Меню Рубрики

Установка лямбда зонда смазка

NGK Spark Plugs (Eurasia) › Блог › Диагностика и советы по монтажу лямбда-зондов

NGK Spark Plugs стала одним из первых производителей кислородных датчиков, выпуская их под брендом NTK еще с 1980-х. Мы достигли значительных успехов в создании эффективных и экологичных решений. И сегодня мы расскажем, как правильно провести диагностику и монтаж кислородного датчика.

ФУНКЦИОНАЛЬНОСТЬ КИСЛОРОДНОГО ДАТЧИКА

Наличие в системе обратной связи, возможность самостоятельно поддерживать заданный состав топливовоздушной смеси – преимущество электронного управления впрыском топлива. Лямбда-зонд (кислородный датчик) – один из ключевых элементов обратной связи: именно по его сигналу электронный блок управления (ЭБУ) способен определить, в какую сторону нужно изменять топливоподачу.

С распространением каталитических нейтрализаторов и ужесточением экологических норм у кислородного датчика появилась новая функция: оценка эффективности работы нейтрализатора. Эту функцию выполняет диагностический (второй) лямбда-зонд, установленный за нейтрализатором по ходу движения выхлопных газов.

Для нормальной работы нейтрализатора в выхлопных газах должно всегда присутствовать некоторое количество свободного кислорода. Именно по этой причине системы впрыска стремятся сдвигать состав смеси в сторону ее легкого обеднения. После исправного нейтрализатора свободного кислорода быть не должно. По сигналу, получаемому от второго кислородного датчика, ЭБУ имеет возможность оценить работоспособность системы нейтрализации отработанных газов.
Бинарные и широкополосные датчики: отличия и тестирование

РАССМОТРИМ ДВЕ РАЗНОВИДНОСТИ КИСЛОРОДНЫХ ДАТЧИКОВ: БИНАРНЫЕ И ШИРОКОПОЛОСНЫЕ

Простейший и самый старый тип датчиков кислорода – бинарный, на основе диоксида циркония. По сей день они остаются самыми массовыми, в том числе и в линейке производителя NGK Spark Plugs. Такой датчик работает как гальванический элемент: при отсутствии кислорода в выхлопных газах (богатая смесь) в нем создается электродвижущая сила (0,7-0,9 В на сигнальном проводе), наличие же кислорода (бедная смесь) приводит к падению напряжения почти до нуля (40-50 мВ).

Ранее в автомобилестроении использовались резистивные датчики на диоксиде титана. Сейчас они считаются вышедшими из употребления, но для вторичного рынка NGK Spark Plugs по-прежнему их выпускает. Они не создают напряжение сами, а меняют внутреннее сопротивление в зависимости от наличия или отсутствия кислорода в отработанных газах.

В цепи ЭБУ они включаются в нижнее плечо резисторного делителя, то есть вновь фактически меняют измеряемое контроллером напряжение. Опорное напряжение, измеряемое на сигнальной линии ответного разъема автомобильной проводки – 5 В. Соответственно и амплитуда сигнала при работе двигателя имеет больший размах, чем у циркониевых датчиков – от 10…100 мВ до 4…5 В.

По сути бинарные датчики являются пороговыми элементами. Их состояние в момент перехода от богатой смеси к бедной и обратно меняется быстро, это не дает возможность четко выставлять состав смеси, вычислив по реальному соотношению воздух/топливо точный коэффициент коррекции.

ЭБУ впрыска приходится постоянно варьировать топливоподачу, балансируя от одного состояния датчика кислорода до другого. Именно на этом основана простейшая диагностика работы бинарного лямбда-зонда: на установившемся режиме работы двигателя (постоянные обороты и нагрузка) сигнал кислородного датчика будет периодически меняться от низкого уровня к высокому и обратно, осциллограмма исправного датчика будет напоминать синусоиду.

В отличие от бинарных датчиков, широкополосные сложнее, что заметно даже по разъему – в нем больше контактов. Широкополосные датчики кислорода (ШДК) позволяют точно определить состав топливовоздушной смеси (англ. air/fuel ratio), а не сообщают только факт обеднения или обогащения, как узкополосные датчики.

