Меню Рубрики

Установка плазменного упрочнения упу

Плазменная наплавка, упрочнение и выбор способа восстановления деталей машин

Рубрика: 14. Общие вопросы технических наук

Статья просмотрена: 744 раза

Библиографическое описание:

Бафаев, Д. Х. Плазменная наплавка, упрочнение и выбор способа восстановления деталей машин / Д. Х. Бафаев. — Текст : непосредственный, электронный // Технические науки в России и за рубежом : материалы VI Междунар. науч. конф. (г. Москва, ноябрь 2016 г.). — Москва : Буки-Веди, 2016. — С. 65-68. — URL: https://moluch.ru/conf/tech/archive/228/11192/ (дата обращения: 16.04.2020).

В данной статье приведены материалы по плазменной наплавке, упрочнению и выбору эффективного способа восстановления деталей технологических машин.

Ключевые слова:восстановление, ремонт, способы восстановления, плазменная обработка, упрочнение

Понижение работоспособности технологических машин характеризуется систематическим появлением брака, уменьшением производительности, увеличением расхода электроэнергии, возникновением специфических шумов и пр. Износ деталей и их сочленений является причиной неполадок в машинах.

Большинство металлических деталей ремонтируемых машин выбраковывают при уменьшении массы деталей на 1–2 % в результате износа рабочей поверхности. В результате теряется много металла. Между тем, большинство изношенных деталей поддаются восстановлению и повторному исользованию. Мало того, во многих случаях восстановленные детали оказываются более долговечными, чем новые [2].

Детали сочленения, потерявшие свои полезные качества (нарушение размеров, икажение формы, изменение зазоров, поверхностные повреждения, поломки и пр.), можно снова их использовать после их восстановления.

Восстановлению поддаётся любая деталь с любыми дефектами. Однако ремонтируют не все дефектные детали. Решающим здесь является экономический фактор. Чем деталь дороже, тем целесообразнее её восстанавливать. Исключение может быть сделано для деталей, которые по каким-либо причинам трудно изготовить (в частности, для импортного оборудования).

Основой ремонтного производства является восстановление деталей. От правильного выбора способа восстановления в значительной мере зависят технические и экономические показатели ремонта.

Плазменная обработка является одним из передовых методов восстановления и упрочнения деталей машин. В последнее время плазменную обработку все шире применяют для восстановления и упрочнения изношенных деталей. Высокотемпературный и сильно ионизированный газ, образующий плазму (аргон, азот), пропускают через узкий канал, в котором действует дуговой разряд между двумя электродами, из которых один не плавящийся (из вольфрама). Столб электрический дуги сжимается газом, что способствует подъему его температуры до 16000–17000 0 С и более. Благодаря тому, что в малом пространстве выделяется большое количество тепла, происходит ионизация плазмообразующего газа. Плазменную струю получают в специальной плазменной горелке, или, иначе, плазмотроне.плазменной струе присуща не только высокая температура факела, но и концентрация большой тепловой мощности в малых объемах, благодаря чему участки перегрева в 3–5 раза меньше, чем при электродуговой сварке, и в 10–30 раз меньше, чем при газовой сварке [1].

В результате зоны термического влияния при плазменной обработке соответственно меньше, чем при электродуговой и газовой сварке, в 3–5 раз. Все это позволяет получить наплавленный слой толщиной от 0,1 мм до нескольких миллиметров.

Кроме указанных достоинств плазменная обработка имеет и другие. Плазменная струя может расплавить любой из известных материалов: применяемые газы — негорючи; процесс протекает с большой скоростью и производительностью и может выполняться в различных средах, в том числе и под водой. В качестве присадочного материала чаще всего используюутся тугоплавкая высокотвердая проволока (пруток) или порошок, обеспечивающие получение изностойких покрытий [2].

Присадочный материал вводят в поток плазмообразующего газа (порошок) через канал плазмотрона или за срезом его медного сопла, здесь он расплавляется и сжатым воздухом направляется на поверхность частицы, деформируется, взаимодействует и формируется в слой покрытия.

Установка для плазменной обработки состоит из плазмотрона, системы его электрообеспечения, подачи присадочного материала, управления, газоснабжения, водоохлаждения электродов и контроля.

На рис.1 показана схема установки для плазменного напыления порошковым материалом.

