Меню Рубрики

Установка кулера socket 775 на am3

Как подружить несовместимое или устанавливаем кулер АМ3 на Socket 478

Итак — все началось с того что в последнее время такое явление как ретроклокинг приобрело большую популярность среди меня.

Благо древнее железо стоит копейки а при удаче берется «на вес»! Но как в каждой бочке меда и тут кроется своя ложка дегтя! Поскольку, если не рассматривать аутентичные сборки, то для того чтобы длительное время (хотя бы несколько часов) наслаждаться старым железом его желательно чем то охладить. И тут нас поджидает засада, ибо выбор приличных кулеров беден как церковная мышь! Сужу конечно по себе, но право же — слушать завывания 50-60мм вентилей 15летней выдержки это мазохизм чистой воды! Таким образом, если вы не относитесь к вышеприведенной категории, то столкнувшись с проблемой начнете оглядываться по сторонам с мыслью: А чтобы туда можно было поставить?!»

И не смотря на первоначальный разбег глаз, приколхозить хоть что то современное не так то просто. На мой взгляд Socket 478 один из самых неудобных в этом плане, т.к. под его стоковую рамку не подходит ни один современный кулер, и даже крепежные отверстия расположены не кошерным прямоугольником.

Кроме этого у этого сокета есть еще одна проблема — это сильный прогиб платы обусловленный чрезмерным прижимом «родных» кулеров. Суть в том что пружинящим элементом в связке кулер-сокет выступал исключительно текстолит матери. Хз за каким штеудом это было придумано, но за расчет усилия прижима явно надо было по увольнять допустивших такой косяк! Поэтому, кроме собственно крепления кулера была поставлена задача сделать бэкплейт, но об этом будет во 2й части.

реклама

Итак с целями я определился, теперь встал выбор под какой сокет делать переходник? 775, 1055 или ам3? Впрочем, после первых прикидок 775 и 1155 отсеялись из-за частичной несовместимости и на повестке дня остался последний кандидат — АМ3! Даже странно но именно красный сокет практически идеально совпал по габаритам с 478! Единственное что не вписалось это боковины рамки соединяющие крепления. Естественно мне хотелось максимально использовать элементы крепления сокета АМ3 для уменьшения колхоза и снижения трудозатрат. Сперва я хотел отрезать ушки ам3 и прикрутить оставшееся мясо к плате, но примерка на местности показала что достаточно «перекомпоновать» крепеж и ушки отлично подойдут к 478. В качестве стапеля использован бакплейт от древнего серверного кулера но с тем же успехом можно воспользовать стоковый пластиковый если из него вытащить «грибки».

Во исполнение решений партии имени меня под топор, а вернее ножовку пошла правоверная (красная) рамка АМ3. Вот тут показаны линий по которым было произведено расчленение.

Затем отчекрыженные ушки заняли свое место на стапеле (бэкплейте) а центральную часть я немного подточил чтобы она вошла. Некоторое время отняла примерка запасной рамки ам3 к стапелю, дабы совместить несовместимое. Но наконец в голове «все сошлось» и я закрепил получившееся сочетание деталей паяльником.

На этом творческая часть работы закончилась и пошла рутина. При помощи все того же паяльника и некоторого количества пластика от рамки я нарастил «мясо» новой 478/ам3 рамки а полученное привел напильником в надлежащий вид. Повторил все перечисленное со вторым креплением. Далее при установке меня поджидала небольшая засада: между отверстиями в мамке располагалась микросхема на которую легло крепление, пришлось подточить (крепление).

источник

Установка кулера от Socket775 на Socket478

Наступило время навести порядок внутри системного блока. Шум от вентиляторов системы охлаждения процессора и видеокарты уже давно начал доставать своей назойливостью, особенно ночью. Даже при систематическом техобслуживании вентиляторов (чистка, смазка и т.п.), за 3 года своей работы они устарели как физически так и морально, требовались координальные меры по модернизации.
Как известно процессоры Pentium 4, даже младшие модели, выделяют большое количество тепла, компьютеру оно ни к чему, разве что греться от него, как это делает моя кошка
Избавиться от вентиляторов вообще путем установки системы водяного охлаждения (СВО) в данном случае нет смысла. Пришлось пойти путем модернизации воздушной системы охлаждения.

