Меню Рубрики

Установка плазменно дуговой резки

Глава XV. Плазменно-дуговая и другие виды термической резки

§ 68. Плазменно-дуговая резка

Получение плазменной дуги. Если в электрическую дугу направить поток какого-либо газа, пропуская его через небольшое отверстие плазмообразующего сопла (рис. 96), то столб дуги будет сжат, причем образовавшаяся плазма представляет собой сильно концентрированный источник тепла с высокой температурой, достигающей 20000 — 30 000°С. Газ, сжимающий столб дуги, называют плазмообразующим. В качестве плазмообразующих газов применяют либо одноатомные газы (например, аргон), либо двухатомные (водород, азот). Применяют также смеси двух или нескольких газов и воздух.


Рис. 96. Схема плазменной резки: а — плазменной струей, б — плазменной дугой; 1 — разрезаемый лист, 2 — источник питания, 3 — осциллятор, 4 — реостат, регулирующий вспомогательную дугу, 5 — плазмотрон, 6 — плазменная дуга, 7 — плазменная струя; в — установка для резки: 1 — баллон с газом, 2 — источник питания, 3 — балластный реостат, 4 — плазмотрон Двухатомные плазмообразующие газы создают плазменную дугу с большим выделением тепла на аноде, чем одноатомные. Это объясняется тем, что двухатомные газы передают изделию больше тепла из столба дуги в результате образования молекул газа с выделением дополнительного тепла. Поэтому двухатомные газы обеспечивают дугу с большей длиной, но с более низкой температурой, чем одноатомные газы (аргон, гелий и др.)

Распределение температур плазменной дуги с одноатомным газом (аргоном) при токе 400 А и расходе газа 0,6 м 3 /ч показано на рис. 97.


Рис. 97. Распределение температуры в плазменной струе при силе тока дуги 400 А и расходе аргона 0,6 м 3 /ч

Сжатая дуга может быть аналогична сварочной дуге прямого и косвенного действия В первом случае одним из электродов служит обрабатываемый металл (рис. 96, б), во втором — дуга возбуждается между независимыми от него электродами (рис. 96, а). Соответственно принято называть сжатую дугу, полученную по первой схеме, — плазменной дугой, а по второй схеме — плазменной струей.

Для разделительной резки металлов более целесообразно применять плазменную дугу, так как установлено, что она имеет более высокий к. п. д., а плазменная горелка менее подвержена износу.

Плазменно-дуговая резка нашла широкое применение при обработке тех металлов и сплавов, которые не поддаются кислородной резке: высоколегированные стали, алюминий, титан и их сплавы, медь и др.

Плазменно-дуговая резка заключается в проплавлении металла на узком участке по линии реза и удалении расплавленного металла струей плазмы, образующейся в дуге. Плазменная дуга применяется главным образом для разделительной резки.

Оборудование для плазменно-дуговой резки. В комплект оборудования для плазменно-дуговой резки входит резак (плазмотрон), пульт управления процессом, источник питания дуги электрическим током, баллоны с плазмообразующими газами и механизм для перемещения плазмотрона вдоль линии реза.

Резак состоит из двух узлов: электродного и соплового. Различают плазмотроны с осевой и вихревой подачей плазмообразующего газа для сжатия дуги. Осевая подача плазмообразующего газа применяется в широких соплах. При вихревой подаче плазмообразующий газ вводят в зону катода и столба по каналам, расположенным по касательной к стенкам дуговой камеры плазмотрона. При этом в камере создается вихревой поток газа со спиралеобразным движением. Вихревая подача плазмообразующего газа обеспечивает перемешивание газа в столбе дуги и равномерность газовой оболочки вокруг столба.

При осевой подаче конец электрода (вольфрамовый стержень диаметром от 2 до 6 мм и длиной до 100 — 150 мм) имеет форму заостренного стержня с углом 20 — 30°, а при вихревой — на конце электрода имеются сменные гильзовые катоды.

Для охлаждения плазмотронов применяют воду, а в плазмотронах небольшой мощности — сжатый воздух.

