Меню Рубрики

Установка каталитического риформинга сырье и продукты

Каталитический риформинг

Каталитический риформинг-каталитическая ароматизация

Каталитический риформинг (от англ. to reform — переделывать, улучшать) — каталитическая ароматизация (повышение содержания аренов в результате прохождения реакций образования ароматических углеводородов), относящаяся наряду с каталитической изомеризацией лёгких алканов к гидрокаталитическим процессам реформирования нефтяного сырья.

Проще говоря, риформинг — это переработка бензиновых и лигроиновых фракций нефти для получения автомобильных бензинов, ароматических углеводородов и водородсодержащего газа.

Основными целями риформинга являются:

повышение октанового числа бензинов с целью получения неэтилированного высокооктанового бензина;

получение ароматических углеводородов (аренов);

получение водосодержащего газа для процессов гидроочистки, гидрокрекинга, изомеризации и т. д.

Жидкие продукты (риформат) можно использовать как высокооктановый компонент автомобильных и авиационных бензинов или направлять на выделение ароматических углеводородов, а газ, образующийся при риформинге, подвергают разделению.

Высвобождаемый при этом водород частично используют для пополнения потерь циркулирующего водородсодержащего газа и для гидроочистки исходного сырья, но большую же часть водорода с установки выводят.

Такой водород значительно дешевле специально получаемого.

Именно этим объясняется его широкое применение в процессах, потребляющих водород, особенно при гидроочистке нефтяных дистиллятов.

Кроме водородсодержащего газа из газов каталитического риформинга выделяют сухой газ (C1 – С2 или С1 – С3) и сжиженные газы (С3 – С4); в результате получают стабильный дебутанизированный бензин.

В ряде случаев на установке (в стабилизационной секции) получают стабильный бензин с заданным давлением насыщенных паров.

Это имеет значение для производства высокооктановых компонентов автомобильного или авиационного бензина.

Для получения товарных автомобильных бензинов бензин риформинга смешивают с другими компонентами (компаундируют).

Смешение вызвано тем, что бензины каталитического риформинга содержат 60 – 70% ароматических углеводородов и имеют утяжеленный состав, поэтому в чистом виде они непригодны для использования.

В качестве компаундирующих компонентов могут применяться легкие бензиновые фракции прямой перегонки нефти, изомеризаты и алкилаты.

Поэтому для увеличения производства высокооктановых топлив на основе бензинов риформинга необходимо расширять производства высокооктановых изопарафиновых компонентов.

Октановые числа ароматических углеводородов:

Углеводород исслед-ое моторное дорожное

Бензол (Ткип 80°С) 106 88 97

Толуол (Ткип 111°С) 112 98 105

пара-Ксилол (Ткип 138°С) 120 98 109

мета-Ксилол(Ткип 139°С) 120 99 109,5

oртo-Ксилол (Ткип 144°С) 105 87 96

Этилбензол (Ткип 136°С) 114 91 102,5

Сумма ароматики С9 117 98 107,5

Сумма ароматики С10 110 92 101

Различают риформинг термический и под давлением Н2 в присутствии катализатора.

Термический риформинг широко применяли ранее только для производства высокооктановых бензинов.

Основные реакции: дегидрогенизация и дегидроизомеризация нафтеновых углеводородов, деалкилирование и конденсация ароматических углеводородов.

Переработку бензино-лигроиновых фракций (пределы выкипания 60-180 °С) проводили в трубчатых печах при 530-560 °С и 5-7 МПа.

Недостаток процесса — невысокие выходы целевого продукта вследствие больших потерь сырья в виде газа и кокса, а также сравнительно высокое содержание непредельных углеводородов в бензине, что снижает его стабильность и приемистость к тетраэтил-свинцу.

Поэтому, несмотря на простоту аппаратурного оформления, данный процесс практически полностью вытеснен каталитическим риформингом.

Образование ароматических углеводородов происходит в результате следующих реакций:

дегидрирование шестичленных циклоалканов:

метилциклогексан в толуол

диметилциклогексан в ксилол

дегидроциклизация парафиновых углеводородов

гидрокрекинг с образованием жирных газов;

Процессы каталитического риформинга осуществляются в присутствии бифункциональных катализаторов — платины, чистой или с добавками рения, иридия, галлия, германия, олова, нанесенной на активный оксид алюминия с добавкой хлора.