Итак Стратегия:
Снижение шума от вентиляторов, путем снижения их оборотов. В связи с этим вентиляторы должны быть большей производительности. Было принято решение использовать вентиляторы 92×92 мм, хотя сначала была идея использовать 120 мм. вентиляторы. Но при разнице в цене в 2,5 раза я отказался от последних. А так же по возможности снижение тепловых режимов процессора.

В продаже не нашлось кулера под Socket 478 с вентилятором 92×92 мм, самый большой был 80×80 мм. Поэтому сразу возникла идея поставить кулер от Socket 775.
Для подтверждения своих намерений воплощения идеи в реальность идем в сеть. На сайте производителя нашего процессора нашлась спецификация на процессор под Socket 478 ( http://developer.intel.com/design/Pentium4/datashts/25216101.pdf) и Socket 775 ( http://developer.intel.com/design/Pentium4/datashts/30255301.pdf).
В спецификации есть чертежи креплений кулера. После приведения их к одинаковому масштабу и наложения один на другой получилось замечательно:


Наложение чертежей креплений кулеров

Смотрим:… не совпадают (я бы удивился, если бы совпали ). Дальше смотрим на размер кулера под Socket 775 он всего на 4 мм с каждой стороны больше рамки Socket 478. Там стоят конденсаторы…, но их можно наклонить путем выпаивания одной из ножек.

После моральной подготовки был приобретен кулер GlicialTech Igloo 5050; for Prescott 3.40 GHz, Socket LGA775. Это один из недорогих кулеров под Socket 775 с вентилятором 92 мм. Частота вращения 2800 rpm; шум 32 dBA. При уменьшении частоты вращения до 2000 rpm шум снижается значительно.

Итак, приступаем. Достаем материнскую плату из корпуса.


Подопытный Socket.

Снятый боксовый кулер отличается от приобретенного, но было бы слишком просто взять и заменить кулер без переделок.


Отличия существенны, крепления тоже отличаются

Решение принято однозначно: ставить. Уже прошла моральная подготовка и куплен кулер. Далее нужно снять рамку с нашего Socketa. Для этого нужно выдавить фиксаторы из креплений. После чего рамка свободно удаляется.


Для снятия рамки выдавливаем фиксаторы

Теперь конденсаторы. Те, которые находятся справа нужно немного наклонить (помните 4 мм разницы). Для этого, выпаивая одну из его ножек нужно одновременно наклонять конденсатор, чтобы он не мешал новому кулеру. Главное не переусердствовать, не сломать конденсатор. И перегревать плату тоже не рекомендуется. Современные материнские платы многослойные и сильный перегрев может ее повредить.


Конденсаторы нужно наклонить

Далее для того, чтобы новый кулер встал на место старого, нужно переделать его крепление. Подогнуть существующее крепление нового кулера не представляется возможным ввиду очень крепкой сталюки последнего.
Как видно из чертежей Intelа отверстия крепления не совпадают настолько, что места крепления кулера на Socket 478 находятся между ногами кулера Socket 775. Используя это, было решено установить пластины между лапами нового кулера, за которые его и прикрепить его. Для этого на совмещенном чертеже кулера была набросана эта пластина. Самое главное соблюсти указанные на эскизе размеры ( с точностью до 1 мм.). А остальные на ваше усмотрение. Ширина пластины около 10 мм., закругления тоже не критичны, здесь можно побороться за внешний вид.

Читайте также:  Установка жалюзи на евроокна


Пластина – переходник

Материал для пластины: акрил толщиной 3 мм (Оргстекло, плекс). Следовательно, инструмент для него: лобзик. Кто не знает, лобзик — это такая железяка в форме дуги с ручкой и натянутой пилочкой, для выпиливания фигурных деталей. Пилочками нужно запастись заранее, так как без опыта можно сломать и десяток.