Для плазменной наплавки выпускают установки УПУ-3Д и УМП-6, в состав которых входит плазмотрон ПП-25. Универсальная плазменная установка УПУ-3Д служит для нанесения износо-коррозиестойких и изоляционных покрытий из проволочного или порошкового материала. Толщина наносимого покрытия 0,1–2,0 мм, сила тока 300–400 А, напряжение 85–90 В. Наплавку ведут на прямой полярности. Электропитание осуществляется от преобразователей типа ПС-500, ПСО-500 и ИПН-160/600. Установка плазменного напыления УМП-6 предназначена для нпнесения износостойких, жаростойких, электроизоляционных и других покрытий из металлических и керамических порошковых материалов. На этой установке детали покрывают такими материалам, как оксид алюминия, вольфрам, никелехромоборокремниевый (“самофлюсующийся”), и другими сплавами, обеспечивающими износостойкие покрытия [2].

Установку УМП-6 в необходимых случаях можно оснащать плазмотроном для нанесения покрытия на внутреннюю поверхность детали. Деталь, подлежащую плазменному наращиванию, очищают от загрязнения. Плазменное покрытие зачищают, а при необходимости шлифуют.

Рис. 1. Схема установки для плазменной наплавки порошковым материалом: 1 — вольфрамовый электрод; 2 — сопло плазмотрона; 3 — электросопротивление; 4 — источник электропитания; 5 — плазменная струя; 6 — плазменный факел;газ и частицы присадочного материала; 7 — восстанавливаемая деталь; 8 — система подачи воды для охлаждения электродов; 9 — газ, транспортирующий порошок; 10 — плазмообразующий газ.

Восстановление изношенного вала плазменным напылением с последующим оплавлением (рис. 2) наиболее эффективно для таких валов, толщина покрытия которых должна быть в пределах 0,1–1,0 мм. Изношенный вал 8 напыляют плазмотроном 4, в сопло которого из питателя 3 по трубопроводу 7 поступает гранулированный порошок наносимого металла. Электрическая дуга возбуждается между вольфрамовым неплавящимся электродом и водоохлаждаемым каналом. Балластный реостат 2 включают в цепь источника электрического питания 1.

Восстановления ведут в две стадии: напыляют слой необходимой толщины, после чего подачу порошка прекращают и, приблизив плазмотрон к поверхности вала, оплавляют плазменной струёй напыленный слой. В результате получается весьма качественное покрытие с однородной структурой, повышенной прочностью и ровной поверхностью, часто не требующей последующей черновой механической обработки. Твёрдость покрытия довольно высокая. Так, нанося на изношенный вал слой из порошка сормайт и оплавляя его плазменной струёй, получают покрытие твёрдостью 45–60 HRC. В табл. 5 приведены данные о режимах плазмотронного напыления и оплавления.

Читайте также:  Установка компрессора на тягач

Рис. 2. Восстоновление изношенных валов наплавкой: 1-станок; 2-восстанавливаемый вал; 3-наружное сопло плазмотрона; 4- медное сопло; 5- плазмо-образующий газ; 6- вольфрамовый катод; 7- питатель для подачи порошка; 8- транспортирующий газ; 9-защитный газ; ИП- источник электрического питания: R1 и R2- реостаты; Др- дроссель.

Обычно для упрочнения трущуюся поверхность вала закаливают токами высокой частоты (ТВЧ) или газовым пламенем. Для применения ТВЧ требуется дорогое оборудование и индукторы для каждого размера и конфигурации вала. При применении газового пламени для поверхностного нагрева и закалки трудно контролировать и регулировать температуру и глубину закалки, поэтому наблюдается перегрев поверхностных слоёв вала. В этих условиях процесс трудно автомотизировать и даже механизировать.

Плазменное упрочнение вала поверхностной закалкой свободно от указанных недостатков, присущих другим способам. Плазменное поверхностное закаливание ведут по схеме, изображённой на рис.3. Здесь используют плазмотрон 3, укреплённый на каретке станка. Ему придают продольное перемещение (слева направо). Упрочняемый вал 1, закреплённый в центрах станка, имеет вращательное движение. С плазмотроном на каретке укреплён разбрызгиватель воды 2, который перемещается вместе с плазмотроном, охлождает и закаляет нагретую поверхность вала [2].

Рис. 3. Схема установки для упрочнения ремонтируемых валов плазменным способом: 1 — вал; 2 — разбрызгиватель воды; 3 — плазмотрон

Современная технология позволяет восстановить любую деталь с любой неисправностью. Всё дело в том, насколько это экономически выгодно. В общем случае деталь выгодно восстанавливать, когда соблюдается следующее условие:

где затраты на изготовление новой детали; затраты на восстановление неисправной детали; срок службы соответственно новой и востановленной деталей.

Затраты на восстановление неисправной детали

где остаточная стоимость восстанавливаемой детали; заработная плата рабочего (с начислениями), занятого восстановлением детали; затраты на материалы, расходуемые при восстановлении детали (например, электродов, проволоки и др.); накладные расходы (в долях от заработной платы рабочего), включающие в себя затраты, вызванные применением приспособлений, приборов, инструментов и др.