Для этого ШДК имеют дополнительную ячейку (электрохимический насос), управляемую контроллером. Варьируя приложенное к ней напряжение, создающее ток накачки, и одновременно отслеживая состояние сенсорной ячейки (такой же, как у бинарных циркониевых датчиков), ЭБУ высчитывает соотношение топливо/воздух в сгоревшей смеси. Сопоставляя измеренную величину с заданной в карте калибровок, ЭБУ сразу рассчитывает коррекцию топливоподачи, а не балансирует между «бедно–богато», как при использовании узкополосного кислородного датчика. С точки зрения диагностики, разница между бинарным ДК и ШДК принципиальна: без контроллера широкополосный датчик кислорода не работает, внешние измерения сигнала измерительной ячейки и тока электрохимического насоса не имеют практического смысла.

ПОДОГРЕВ ЛЯМБДА-ЗОНДА

Любому датчику кислорода для выхода на рабочий режим нужна достаточная температура сенсорной ячейки (

350 °C). Ранние образцы лямбда-зондов, применявшиеся в конце 1980-х – начале 1990-х, нагревались только за счет температуры выхлопных газов, то есть были неработоспособны некоторое время после запуска двигателя.

Чтобы получить возможность быстрее начать управлять составом смеси по замкнутому циклу, в конструкцию кислородных датчиков ввели дополнительный элемент – нагреватель. Напряжение на него подается еще до запуска мотора, датчик выходит на рабочий режим максимально быстро. Но это же добавило и новый источник проблем: при отказе нагревателя либо обрыве его проводов, окислении контактов в разъеме фиксируется соответствующая ошибка в памяти ЭБУ впрыска.

Исправность нагревателя проверяется обычным тестером. Сопротивление между контактами разъема, соединенными с нагревателем, должно находиться в пределах, указанных в документации датчика, от 2 до 16 Ом для массово распространенных лямбда-зондов
Замена кислородного датчика

Читайте также:  Установка задних амортизаторов 2106

Кислородные датчики NGK Spark Plugs производятся в двух вариантах:

Оригинальные и аналоги оригинальных имеют уже установленный на жгуте проводов разъем, по конструкции и распиновке соответствующий ответному разъему в проводке автомобиля. Длина жгута соответствует штатной.

Универсальные датчики поставляются с длинным жгутом, не имеющим разъема. При монтаже срезается часть жгута с разъемом от старого датчика, провода сращиваются входящими в комплект герметичными коннекторами.

В любом случае первая операция при замене – это снятие старого датчика специальным ключом. Если датчик прикипел и выходит туго, перед установкой нового лямбда-зонда резьба очищается и калибруется метчиком, соответствующим по диаметру и шагу.

УСТАНОВКА ОРИГИНАЛЬНОГО ИЛИ АНАЛОГИЧНОГО ОРИГИНАЛЬНОМУ КИСЛОРОДНОГО ДАТЧИКА

Датчик с установленным с завода разъемом может монтироваться сразу. Нужно учитывать, что его резьба заранее покрыта термостойкой смазкой, которая должна предотвращать прикипание его к футорке выхлопной системы. Поэтому, чтобы случайно не стереть смазку, защитный колпачок с лямбда-зонда снимается только перед самой установкой.

Датчик заворачивается исключительно от руки трещоткой и дотягивается динамометрическим ключом. Момент затяжки указывается в приложенной к нему инструкции (обычно в пределах 35-45 Нм). Превышать момент затяжки, а также использовать ударные гайковерты нельзя – это создает опасность повреждения датчика.

УСТАНОВКА УНИВЕРСАЛЬНОГО КИСЛОРОДНОГО ДАТЧИКА

Универсальные лямбда-зонды перед установкой потребуют дополнительной работы. Рядом с новым датчиком укладывается снятый с автомобиля, их жгуты растягиваются в длину. Отмечая точку отреза на старом жгуте, отмечается и длина, на которую укорачивается жгут нового датчика. Не стоит делать провод чрезмерно длинным, чтобы исключить ненужные провисания.

Корректный способ установки предполагает обрезку «лесенкой»: провода обрезаются по очереди на разную длину. Таким образом на собранном жгуте коннекторы окажутся друг за другом, а не соберутся в одном месте. Сразу устанавливать коннекторы на провода, пока они обрезаны на одну длину – ошибка.

Собранный жгут универсального датчика NGK Spark Plugs по надежности не уступает цельному. При этом подобные лямбда-зонды имеют серьезное достоинство – их можно устанавливать на замену дорогих и редких штатных кислородных датчиков.