Платина выполняет гидрирующие-дегидрирующие функции, она тонко диспергированна на поверхности носителя, другие металлы поддерживают дисперсное состояние платины. Носитель — активный оксид алюминия обладает протонными и апротонными кислотными центрами, на которых протекают карбонийионные реакции: изомеризация нафтеновых колец, гидрокрекинг парафинов и частичная изомеризация низкомолекулярных парафинов и олефинов. Температура процесса 480-52 0 С, давление 15-35 кгс.

Читайте также:  Установка гнб управляемого прокола ditch witch р80

Следует отметить, что большое содержание ароматических углеводородов в бензине плохо сказывается на эксплуатационных и экологических показателях топлива.

Повышается нагарообразование и выбросы канцерогенных веществ.

Особенно это касается бензола, при сгорании которого образуется бензопирен- сильнейший канцероген.

Для нефтехимии риформинг — один из главных процессов.

Сырьём для полистирола является стирол продукт риформинга.

Каталитический риформинг стал одним из ведущих процессов нефтеперерабатывающей и нефтехимической промышленности.

С его помощью удается улучшать качество бензиновых фракций и получать ароматические углеводороды, особенно из сернистой и высокосернистой нефти.

В последнее время были разработаны процессы каталитического риформинга для получения топливного газа из легких углеводородов.

Возможность выработки столь разнообразных продуктов привела к использованию в качестве сырья не только бензиновых фракций прямой перегонки нефти, но и других нефтепродуктов.

До массового внедрения каталитического риформинга применялся термический риформинг и комбинированный процесс легкого крекинга тяжелого сырья (мазута,полугудрона и гудрона) и термического риформинга бензина прямой перегонки.

В дальнейшем термический риформинг прекратил свое существование ввиду низких технико-экономических показателей по сравнению с каталитическим.

При термическом риформинге выход бензина на 20-27% меньше и октановое число его а 5-7 пунктов ниже, чем при каталитическом риформинге.

Кроме того, бензин термического риформинга нестабилен.

Процесс каталитического риформинга осуществляют при сравнительно высокой температуре и среднем давлении, в среде водородсодержащего газа.

Каталитический риформинг проходит в среде газа с большим содержанием водорода (70-80 объемн. %).

Это позволяет повысить температуру процесса, не допуская глубокого распада углеводородов и значительного коксообразования.

В результате увеличиваются скорость дегидрирования нафтеновых углеводородов и скорости дегидроциклизации и изомеризации парафиновых углеводородов.

В зависимости от назначения процесса, режима и катализатора в значительных пределах изменяются выход и качество получаемых продуктов.

Однако общим для большинства систем каталитического риформинга является образование ароматических углеводородов и водородсодержащего газа.

Назначение процесса каталитического риформинга, а также требования, предъявляемые к целевому продукту, требуют гибкой в эксплуатации установки.

Необходимое качество продукта достигается путем подбора сырья, катализатора и технологического режима.

Получаемый в процессе каталитического риформинга водородсодержащий газ значительно дешевле специально получаемого водорода; его используют в других процессах нефтепереработки, таких, как гидроочистка и гидрокрекинг.

При каталитическом риформинге сырья со значительным содержанием серы или бензинов вторичного происхождения, в которых есть непредельные углево­дороды, катализатор быстро отравляется.

Поэтому такое сырье перед каталитическим риформингом целесообразно подвергать гидроочистке.

Это способствует большей продолжительности работы катализатора без регенерации и улучшает технико-экономические показатели работы установки.

источник

Сырье и продукты каталитического риформинга.

В качестве сырья для каталитического риформинга обычно ис­пользуют бензиновые

фракции первичной перегонки нефтей. Пределы выкипания этих фракций

колеблются в широком интервале— от 60 до 210°С. Для получения ароматических

углеводородов в большей части используют фракции, выкипающие при 60— 105 или

при 60—140°С, а для получения высокооктановых автомобильных бензинов —

фракции 85—180 °С. Иногда широкую фракцию, выделяемую на установке первичной

перегонки нефти, дополнительно разгоняют на более узкие фракции на

установках вторичной перегонки.