Далее из акрила были вырезаны пластины по набросанным размерам. Для снижения напряжения на материнскую плату, заодно была вырезана и подкладка под крепления кулера, для установки ее под материнскую плату и снятия напряжения нагрузки креплений. Детали после выпиливания отшлифованы наждачной бумагой, сначала крупной а затем мелкой. После чего отполированы пастой ГОИ. Снимать защитную пленку с акрила рекомендуется только после всех операций механической обработки. Поэтому только после шлифовки торцов деталей можно снимать защитную пленку.


Готовые пластины и подкладка

Чтобы исключить возможность повреждения материнской платы креплениями нового кулера, а это возможно из-за разнесенных в стороны ног, винты, которыми крепятся пластины к новому кулеру нужно утопить в потаи. Для этого ножках, сверлом диаметром 8 мм., делаются потаи под винт с конусной головкой.

Все готово к сборке. Можно прикручивать вырезанные пластины к ножкам кулера. Винт с конусной головкой, гайка сверху.


Пластина прикрученная к ножке кулера


Гайка сверху.

Для установка нового кулера на материнскую плату снизу под процессор ставим пластину для разгрузки, и используем длинные винты. Можно было использовать винты М3×20, но на момент покупки таких в продаже не было, и я использовал М3×30. Затягивать винты нужно по диагонали, для равномерного распределения нагрузок.


Для разгрузки материнской платы нужно использовать пластину


Гайка сверху. Кулер из под Socket 775 «встал» на Socket 478

Затягивать гайки нужно умеренно, чтобы не сломать материнскую плату, но и не нужно допускать ослабления. Неплотное прилегание кулера к процессору может негативно сказаться на охлаждении и свести все усилия на нет.


Главное не перетянуть

Итак, результат: кулер из под Socket 775 «встал» на Socket 478.

PS: Перед установкой кулера поверхность процессора была немного прошлифована при помощи кожи и пасты ГОИ до зеркального блеска. Для шлифовки я использую отрезок старого кожаного ремня, а точнее его изнаночную сторону. Термопаста использовалась та, которая была нанесена на кулер его производителем.

В результате получился более производительный кулер с 92 мм. вентилятором и системой термоконтроля.


Новый кулер на старом месте

Температура процессора в процессе покоя составляет 44*С (до переделки – 45*С), частота вращения вентилятора при этом 900rpm. Во время загрузки процессора температура не поднималась выше 56*С (до переделки наблюдались значения 61*С), при этом вентилятор вращался со скоростью 2350rpm. В этом режиме его уже слышно, но меньше чем на максимальных 2800rpm, и тем более меньше чем 3-х летний боксовый кулер.

Для стабилизации тепловых режимов в боковую стенку, напротив процессорного кулера, врезан 80 мм вентилятор, который нагнетает воздух внутрь корпуса. Для контроля температуры и режимов работы вентиляторов использовалась утилита, поставляемая вместе с материнской платой.

Выводы: установка нового кулера дала заметное (даже очень) снижение шума процессорного кулера. Температурные режимы при этом практически не изменились. Это связано с тем, что при более производительном вентиляторе его частота вращения занижена. Для снижения тепловых режимов нужно использовать кулер с медной вставкой, или поднимать частоту вращения вентилятора, что не соответствует выбранной стратегии.
Так же было получена масса удовольствия и занято несколько вечеров на модернизацию и написание этой статьи. А кошка по прежнему приходит погреется на системном блоке, видимо ей пришлось по душе тепло от процессоров Intel.