Однако нужно помнить, что все универсальные датчики являются бинарными (циркониевыми), таким образом, универсальным можно заменить только циркониевый штатный датчик. Определить тип проще всего по проводке датчика — все датчики без цепи подогрева циркониевые (1 или 2 провода). Если циркониевый датчик имеет цепь подогрева (3 или 4 провода), то два из них будут иметь изоляцию одного и того же цвета — большинство производителей придерживаются этого правила. У датчиков NTK этот цвет — белый. Если же штатный датчик имеет 4 или 5 проводов, и все они имеют изоляцию разных цветов, значит он либо титановый, либо широкополосный. Заменять такие датчики универсальными нельзя — они не будут работать.

Перед монтажом продукции важно убедиться, что у вас оригинальная продукция NGK Spark Plugs. Список наших авторизованных дилеров вы можете найти на нашем сайте в разделе «Где купить», а подобрать продукцию — в приложении «Подбор продукции».

источник

DENSO › Блог › Снятие упрямой лямбды

Демонтаж неисправного лямбда-зонда не всегда бывает таким простым, как кажется. Часто данная процедура осложняется местом установки лямбда-зонда, куда трудно получить доступ. В дополнение к этому, старая лямбда практически в 100 % случаев «прикипает» к коллектору / выхлопной трубе.

Исходя из этого, стоит заранее озаботиться необходимым для демонтажа инструментом. О рожковом ключе лучше сразу позабыть — именно попытки открутить лямбда-зонд простым рожковым ключом чаще всего приводят к «слизыванию» граней на сенсоре. И тогда приходится прибегать уже к демонтажу выхлопной системы, что, согласитесь, дело накладное и небыстрое.

Если новый датчик не имеет штатного коннектора, а предназначен для установки со сращиванием проводов (такие наборы есть в ассортименте DENSO), то можно срезать провода со старого датчика и применить обычный накидной ключ.

В случае если провода не дают использовать накидной ключ, придется обзавестись специальным съемником для лямбда-зондов. Фактически это головка на 22 усиленной конструкции и со специальной прорезью, куда можно завести провода от датчика Производством таких съемников занимаются все крупные инструментальные компании.

Зачастую сенсор прикипает настолько сильно, что может понадобиться использование проникающей смазки. Однако в случае с лямбда-зондом ее применение не всегда эффективно и целесообразно. Датчик кислорода имеет уплотнительное кольцо, и при хорошей затяжке это кольцо вряд ли позволит смазке проникнуть достаточно глубоко. В таком крайнем случае сильного прикипания, скорее всего, придется прибегнуть к разогреву трубы или коллектора около резьбы лямбды портативной горелкой. Такой способ демонтажа «на горячую» должен привести к желаемому результату. Конечно, не следует забывать о мерах предосторожности и пожарной безопасности.

Также необходимо помнить, что демонтаж с разогревом — крайняя мера, т. к. сильный разогрев металла с его последующим охлаждением на воздухе приводит к отпуску. Металл становится более пластичным, но менее прочным. Резьбу посадочного места под лямбда-зонд после разогрева гораздо проще сорвать. Если речь идет о демонтаже из коллектора, то здесь проблема будет не так видна, поскольку металл толще и изначально спроектирован под высокую температуру выхлопа. Но если разогревался датчик на выхлопной трубе, то в дальнейшем это место будет склонно к более быстрому износу и прогару.

Читайте также:  Установка подогревателя лунфей на киа соренто

При монтаже нового датчика используйте антипригарную (медную) смазку, которая облегчит последующие процедуры. Смазку нужно наносить на резьбу самого лямбда-зонда, следя за тем, чтобы она не попала на чувствительный элемент. Комплекты лямбда-зондов DENSO имеют фирменную смазку внутри. Также следует соблюдать момент затяжки (обычно 35–45 Н∙м), указанный на упаковке нового лямбда-зонда DENSO.

источник

Chevrolet Lacetti 5D RHCP MLGA › Бортжурнал › Лямбда-зонд (O2 sensor), силиконовые герметики и димексид. Очевидное и невероятное в автохимии и автофизике.

Начинал я эту статью писать ещё год назад, потом бросил, но решил к ней вернуться, потому что набор народных мифов про кислородные датчики, они же лямбда-зонды, всё ещё жив.

Все знают, что пользоваться низкотемпературными силиконовыми герметиками для уплотнения соединений в двигателе – нельзя, и это абсолютно правильно. При герметизации можно пользоваться только герметиками, на которых написано sensor-safe –это специальные герметики, кстати, тоже силиконовые, но из другого силикона.

Причем, про «нельзя» пишут все: производители герметиков, двигателей, прокладок, крышек и т.д. но никто внятно не может объяснить почему это так.