На рис. 61 показана зависимость октанового числа бензина от его выхода при

каталитическом риформинге различных фракций (62—140, 85—140 и 105—140°С),

полученных при первичной перегонке сернистых нефтей. С утяжелением сырья в

пределах 85— 140 °С уменьшается содержание ароматических углеводородов и

несколько снижается октановое число бензинов. Важно подчерк­нуть, что между

выходом бензина при риформинге и его октановым числом существует определенная

зависимость — с повышением октанового числа (независимо от метода определения)

выход бензина уменьшается. Эта же зависимость подтверждается данными

Читайте также:  Установка камеры на шевроле круз универсал

приведенными на рис. 62 и 63. Сопоставление результатов рифор-минга фракций

85—140 °С (при 20 ат) и 140—180 °С (при 40 ат) с результатами

риформинга широкой фракции 85—180 °С при 20 ат показывает, что в случае

риформинга фракции 85—180 °С выход бензина с октановым числом 95 (по

исследовательскому методу) возрастает на 2—2,5%.

Однако раздельный риформинг бензиновых фракций имеет не­которые преимущества:

большая продолжительность работы катализатора без регенерации, лучшая

маневренность в работе и т. Д. Поэтому выбор того или иного варианта

получения высокооктанового бензина определяется с учетом конкретных условий

работы нефтеперерабатывающего завода. Весьма важно учитывать возможность и

целесообразность получения ароматических углеводородов.

Продукты каталитического риформинга.

В процессе каталитического риформинга образуются газы и жидкие продукты

(риформат). Риформат можно использовать как высокооктановый компонент

автомобильных и авиационных бензинов или направлять на выделение

ароматических углеводородов, а газ, образующийся при риформинге, подвергают

Высвобождаемый при этом водород частично используют для пополнения потерь

циркулирующего водородсодержащего газа и для гидроочистки исходного сырья

(если она есть), но большую же часть водорода с установки выводят.

Такой водород значительно дешевле специально получаемого. Именно этим

объясняется его широкое применение в процессах, потребляющих водород,

особенно при гидроочистке нефтяных дистиллятов..

Кроме водородсодержащего газа из газов каталитического ри­форминга выделяют

сухой газ (C1—С2 или С1—С3) и

сжиженные газы (Сз—С4); в результате получают стабильный

В ряде случаев на установке (в стабилизационной ее секции) получают

стабильный бензин с заданным давлением насыщенных паров. Это имеет значение

для производства высокооктановых компонентов автомобильного или авиационного

бензина. Для получения товарных автомобильных бензинов бензин риформинга

смешивают с другими компонентами (компаундируют). Смешение вызвано тем, что

бензины каталитического риформинга содержат 60—70% ароматических

углеводородов и имеют утяжеленный состав, поэтому в чистом виде они

непригодны для использования. В качестве компаундирующих компонентов могут

применяться легкие бензиновые фракции (н. к. 62 °С) прямой перегонки нефти,

изомеризаты и алкилаты. Поэтому для увеличения производства высокооктановых

топлив на основе бензинов риформинга необходимо расширять производства

высокооктановых изопарафиновых компонентов. В табл. 21 приведены данные о

составе высокооктановых автомобильных бензинов, полученных компаундированием

соответствующих фракций каталитического риформинга и изопарафиновых

Для получения автомобильного бензина с октановым числом 95 (по

исследовательскому методу) риформинг-бензин должен иметь октановое число на

2—3 пункта больше. Это компенсирует уменьшение октанового числа бензина при

разбавлении его изопарафиновыми компонентами.

С увеличением количества изокомпонента чувствительность бен­зина (разница в

его октановых числах по исследовательскому и моторному методам) снижается,

так как октановые числа чистых изопарафиновых углеводородов по моторному и

исследовательскому методам практически совпадают

Было установлено, что подвергать изомеризации н-гексан, вы­деленный из

рафината каталитического риформинга, нецелесообразно. Лучше получать

изокомпонент из пентановой фракции бензина прямой перегонки нефти и выделять

изогексановую фракцию из рафината каталитического риформинга.

Катализаторы риформинга.

Дата добавления: 2018-08-06 ; просмотров: 179 ;

источник

Сырьё, параметры и продукты каталитического риформинга.

На установках каталитического риформинга получают углеводородный газ, ароматизированный бензин (стабильный катализат риформинга), водородсодержащий газ. Выход и состав продуктов процесса зависят от свойств катализатора, исходного сырья и взаимосвязанных параметров процесса: температуры, давления, объемной скорости подачи сырья, кратности циркуляции водородсодержащего газа по отношению к сырью.

Сырье процесса риформинга и его подготовка.