источник

Бюджетные кулеры под LGA775

Когда речь заходит о кулерах бюджетного класса для платформы Intel LGA775, всю многосложную ситуацию в этом секторе можно охарактеризовать одним емким и достаточно простым словом. Это слово — дефицит. И пусть дефицит, как таковой, здесь скорее ассортиментный, чем количественный — выбор фасонов и моделей кулеров экономичного толка, конечно, очень узок, но на всех желающих их худо-бедно хватает — корневая суть дела не меняется. Так уж повелось с доисторических времен: компания Intel всегда старалась ответственно относиться к вопросу снабжения своих «коробочных» процессоров удобоваримыми системами охлаждения, чем фактически стимулировала ограничение интереса к выпуску бюджетных моделей в стане ведущих брендов кулеростроения. Сегодня Intel продолжает идти по уже проторенному пути, и результат этого движения, как говорится, налицо — желающих попробовать свои силы в низкорентабельной и высококонкурентной отрасли производства бюджетных систем охлаждения становится все меньше и меньше. Отсюда также «растут ушки» и у другого весьма показательного действа — повального увлечения «клонированием» дизайна боксового кулера. Суть проста — вендоры нынче предпочитают особо не вкладываться в НИОКР: в лучшем случае они адаптируют референсный дизайн под свои технические реалии, а в худшем — просто закупаются референсными радиаторами у контрактников, прикрепив вентилятор с собственным лейблом (производства все тех же хорошо известных мега-мануфактур континентального Китая).

Однако, несмотря на то, что в категории бюджетных кулеров под LGA775 рынок явно не балует пользователя богатым ассортиментом, здесь все-таки есть на что посмотреть и к чему прицениться. Дабы прояснить этот момент, сегодня в наш фокус мы помешаем 11 моделей кулеров, в большей или меньшей степени альтернативных «боксовым» вариантам — 5 моделей серии CI5-9HDPA и CI5-9JD3A от Cooler Master, 4 модели серии Igloo 5071 от GlacialTech, а также 2 модели серии LeopardStream от Speeze. Что же, приступим!

Cooler Master CI5-9HDPA-0L и CI5-9HDPA-01

Первыми в сегодняшней повестке дня значатся два бюджетника от Cooler Master — модели CI5-9HDPA-0L и CI5-9HDPA-01. Эти кулеры во многом типичны для своего сектора — базируются на алюминиевом радиаторе 90х37 мм с радиальной конфигурацией оребрения, оборудованы вентилятором типоразмера 92х25 мм и оснащены крепежной системой референсного дизайна.

Пожалуй, главная достопримечательность серии CI5-9HDPA — это комбинированная медно-алюминиевая конструкция радиатора, которая облагорожена медным сердечником 30х29 мм (диаметр пятки 38 мм), запрессованным в основание оребрения. Технические параметры собственно самого оребрения также вполне пристойные: радиатор насчитывает 84 ребра толщиной в среднем 0,6 мм и шагом 0,8 мм в основании, общая площадь поверхности теплообмена составляет около 1850 см 2 .

В части технико-эксплуатационных свойств бюджетники CI5-9HDPA-0L и CI5-9HDPA-01 практически идентичны «боксовому» кулеру: фиксация радиатора в монтажных отверстиях материнской платы осуществляется посредством специализированных пластиковых замков-кембриков, со всеми плюсами и минусами такой инсталляции (положительным моментом может служить удобство установки и демонтажа, а отрицательным — не слишком плотная посадка кулера в сокет). Дополнительным эксплуатационным подспорьем здесь становится предустановленный термоинтерфейс, причем, надо отметить, весьма достойного качества (теплопроводный наполнитель — композиция оксида кремния и нитрида бора).

Читайте также:  Установка net framework 2008r2

Неплохо выглядят эти кулеры и в плане показателей тепловой эффективности, соперничают с медно-алюминиевым «боксовым» вариантом вполне успешно: модель CI5-9HDPA-01 (номинальная скорость вращения крыльчатки 3000 об/мин) идет практически вровень с «боксовым» кулером, но при этом демонстрирует существенно более низкий уровень шума, другая модель — CI5-9HDPA-0L (номинальная скорость вращения крыльчатки 2200 об/мин), уже ни на йоту не уступает утихомиренному «боксовику», и по шумовым характеристикам оказывается даже более эргономичной, обставляя его в соотношении эффективность-шум.