Полистав форумы, выясняется наличие двух основных точек зрения:
«Там уксусная кислота – от неё зонду конец!»
Но чувствительные материалы зонда – это платина и двуокись циркония – очень устойчивые в химическом смысле материалы, и они не боятся даже таких сильных кислот как серная и соляная. (Другое название двуокиси циркония – фианит. Полудрагоценный камень, часто используется как ювелирная замена бриллиантам) Тем более, что уксусная кислота уже при 150C благополучно сгорает, оставляя после себя воду и углекислый газ. Обезвоженная уксусная кислота хорошо горит. Столовую уксусную эссенцию поджигать бесполезно – в ней слишком много воды.

Горение уксусной кислоты выглядит так:
СН3СООН + 2О2 + t = 2H2О + 2СО2
На выходе вода и углекислый газ, что и так содержится в отработанных газах. Умирать зонду не от чего.

«Лямбда зонд отравился»
Чем он сейчас может отравиться? Допустим, раньше это был свинец. Машины, в конструкции которых использовались циркониевые датчики кислорода, заправлять бензином с добавкой тетраэтилсвинца(ТЭС) было запрещено. Изготовители а/м писали на крышках бензобаков и на приборных панелях «Non-lead fuel only”, «Заправлять только неэтилированным бензином», чтобы владелец этого не забывал. Сейчас писать перестали, потому что такого бензина просто нет. В РФ производство и оборот этилированного бензина запрещены с 2003 года. Основная причина – снижение токсичности выхлопа. Кроме того ТЭС и продукты его распада признаны канцерогенами.

Ответа на причины в российском интернете не нашлось. Пришлось прогуляться в интернет англоязычный.
Ситуация там точно такая же: «Использовать нельзя! Почему? Because of gladiolus, that is why.» В смысле, «потому что силикон»

Сначала давайте вспомним немного, как работает лямбда-зонд он же циркониевый датчик кислорода:

Почему он называется «лямбда-зонд»
Датчик кислорода в выхлопных газах автомобиля играет очень важную роль, по его показаниям ЭБУ формирует оптимальную топливную смесь воздух/топливо в соотношении 14.7:1, которую ещё называют стехиометрической. Для того чтобы можно было понимать, какая у нас смесь – обеднённая или обогащенная, используется условный параметр «лямбда». При соотношени 14.7:1 он считается равным единице.
Меньше кислорода, больше топлива (лямбда меньше единицы) – означает богатая смесь, топливо сгорает неэффективно, много сажи, подачу топлива надо уменьшить.
Больше кислорода, меньше топлива (лямбда больше 1) – обеднённая смесь, двигатель работает с увеличенной нагрузкой, возможны детонации, подачу топлива в смесь надо увеличить. Картинка из справочника Bosch:

Датчик начинает работать только при высокой температуре, автомобильные – начиная с 350, промышленные – 600-700 градусов. Bosch утверждает, что на испытаниях датчик кратковременно разогревается до 1000C без потери свойств.

Сразу после запуска двигателя, пока датчик не вышел на рабочую температуру, ЭБУ не использует его показания. Если посмотреть в любую диагностическую программу, то это состояние называется O2 sensor open loop или O2 open circuit. В этот момент ЭБУ пытается готовить смесь другим способом. После его прогрева, ЭБУ начинает его читать и регулировать состав топливной смеси в соответствии с получаемой с него информацией (соответственно, closed loop или closed circuit).

Чтобы быстрее приводить датчик в рабочее состояние, уменьшить расход топлива и улучшить экологию выхлопа, используется подогрев. У такого датчика обычно три или четыре провода. Датчики старого образца подогрева не имеют. Есть датчики с калибровочными резисторами и опорными элементами. Это широкополосные датчики, у них шесть проводов. Датчики отличаются по технологии изготовления, есть с пальцевидным элементом, есть с планарным, но это уже нюансы технологий под конкретные типы автомобилей.

Читайте также:  Установка зеркала в спортивном зале

Чувствительный элемент датчика представляет собой пористый массив из двуокиси циркония, с платиновым напылением. Платина выполняет две задачи – это катализатор ионизации кислорода, а также это электрический контакт, к которым во время работы прикладывается внешнее напряжение.