Вольфрамовый (или с примесью окислов лантана, иттрия, тория) электрод применяется для работы в инертных газах; при резке в окислительных газах электрод в зоне катода необходимо защищать неактивным газом.

Значительное применение находят режущие плазмотроны с пленочными катодами. Способностью образовывать пленку на катоде обладают цирконий и гафний. При высоких температурах окиснонитридная пленка, обладающая электропроводностью, легко образуется на поверхности катода. Такой катод может продолжительное время работать в окислительной среде, например в сжатом воздухе.

Интенсивность износа катодных вставок и электродов зависит от силы рабочего тока. Чем больше сила тока, тем быстрее изнашивается вставка. Для машинных плазмотронов с циркониевыми катодными вставками и проточной системой водяного охлаждения максимальная сила рабочего тока равна 250 — 300 А. При этом продолжительность работы катода обычно не превышает 4 — 6 ч.

Большое значение в плазмотронах имеет конструкция сопла. Чем меньше диаметр сопла и больше его длина, тем выше концентрация энергии, напряжение дуги и больше скорость потока плазмы; дуга становится жесткой, ее режущая способность увеличивается. Однако диаметр и длина сопла обусловливаются силой рабочего тока и расходом газа. Если диаметр сопла очень мал или длина его очень велика, может возникнуть так называемая двойная дуга (рис. 98), при которой режущая дуга распадается на две части: одна между катодом и внутренней частью сопла, а другая — между наружной поверхностью сопла и разрезаемым изделием. Двойная дуга может гореть одновременно с режущей, но она существует непродолжительное время и затем пропадает. Двойная дуга действует вне зоны защитного газа и от этого металл кромок загрязняется и подплавляется; двойная дуга может вывести из строя сопло формирующего наконечника. Чаще всего двойная дуга возникает в момент возбуждения режущей дуги. Режущая дуга возбуждается с помощью осциллятора или конденсаторными устройствами. Для предотвращения двойной дуги при зажигании режущей необходимо плавно увеличивать рабочий ток. Это достигается магнитным, тиристорным и другими устройствами.


Рис. 98. Схема двойной дуги: 1 — катод, 2 — сопло, 3 — металл, 4 — столб режущей сжатой дуги, 5 и 6 — столб двойной дуги на участках наконечник (сопло) — металл и катод — наконечник

Для плазменно-дуговой резки применяют источники питания дуги постоянного тока с крутопадающими вольтамперными характеристиками. При резке больших толщин (больше 80 мм) применяют только специальные источники питания с повышенным напряжением холостого хода, например, типа ИПГ-500 и др. (табл. 24).


24. Источники питания для плазменно-дуговой резки

* ( Возможно переключение обмоток для повышения напряжения.)

** ( Возможно переключение обмоток.)

Согласно ГОСТ 14935 — 691 выпрямители для плазменно-дуговой резки должны иметь напряжение холостого хода 180 — 500 В и ток 130 — 1000 А.

Читайте также:  Установка подогрева зеркал на субару форестер

Для плазменно-дуговой резки можно использовать также и стандартные источники питания сварочной дуги (некоторые из них приведены в табл. 24). Так как напряжение плазмотронов, как правило, больше напряжения холостого хода этих источников, то надо два или три источника соединять последовательно.

Машины для плазменно-дуговой резки по принципу работы и конструкции механического устройства не отличаются от машин для кислородной резки. Аппаратура для плазменно-дуговой резки должна соответствовать ГОСТ 12221 — 71: Плр — для ручной резки; Плрм — для ручной и машинной резки; Плм — для машинной резки; Плмт — для машинной точной резки.

Ручная резка стали толщиной до 20, мм при рабочем токе до 250 А производится, аппаратом Плр-20/250.

Аппарат Плр-50/250 предназначен для резки стали толщиной до 50 мм при рабочем токе до 250 А. Средой является сжатый воздух, азот, аргон, водород, смеси газов. Аппарат имеет воздушное охлаждение, его удобно использовать в цехе и при монтаже.