Cooler Master CI5-9JD3A-0L, CI5-9JD3A-01 и CI5-9JD3A-PL

Три представителя новой бюджетной линейки от Cooler Master — кулеры CI5-9JD3A-0L, CI5-9JD3A-01 и CI5-9JD3A-PL, основываются практически на том же дизайн-концепте, что и их прародители серии CI5-9HDPA. Обновленные модели имеют в своем составе идеологически идентичный радиатор с медным сердечником и комплектуются схожими вентиляторами типоразмера 92х25 мм со скоростью вращения крыльчатки 2200, 3000 и 4200 об/мин. Но вместе с тем, они привносят ряд дополнений и усовершенствований (в частности, модель с суффиксом «PL» теперь позволяет варьировать обороты вентилятора от 2000 до 4200 об/мин).

Генеральную реконструкцию в серии CI5-9JD3A претерпел крепеж — вместо референсной системы здесь используется специализированное винтовое крепление: кулеры укомплектованы вспомогательной пластиной-супинатором, которая монтируется на обороте материнской платы и фиксирует радиатор в сокете с помощью четырех установочных винтов. Такой способ инсталляции, по сравнению с референсным, эксплуатационного удобства, конечно, не добавляет — чтобы успешно провести установку, повозиться придется весьма и весьма основательно. Но в техническом плане крепеж CI5-9JD3A обеспечивает по-настоящему плотную и основательную посадку кулера в сокет, с умощненным и оптимизированным усилием прижима, чем позволяет гарантировать улучшение качества термоконтакта подошвы радиатора и процессора.


Несколько видоизменился в серии CI5-9JD3A и сам радиатор, получив более укрупненные габариты (90х45 мм против 90х37 мм у CI5-9HDPA) и потяжелевший вес (530 г против 460 г у серии CI5-9HDPA). И хотя новые параметры оребрения получились скорее упрощенными, чем улучшенными (72 ребра со средней толщиной 0,8 мм), одновременно с этим был увеличен шаг размещения ребра (что естественным образом уменьшает гидравлическое сопротивление радиатора и облегчает его продуваемость), возросла также и общая площадь поверхности теплообмена (которая составляет здесь около 2000 см 2 ). Определенно, все это должно самым позитивным образом сказаться на улучшении термических характеристик CI5-9JD3A.

Практика полностью подтвердила наши оптимистичные предположения — кулеры серии CI5-9JD3A демонстрируют довольно-таки весомое преимущество перед своими предшественниками CI5-9HDPA в функциональном плане. Наибольших успехов добивается модель CI5-9JD3A-01 — этот кулер уверенно опережает «боксовый» вариант по тепловой эффективности, проявляя при этом гораздо более эргономичные шумовые характеристики. Очень неплохо смотрится и модель CI5-9JD3A-0L, которая совместно с приемлемыми термическими показателями показывает действительно низкий и эргономичный уровень шума. Модель CI5-9JD3A-PL тоже ведет себя в целом пристойно, однако действует уже с переменным успехом — кулер в тепловой эффективности не так значительно опережает собрата CI5-9JD3A-01, но вот по части шумовых характеристик демонстрирует излишнюю прыть, вплотную приближаясь к критической отметке 50 дБА. Очевидно, скорость вращения крыльчатки 4200 об/мин здесь является избыточной, что приводит к возникновению нежелательных рециркуляций потока и препятствует снижению термического сопротивления кулера.

GlacialTech Igloo 5071 Silent, Igloo 5071 Light, Igloo 5071 и Igloo 5071 PWM

Далее в нашем списке фигурирует новая бюджетная серия от GlacialTech — Igloo 5071, в состав которой входят модели Igloo 5071 Silent, Igloo 5071 Light, Igloo 5071 и Igloo 5071 PWM. Эти кулеры базируются на алюминиевом радиаторе 90х90х48 мм, оснащены вентиляторами типоразмера 90х90х25 мм и традиционно отранжированы по скорости вращения крыльчатки (1700, 2400, 2800 и 3800 об/мин соответственно). Модель с суффиксом «PWM» дополнительно снабжена схемой регулировки оборотов вентилятора (скорость вращения крыльчатки варьируется от 1000 до 3800 об/мин посредством системного мониторинга материнской платы).