При высокой температуре в элементе датчика происходит следующий процесс. Кислород распадается на ионы, которые имеют электрический заряд, и благодаря приложенному напряжению переносятся от одного электрода к другому. Причём на аноде, ионы кислорода опять собираются в молекулы. Такое явление называют электрохимическим насосом. При этом количество кислорода прямо пропорционально приложенному заряду. Поскольку это насос, то появляется разность давлений на входе и выходе. А поскольку есть перенос заряженных частиц, то, из физики, он является электрическим током. А если есть ток, то есть и напряжение. Оно называется напряжением Нетера, в честь физика, открывшего этот эффект. Измеряется это смещение напряжения от приложенного, специальной схемой в ЭБУ и является основой для управления составом топливной смеси. Широкополосные датчики, как правило, токовые. Более того, в технических руководствах Bosch, этот рабочий элемент называется элементом или ячейкой Нетера.

Сам массив двуокиси циркония при этом работает фактически как твёрдый электролит, благо через него течёт ток.

В техническом руководстве Bosch есть еще много полезной информации, в части того, почему у переключаемых зондов (а в Lacetti именно такой) достаточно большая амплитуда синусоподобной кривой и всякие прочие интересные вещи. Но их описывать достаточно долго и не очень нужно, в нашем контексте причин смерти датчиков. Кому интересно, сами прочитаете, все ссылки внизу.

Мне всё-таки более интересно вернуться к смертности лямбда-зондов от дешёвых силиконовых герметиков. Bosch, кстати, про это не написал ни слова ни в каталоге 2013/14 года [2], откуда взяты эти картинки, ни в каталоге 2017/2018 года [1].

В процессе рытья англоязычного интернета, я наткнулся на техническую информацию компании SST – это производитель кислородных датчиков для промышленности.

В промышленности тоже есть потребность в измерении концентрации кислорода в различных газовых смесях и условия работы лямбда-зондов гораздо жёстче. В промышленности газ часто не разогревается до высоких температур, поэтому есть еще дополнительные вредные факторы как влажность и активные, вредные для датчиков примеси, а также есть риски поджига и взрыва кислородным датчиком стехиометрической смеси, если она образовалась в трубопроводе. Но принцип работы у них идентичен автомобильным.

В техническом руководстве компании SST [3] было написано следующее:

5.1.4 Использование датчика с силиконовыми герметиками и уплотнителями
Датчики на основе двуокиси циркония повреждаются при наличии кремния в измеряемом газе. Испарения органических силиконовых смесей (компаундов) из силиконового каучука (RTV rubber – Room-temperature-Vulcanization, каучук с вулканизацией при комнатной температуре) и силиконовых герметиков являются двумя основными источниками зла., при том, что и низкотемпературный силиконовый каучук, и герметики широко используются. Они часто сделаны из дешевого силикона, так что при нагревании в атмосферу начинают выделяться кремнийсодержащие испарения. Когда с потоком газа они попадают на датчик, органическая часть выгорает на его раскалённых частях, так что остаются очень тонкие частицы диоксида кремния SiO2 (диоксид кремния – это по сути кварцевый песок, имеющий очень высокую температуру плавления, в двигателе он сгореть не может). Частицы диоксида кремния забивают поры в элементе датчика и в активных частях электродов. Если для уплотнения необходимо использовать силиконовые герметики и уплотнители на основе низкотемпературных каучуков, мы советуем использовать высококачественные материалы. Необходимая информация может быть предоставлена по запросу.

Вот и ответ, почему для двигателя следует использовать только герметики с маркировкой sensor-safe. Они не прогорают при высокой температуре и не забивают датчик. ABRO 999 GREY как самый ходовой и распространённый, например. 150р тюбик.

Также в руководстве SST упоминаются примеси, которые могут нанести существенный вред, вплоть до выхода датчика из строя (взрывоопасные газы опускаем, в двигателе они не накапливаются):

5.2.2 Испарения тяжелых легкоплавких металлов, таких как Zn (цинк), Cd (кадмий), Pb (свинец), Bi (висмут) отрицательно влияют на каталитические свойства платиновых электродов. Следует настоятельно избегать экспозиции датчиков этим металлам.

Здесь содержится ответ на вопрос, почему нельзя лить этилированный бензин в инжекторные двигатели. Платина перестаёт работать как катализатор, количество ионов кислорода упадёт, ЭБУ будет считать, что смесь обеднена, и будет переливать топливо. Расход вырастет.

5.2.3 Соединения галогенов и серы в малых количествах (

Так что относитесь к своим кислородным датчикам с любовью и пониманием и они вам ответят взаимностью.

источник

Добавить комментарий

Adblock
detector