Резка стали толщиной 60 — 80 мм может выполнятся аппаратом типа Плрм мощностью до 50 кВт; сила тока — 400 А, напряжение источника питания — 180 В. Повышенные напряжение и ток обеспечивают лучшее качество реза и более высокую скорость резки. При защите вольфрамового катода в качестве рабочей среды можно применять кислород.

Основные технические данные некоторых аппаратов и машин приведены в табл. 25 и 26.


25. Технические данные аппаратов плазменно-дуговой резки


26. Некоторые стационарные машины для плазменно-дуговой резки

Технология плазменно-дуговой резки. Параметрами режима плазменно-дуговой резки являются: диаметр сопла, сила тока, напряжение плазменной дуги, скорость резки и расход газа. Плазмообразующий газ выбирают по характеру разрезаемого металла (табл. 27).


27. Выбор плазмообразующего газа в зависимости от условий резки

Выбор режима резки. Ориентировочные режимы плазменно-дуговой резки металлов сжатым воздухом для аппарата Плм-60/300 даны табл. 28.


28. Ориентировочные режимы воздушно-плазменной машинной резки листового металла аппаратом Плм-60/300

Примечание. Диаметр вольфрамового катода равен диаметру формирующего сопла

Максимальные допускаемые толщины металла, разрезаемого плазменной дугой, даны в табл. 29.


29. Допускаемые максимальные толщины, мм, металлов, разрезаемых плазменной дугой

Плазменно-дуговую резку целесообразно применять главным образом на машинах, так как высокие скорости резки сильно затрудняют управление процессом. Например, сталь толщиной 1,5 мм аппаратом мощностью 50 кВт режется со скоростью 20 м/мин, а сталь толщиной 10 мм — со скоростью 3 — 4 м/мин. С увеличением электрической мощности плазмы скорость резки еще больше возрастает. Современные плазмотроны имеют электрическую мощность 150 кВт и более; толщина разрезаемых листов достигает 100 мм.

Экономически целесообразна плазменно-дуговая резка стали толщиной до 50 мм. Технические трудности ограничивают толщину вырезаемых заготовок с одновременным снятием кромок под сварку до 30 мм.

источник

Плазменно-дуговая резка металлов

Резка плазменной дугой основана на способности сжатой дуги глубоко проникать в металл, проплавляя его по линии реза дуговым разрядом. Под действием высокой температуры сжатой дуги газ 2, проходя через дуговой разряд, сильно ионизирует, образуется струя плазмы, которая удаляет расплавленный металл из места реза. Дуга 1 возбуждается между разрезаемым металлом 4 и неплавящимся вольфрамовым электродом 5, расположенным внутри головки резака 6. Дуговую газоразрядную плазму 3 называют низкотемпературной (ее температура 5000-20 000°С).

а — плазменной дугой, б — плазменной струей

Рисунок 1 — Схема процесса плазменной резки

Применяемые при плазменно-дуговой резке плазмообразующие газы должны обеспечивать получение плазмы и необходимую защиту вольфрамового электрода от окисления. В качестве таких газов применяют аргон, азот и смеси аргона с азотом, водородом и воздухом. В качестве электродов используют лантанированный вольфрам ВЛ-15. Вольфрамовый электрод располагают с соплом плазмотрона. Струя плазмы имеет большую скорость истечений и форму вытянутого конуса, сечение которого на выходе соответствует сечению сопла. Плазменно-дуговую резку применяют при резке металлов, которые невозможно или трудно резать другими способами, например, при резке коррозионно-стойких легированных сталей, алюминия, магния, титана, чугуна и меди. При резке плазменной струей разрезаемый металл не включается в электрическую цепь дуги. Дуга горит между концом вольфрамового электрода и внутренней стенкой охлаждаемого водой наконечника плазмотрона. Сущность резки плазменной дугой заключается в выплавлении металла струей плазмы и выдувании расплавленного металла из зоны реза.