По своей сути Igloo 5071 предстает продуктом развития (лучше даже сказать — доработки) технических идей, что были заложены в предшествующий модельный ряд серии Igloo 5070, причем как в косметическом плане (внешность новых кулеров стала более опрятной и симпатичной), так и в чисто техническом отношении.

Основной допинг модернизации принял радиатор Igloo 5071 — он изменился не только по форме, но и, в значительной степени, по содержанию. Главное приобретение здесь — гораздо более развитая конфигурация с уплотненным оребрением, сдобренная традиционными катализаторами тепловой эффективности в лице ребра трапецеидального сечения (толщина 0,5 мм в основании и 0,2 мм у вершины, средний шаг ребра 1,5 мм) и чередования высоты ребра, которые призваны усилить термическую эффективность оребрения и улучшить его продуваемость. Усовершенствованию подверглась и подошва радиатора — она получила специализированный вырез-пятку 60х32х5 мм, что позволило оптимизировать условия теплосъема с процессора без применения волнообразных утолщений и сделать радиатор более компактным. В итоге, за счет улучшенных параметров оребрения, радиатор Igloo 5071 развил общую площадь поверхности теплообмена до 2100 см 2 (против 1600 см 2 у Igloo 5070), при этом масса кулера не увеличилась, а даже уменьшилась почти на 100 г (440 г против 530 г у Igloo 5070).

Другие технические примочки Igloo 5071 (которые неплохо зарекомендовали себя еще в серии Igloo 5070) остались практически без изменений: крепежная скоба с винтовыми креплениями была незначительно переработана, чтобы адаптироваться под новую конструкцию подошвы радиатора, вентиляторы полностью сохранили свою аутентичность — типоразмер и решетчатый патрубок, сужающийся в направлении потока, остался на прежнем месте и предустановленный термоинтерфейс добротного качества (наполнитель — композиция нитрида и оксида алюминия).

Если перейти к чистой практике, то комплекс внесенных усовершенствований вписывается в формат Igloo 5071 действительно очень хорошо и придает ему весомый заряд бодрости — все модели новой серии демонстрируют оптимизацию термических характеристик относительно результативности Igloo 5070. В плане тепловой эффективности, как и следовало ожидать, лидерство держит модель Igloo 5071 PWM (3800 об/мин) — этот кулер обходит мощного соперника от Cooler Master — CI5-9JD3A-PL, оставляет далеко позади «боксовый» вариант и приближается к показателям продуктов более высокого класса. Однако победа достается слишком дорогой ценой, и в части шумовых характеристик он выглядит уже не так радужно — чуть-чуть не дотягивает до критической отметки 50 дБА. Модели Igloo 5071 и Igloo 5071 Light ведут себя поскромнее, но в совокупной функциональности смотрятся намного привлекательнее, чем их старший собрат — успешно соперничают с «боксовым» кулером и его клонами, демонстрируя при этом вполне сносный по эргономичности уровень шума. Наиболее интересно проявляет себя в этом ряду кулер Igloo 5071 Silent: вместе с приемлемыми термическими показателями ему удается зафиксировать своеобразный бюджетный рекорд — наилучшее соотношение эффективность-шум среди всех прочих протестированных моделей экономичного толка!

Судя по всему, конструктив Igloo 5071 адаптирован в большей мере под маломощные потоки, и соответственно, малошумные вентиляторы. Шаг, надо отметить, вполне оправданный, ведь главная задача современности как раз и заключается в том, чтобы максимально оптимизировать тепловую эффективность и совместно с этим минимизировать производимый кулером шум. Как видим, Igloo 5071 с такой задачей справляется, и довольно неплохо.