  1. Малаховский В. А. Плазменная сварка. М., 1987.
  2. Худых М. И. Ремонт текстильных машин. М., “Легпромбытиздат”, 1991.

источник

Плазменное напыление

Наиболее перспективным методом нанесения защитных покрытий является плазменное напыление, при котором нагрев, плавление, диспергирование и перенос напыляемого материала осуществляются плазменной струей, полученной нагревом потока газа в электрическом дуговом разряде. Сжатие дуги в плазмотроне обеспечивает повышение температуры плазменной струи до 10000…15000 К. Нагрев и расширение газа позволяют получить скорость плазменной струи, приближающуюся к скорости звука, а в некоторых случаях превышающую ее. Высокие температура и скорость струи позволяют напылять покрытия из любых материалов: металлов и сплавов, керамических материалов, таких как оксиды, карбиды, бориды, нитриды, и композиционных материалов. В качестве плазмообразующих газов используют аргон, азот и их смеси с водородом и гелием. Энергетические параметры плазменной струи можно регулировать в широких пределах подбором газов, параметров дугового разряда, расходом газов, геометрией сопел и катодов (рис. 1).

Рис. 1. Схема (а) и реальный процесс (б) плазменно-порошкового напыления поверхностей деталей: 1 – корпус плазмотрона; 2 – вольфрамовый электрод; 3 – охлаждаемый анод; 4 – канал подачи газа; 5 – канал подачи порошка; 6 – плазменная струя; 7 – напыляемая поверхность

Физическое взаимодействие напыляемой частицы с основой происходит на атомарном, ионном и молекулярном уровнях. При сближении атомов напыляемого материала и основы на расстояние примерно до 10–9 м возникают силы молекулярного взаимодействия Ван дер Ваальса. Если сблизить атомы на расстояние 10–10 м, то образуется химическая связь. В условиях плазменного напыления, когда скорость частицы в полете составляет 100…150 м/с, при соударении в течение 10–8…10–9 секунды возникает импульсное давление до 1500 Па, в результате чего происходит растекание жидкой компоненты частицы и активизация процесса взаимодействия ее с основой. Вследствие этого метод плазменного напыления обеспечивает высокую адгезионную прочность покрытий из тугоплавких керамических материалов.

Высокая температура плазменной струи и возможность менять ее в широком диапазоне подбором диаметра сопла и режимов работы позволяют производить напыление самых различных материалов: от легкоплавких металлов до тугоплавких керамических материалов. При этом поверхность изделия нагревается не выше 100…200 °С, что исключает ее деформацию. Покрытия, полученные плазменным напылением, имеют высокую плотность и хорошее сцепление с поверхностью детали.

По сравнению с аналогами – газопламенным, электродуговым и детонационным напылением, процессами наплавки и осаждения

  • процесс плазменного напыления имеет следующие преимущества:
  • эффективное управление энергетическими характеристиками напыляемых частиц и условиями формирования покрытия за счет гибкости регулирования параметров и режимов работы плазмотрона;
  • высокие коэффициент использования порошка (до 85 %), прочность сцепления покрытия с основой (до 60 МПа), низкая пористость;
  • высокая производительность процесса;
  • универсальность за счет получения покрытий из большинства материалов без ограничения их температур плавления;
  • нанесение покрытия на изделия, изготовленные практически из любого материала;
  • отсутствие ограничений по размерам напыляемых изделий;
  • низкое термическое воздействие на напыляемую основу, что позволяет избежать деформаций, изменений размеров изделий, а также исключить нежелательные структурные превращения основного металла;
  • нанесение покрытия на локальные поверхности;
  • получение регламентированной однородной пористости покрытия для использования в условиях работы со смазкой поверхностей скольжения;
  • нанесение покрытия с минимальными припусками для последующей механической обработки;
  • возможность использования для формообразования деталей (плазменное напыление производят на поверхность формы-оправки, которая после окончания процесса удаляется, остается оболочка из напыленного материала);
  • надежность и стабильность оборудования, высокий ресурс элементов плазмотрона за счет оптимизации условий охлаждения и обеспечения плавного нарастания и спада тока;
  • низкий расход аргона;
  • маневренность и возможность автоматизации процесса.

Плазменное напыление достаточно широко применяется для восстановления и упрочнения поверхностей деталей во многих отраслях промышленности. В автомобилестроении с помощью плазменного напыления обрабатывают коленчатые валы, поворотные цапфы, втулки-шестерни коробки передач, оси коромысел, посадочные отверстия картера КПП, кулачки распределительных валов, ступицы маховиков двигателя, валы водяных насосов и вентиляторов, головки цилиндров, поршневые кольца, диски сцепления, выхлопные клапаны, рычаги управления, вилки переключения коробки передач, тормозные барабаны, шаровые пальцы рулевого управления, глушители, крылья и т. п.