В качестве сырья каталитического риформинга применяют бензиновые фракции с началом кипения 60˚С и выше и концом кипения не выше 180˚С. Фракции, выкипающие ниже 60˚С, нет смысла подвергать риформированию, так как в них не содержится ни циклоалканов, ни алканов, способных перейти в арены (ароматические углеводороды), а есть только углеводороды с числом атомов углерода менее шести, превращающиеся в условиях процесса в углеводородный газ. Это балластные фракции, повышающие нагрузку установки, увеличивающие выход газа, при этом на газообразование расходуется водород. Утяжеление фракционного состава сырья выше 180˚С приводит к росту скорости отложения кокса на катализаторе, вследствие чего сокращается его срок службы.

Читайте также:  Установка каркасной теплицы из поликарбоната

В зависимости от назначения установки применяют бензиновые фракции с различными пределами выкипания. Для производства высокооктанового компонента бензина используют фракции 85 — 180˚С и 105 — 180˚С; для получения индивидуальных углеводородов: бензола — фракцию 60 — 85˚С, толуола — 85 -105˚С, ксилолов — 105 — 140˚С; смеси бензола, толуола, ксилолов — 62 — 140˚С, а при одновременном получении и аренов и высокооктанового бензина — фракцию 62 — 180˚С.

Углеводородный состав сырья оказывает влияние на выход катализата риформинга и содержание в нем аренов, а также на выход водорода в процессе риформинга и на тепловой эффект реакции. Чем больше циклоалканов и аренов содержится в сырье, тем выше выход бензина риформинга. Это связано с тем, что скорость реакций дегидрирования циклоалканов во много раз больше скорости дегидроциклизации алканов. В результате на катализаторе в первую очередь протекают превращения нафтеновых углеводородов (рис 5.2).

В ряду циклогексаны, циклопентаны и алканы скорость ароматизации снижается. При одних и тех же условиях циклогексаны успевают превратиться в ароматические углеводороды практически полностью, в то время как циколопентаны и алканы всего на 10-15 % (рис. 5.3). В результате чего в первом реакторе риформинга в основном протекает реакция дегидрирования нафтеновых углеводородов.

Легкие фракции имеют незначительное содержание нафтеновых и ароматических углеводородов и, следовательно, высокое содержание алканов С6. Их циклизация более сложна, чем циклизация алканов С7 или С8 (рис. 5.4).

того, пятичленные нафтеновые углеводороды тем быстрее подвергаются ароматизации, чем больше атомов углерода входит в состав их молекул (рис. 5.5).

Отсюда, при постоянных параметрах процесса, чем ниже начальная точка кипения сырья, тем ниже выход водорода и ароматических углеводородов (соответственно ниже октановое число катализата). Для поддержания определенного октанового числа катализата риформинга при облегчении сырья параметры процесса должны быть жестче (выше температура и ниже давление).

Тяжелые фракции имеют высокое содержание нафтеновых и ароматических углеводородов, поэтому для получения хороших результатов при их риформинге не требуется жесткого режима работы. Однако в этих фракциях присутствует больше полициклических соединений, увеличивающих вероятность отложения кокса на катализаторе.

Перед проведением процесса сырье необходимо предварительно подготовить. Содержание в сырье сернистых соединений должно быть минимальным. Наиболее чувствительны к ним платиновые катализаторы. Помимо их дезактивации, выражающейся в снижении октанового числа получаемого бензина и выхода ароматических углеводородов, в присутствии сернистых соединений наблюдается усиление крекирующих (расщепляющих) свойств катализатора. Это проявляется в процессе работы в повышенном выходе газа и кокса.

Органические соединения азота в условиях риформинга реагируют с образованием аммиака. Адсорбируясь на кислотных центрах и блокируя их, аммиак подавляет все реакции, протекающие с участием кислотных центров катализатора, в том числе и реакции дегидроциклизации парафинов.

Подготовка сырья риформинга включает ректификацию и гидроочистку. Ректификация используется для выделения определенных фракций бензинов в зависимости от назначения процесса. При гидроочистке из сырья удаляют примеси (сера, азот и др.), отравляющие катализаторы риформинга. При переработке бензинов вторичного происхождения их подвергают также гидрированию для удаления непредельных углеводородов. Важное значение при этом имеют способы хранения сырья, которые во многих случаях определяют работоспособность оборудования и катализаторов блоков гидроочистки.

источник

Добавить комментарий

Adblock
detector