Читайте также:  Установка детского кресла renolux

Speeze LeopardStream 3 и LeopardStream 4

Замыкают сегодняшнее обозрение два представителя бюджетной серии кулеров от бренда Speeze — LeopardStream 3 и LeopardStream 4. Принадлежность к экономичной категории их только и объединяет в серию, технические же и конструктивные параметры этих моделей разнятся, причем весьма и весьма значительно.

LeopardStream 3 является по факту почти доподлинной копией «боксового» кулера — модель базируется на радиаторе референсного дизайна с радиальным оребрением 90х38 мм. Она оборудована референсным крепежом, но приправлена несколько другим, более симпатичным вентилятором типоразмера 92х25 мм с номинальной скоростью вращения крыльчатки 2400 об/мин.


Четкое следование референсным ориентирам закономерно становится источником смешанных чувств в адрес LeopardStream 3. С одной стороны, «боксовый» дизайн радиального оребрения с его характерным технологическим изыском в лице раздвоенного ребра (англоязычный технический термин — bifurcated fin) весьма интересно смотрится в теории и позволяет улучшить термические параметры радиатора. Но с другой стороны, практическая реализация такой задумки, признаться, не слишком воодушевляет.

Несмотря на все ухищрения, 52 раздвоенных ребра здесь дают всего около 1600 см 2 поверхности теплообмена, хотя, скажем, у того же CI5-9HDPA от Cooler Master, который имеет оребрение сходных габаритов, но отличается гораздо более простой конфигурацией ребра, теплообменная поверхность развита до 1850 см 2 . Совершенно очевидно, такое положение дел реально не способствует снижению термического сопротивления кулера. Не самым лучшим образом влияет на тепловые параметры LeopardStream 3 и полый медный сердечник — экономия массы радиатора тут, безусловно, наличествует, но вот в термическом отношении, с позиции оптимального перераспределения теплового потока, сплошной цилиндрический сердечник был бы более предпочтительным.

Все это в итоге занижает технический потенциал LeopardStream 3 — кулер преследует та же самая судьба, что и у его аналогично оснащенного «боксового» прародителя: замечательной результативностью он блеснуть не может, пусть даже и выдерживает уровень производимого шума строго в эргономичных рамках.

Другой бюджетник в семействе Speeze — LeopardStream 4, основан на алюминиевом радиаторе 90х90х50 мм с традиционным пластинчатым оребрением, оснащен схожим с LeopardStream 3, но более утихомиренным вентилятором (номинальная скорость вращения крыльчатки 1800 об/мин) и оборудован винтовым крепежом.

В техническом плане LeopardStream 4 звезд с неба не хватает — его радиатор имеет довольно-таки упрошенную конфигурацию оребрения с несколько архаичными по нынешним меркам параметрами (стандартное ребро прямоугольного сечения, средняя толщина ребра 0,9 мм, шаг 2 мм). И хотя общая площадь поверхности теплообмена здесь достигает 1700 см 2 , слабая оптимизация оребрения оставляет кулеру очень мало шансов, чтобы проявить улучшенные термические характеристики. Так оно на практике и происходит: LeopardStream 4 хоть и опережает чисто алюминиевый «боксовый» вариант, догнать других соперников — представителей модельного ряда от Cooler Master и GlacialTech, ему уже не удается (между тем, справедливости ради нужно отметить, что шумовая эргономика тут не вызывает никаких нареканий — уровень производимого кулером шума реально низкий).

Чем действительно LeopardStream 4 мог бы привлечь — так это своей крепежной системой, обеспечивающей плотную посадку кулера в сокет. Однако, к великому сожалению, и с этим выходит промашка: по неизвестным науке причинам прилагаемая в комплекте пластина-супинатор выполнена из пластика, в который собственно и запрессованы крепежные шайбы. Благодаря такой «хитроумной» (именно в кавычках) конструкции, пластина выдерживает одну, самый максимум — две инсталляции, после чего приходит в негодность (пластик тривиально разрушается). Как следствие, LeopardStream 4 фактически является «одноразовым» кулером — печально, конечно, но факт остается фактом.