На рисунке 1 схематически представлен процесс резки плазменной струей. Питание осуществляется от источника постоянного тока 3. Минус подводится к вольфрамовому электроду 4, а плюс — к медному соплу 2, которое охлаждается водой. Дуга 6 горит между электродом и соплом и выдувается газовой смесью из внутренней полости мундштука 5 с образованием струи плазмы которая проплавляет разрезаемый металл 7. В качестве плазмообразующего газа используют в основном аргон и смесь аргона с азотом. Плазменную струю применяют при резке тонкого металла. Скорость резки плазменной струей зависит от свойств разрезаемого металла и от параметров режима резки (сила тока, напряжение, расход газа). Плазменной струей режут как ручным, так и механизированным способом. Для плазменно-дуговой резки применяют специальное оборудование, которое питается электрической энергией. Основным элементом при плазменной резке является устройство для управления рабочим циклом резки — подачей и перекрытием газов, зажиганием вспомогательной дуги.

источник

Технология плазменно-дуговой резки

Для обеспечения нормального процесса плазменно-дуговой резки поверхность листового металла необходимо очистить от консервирующей смазки. При разметке деталей необходимо учитывать припуски на резку в зависимости от назначения вырезаемых деталей. При машинной разделительной резке разметку заменяют копированием или программным контурным управлением. Начало резки определяется моментом возбуждения режущей дуги. При плазменной резке необходимо поддерживать постоянное расстояние между торцом наконечника плазмотрона и поверхностью разрезаемого металла. Обычно это расстояние составляет 3-10 мм. При установке режимов необходимо учитывать особенности резки различных металлов — низкоуглеродистых и легированных сталей, алюминия и его сплавов, меди и ее сплавов, титана, никеля и других металлов.

Плазменно-дуговая резка алюминия и его сплавов

Алюминий и его сплавы склонны к образованию тугоплавких оксидов, кроме того, алюминий в расплавленном состоянии активно поглощает водород. Алюминий и его сплавы толщиной от 5 до 20 мм режут в азоте, толщиной от 20 до 150 мм — в азотно-водородных смесях (65-68% азота, 32-35% водорода). При содержании водорода свыше 35% металл поверхности реза насыщается водородом. При ручной резке содержание водорода понижается до 20%, так как в этом случае дуга горит стабильнее и ее легче поддерживать при изменении расстояния между мундштуком и поверхностью разрезаемого металла. Высокое качество поверхности реза обеспечивается при использовании аргонно-водородной смеси, содержащей 35- 50% водорода. Использование аргонно-водородных смесей целесообразнее при резке алюминиевых сплавов толщиной свыше 100 мм.

Читайте также:  Установка двух ресиверов триколор

Плазменно-дуговая резка нержавеющих сталей

Нержавеющие стали толщиной до 20 мм разрезают с применением чистого азота, а при толщине от 20 до 50 мм — смеси 50% азота и 50% водорода. В качестве рабочих газов при плазменно-дуговой резке низкоуглеродистых сталей толщиной до 40-50 мм применяют сжатый воздух.

Плазменно-дуговая резка меди и ее сплавов

Медь и медные сплавы характеризуются высокой теплопроводностью, поэтому при их резке мощность дуги должна быть больше, чем при резке сталей. В качестве плазмообразующего газа применяют аргонно-водородную смесь, азот или атмосферный воздух. При воздушно-плазменной резке меди на поверхности реза образуется легкоудаляемый хрупкий стекловидный грат. При резке меди малых и средних толщин предпочтительнее воздушно-плазменная резка. При резке латуни (сплав меди с цинком) используют те же рабочие газы, что и при резке меди, скорость резки увеличивается на 20-25% по сравнению со скоростью резки меди.

источник

Плазменная резка. Принцип работы

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока.

Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

Устройство плазмореза. Плазменная резка осуществляется плазморезом, который состоит из нескольких блоков

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция и схема подключения плазмотрона

Конструкция плазмотрона состоит из следующих составляющих:

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Результат работы плазмотрона

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 1500 м/с скоростью выхода).

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резке подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности . Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Читайте также:  Установка и подключение акустических систем

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона. При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие.

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

источник