебных действий

Для Jupyter Notebook написаны расширения (о них будет подробнее в части 2). Но их недостаточно установить. Их ещё надо активировать. Согласно документации, вам нужно сделать следующее (не выполняйте эту команду!):

Но мы не можем выполнить команду в таком виде, потому что настройки окажутся вне портативной сборки. Мы должны сделать иначе:

Чтобы упростить себе задачу, мы можем в папке C:\Dev\Jupyter\dist создать файл enable_extension.bat следующего содержания:

В итоге наша запись в окне командной строки сократится и станет такой:

Если вам время от времени в окне команд нужно запускать различные действия с jupyter , можно создать в папке C:\Dev\Jupyter\dist файл jupyter.bat следующего содержания:

Аналогично можно сделать для запуска IPython и других случаев.

Заключение

Часть 1 подошла к концу. Мы создали полностью портативную и переносимую сборку Jupyter и можем работать с файлами, которые лежат в нужной нам папке. Для этого создаём ярлыки на run_jupyter_notebook.bat и run_jupyter_lab.bat , в свойствах ярлыков обязательно очищаем строку Рабочая папка», и всё готово к работе.

В части 2 будут рассмотрены различные вопросы кастомизации Jupyter Notebook, Jupyter Lab и Matplotlib. Научимся подключать расширения в Jupyter Notebook и Jupyter Lab, настраивать сочетания клавиш, размер шрифта и прочие настройки, напишем свои «магические команды».

Если у вас остались вопросы, но нет аккаунта на Хабре, вот мои контакты:

источник

Добавить комментарий