Итак, на этой в меру оптимистичной ноте мы завершаем сегодняшнее обозрение бюджетных серий кулеров от Cooler Master, GlacialTech и Speeze. Пора подводить итоги! Но прежде давайте обратимся к результатам тестовых испытаний.

Результаты тестовых испытаний

Для исследования тепловой эффективности испытуемых кулеров LGA775 на вооружение приняты те же самые методологические принципы, что находят свое применение в наших тестах систем охлаждения для платформ Socket A, Socket 478 и Socket 754/939. В качестве первичных данных — основы для последующего определения термического сопротивления, здесь выступают температурные показатели встроенного термодиода процессора, только меняется тепловой источник (теперь это процессор Pentium 4 550), базисная платформа (материнская плата ASUS P5AD2-E Premium) и набор тестового программного обеспечения.

Конфигурация тестового стенда следующая:

  • материнская плата ASUS P5AD2-E Premium rev. 1.05
  • процессор Intel Pentium 4 550 (3,4 GHz Prescott, HT Technology)
  • ОС Microsoft Windows XP

Для моделирования тепловой нагрузки процессора, близкой к максимальной, используется тестовая утилита S&M, а для мониторинга температурных показателей применяется утилита Speedfan. Механизм термозащиты процессора — Thermal Monitor, во всех тестовых процедурах отключен.

Замечания
Каждый кулер тестировался с термопастой Stars 420
В диаграмме фигурирует комплексный результат

Замечание
Термическое сопротивление θja определяется из соотношения
θja = (Tj — Ta)/Ph, где Tj — температура процессорного ядра, Ta — температура окружающей среды (в нашем случае составляет 33°C), Ph — тепловая мощность процессора (в нашем случае этот параметр составляет 125 Вт).

Наконец, в завершение этого раздела приводим результаты измерений шума (о методике читайте в статье Шумовые характеристики кулеров и методика измерения уровня шума), а также рейтинг по рассчитанным величинам соотношения эффективность/шум.

Замечание: Фоновый уровень шума 18 дБА

Замечание
Соотношение эффективность/шум (СЭШ) рассчитывается как:

ОПтэ — тепловой опорный показатель («эталонное» термическое сопротивление θja системы охлаждения — 0,25°C/Вт), ТП — температура ядра c использованием рассматриваемой системы охлаждения, ОПш — шумовой опорный показатель («эталонный» уровень шума — 25 дБА), УШ — уровень шума, производимого системой охлаждения, РМ — размерный множитель (равен 10).

По всей видимости, каких-то дополнительных комментариев здесь уже не требуется. Будем подводить итоги!

Выводы

Основной вывод, который можно (и нужно) сделать по горячим следам проведенных нами тестовых испытаний, звучит так: гегемония «боксовых» вариантов в бюджетной категории кулеров для платформы Intel LGA775, о которой бытует мнение в народе — это явление скорее из области мифотворчества, чем из реальной жизни. Действительность свидетельствует — как раз именно «боксовые» кулеры наиболее часто пасуют перед «альтернативными» моделями, а не наоборот.

Что касается рассмотренных моделей, то сегодня особо хотелось бы отметить кулеры Cooler Master CI5-9JD3A-0L и CI5-9JD3A-01 — эти продукты демонстрируют достойные показатели тепловой эффективности, отличаются хорошим техническим качеством и вполне приемлемой шумовой эргономикой. Очень неплохо смотрятся также и кулеры GlacialTech серии Igloo 5071, которые проявляют добротно сбалансированную функциональность, практически ни в чем не уступая моделям Cooler Master. А вот кулеры Speeze LeopardStream 3 и LeopardStream 4 все-таки больше разочаровывают, чем воодушевляют — в основном из-за слабой результативности и технических недоработок. Тем не менее, и они способны справиться с охлаждением процессоров LGA775 нижней и средней ценовой категории (вплоть до моделей с «тепловым конвертом» класса Pentium 4 550).

источник