Читайте также:  Установка косилки заря на мотоблок агат

Технологический процесс плазменного напыления (рис. 2) представляет собой последовательность операций, начиная от подготовки напыляемого материала и заканчивая контролем качества напыленного покрытия по толщине слоя, степени адгезии с основой и плотности покрытия.

В качестве плазмообразующих газов при напылении материалов используют аргон, гелий, азот, водород и их смеси. Плазмообразующие газы не содержат кислорода, поэтому не окисляют материал и напыляемую поверхность. Водород в чистом виде практически не применяется по экономическим соображениям, а также вследствие разрушающего действия на электрод.

Азот и аргон используются чаще, однако наилучшими показателями обладают газовые смеси, например Ar + N и Аr + Н2. Вид плазмообразующего газа выбирают исходя из требуемой температуры,

теплосодержания и скорости потока, его степени инертности к распыляемому материалу и восстанавливаемой поверхности. Следует учитывать, что плазма двухи многоатомарных газов по сравнению с одноатомарными содержит больше тепла при одинаковой температуре, потому что ее энтальпия определяется тепловым движением атомов, ионизацией и энергией диссоциации.

Рис. 2. Технологическая схема нанесения покрытия

При напылении порошковых или шнуровых материалов электрическое напряжение прилагают к электродам плазменной горелки. При напылении проволочных материалов напряжение подводят к электродам горелки, дополнительно оно может быть приложено к напыляемому материалу, т. е. проволока может быть токоведущей или нет. Напыляемую деталь в цепь нагрузки не включают.

Оборудование для плазменного напыления состоит обычно из одного или двух серийных сварочных источников питания, плазмотрона и порошкового дозатора. В качестве источника питания используются установки плазменной сварки и наплавки типа УПНС-304, плазменной обработки УПУ-3Д, УПО-302, УПВ-301 и сварочные выпрямители ВД-201, ВД-306, ВДУ-506 и др. Плазмотрон (мощностью до 25 кВт) и порошковый дозатор обычно изготавливаются по оригинальным конструкторским разработкам.

Комплекс плазменного напыления УПУ-3Д

Комплекс предназначен для нанесения износостойких, фрикционных, изоляционных и других специальных покрытий на поверхности деталей методом плазменного напыления порошковых материалов. В качестве плазмообразующих газов используются аргон и смесь аргона с водородом.

В комплекс для напыления входят следующие агрегаты:

  • установка плазменного напыления УПУ-3Д, включающая шкаф управления и источник питания ИПН 160/600 (рис. 3);

Рис. 3. Установка для плазменного напыления УПУ-3Д

– плазмотрон ПП-25 (ПП-6-01; ПП-21) (рис. 4);

  • дозатор порошковых материалов;
  • баллоны с газом «Аргон» и «Водород»;
  • автономная система охлаждения плазмотрона и источника питания;
  • прибор для измерения температуры охлаждающей жидкости;
  • стойка для баллонов;
  • редукторы, шланги соединительные;
  • платформа для размещения и транспортировки агрегатов комплекса.

Рис. 4. Плазмотроны для плазменно-порошкового напыления: а – высокопроизводительный плазмотрон ПП-6-01; б – для напыления в труднодоступных местах ПП-21

Основные технические характеристики

источник

Установка плазменного упрочнения упу

Задачей технологии плазменного упрочнения является получение на детали упрочненного слоя с заданными эксплуатационными характеристиками (износостойкость, прочность, трещиностойкость, выносливость и др.).

Технологические процессы, в которых материал подвергают воздействию концентрированных потоков энергии в виде электронного луча, лазера, плазмы (сварка, наплавка, резка, упрочнение, напыление), в настоящее время достаточно распространены в промышленности.

К достоинствам обработки электронным лучом в вакууме следует отнести высокие значения эффективного КПД нагрева ( h » 0,85) при общем КПД технологических электронно-лучевых установок 50%, возможность передачи потоков энергии мощностью более 40-100 кВт, отсутствие окисления нагреваемой поверхности, высокую производительность процесса и др. В то же время большие капитальные затраты на приобретение и монтаж оборудования, затраты, связанные с его эксплуатацией и обслуживанием, ограничивают применение электронно-лучевой обработки деталей крупносерийным и массовым производством в машиностроении и инструментальной промышленности.

Лазерная обработка интенсивно развивается, но основное распространение получили лазеры мощностью до 5 кВт. Лазеры большей мощности являются дорогостоящим оборудованием, эксплуатация которого экономически целесообразна при его загрузке на 80-90%.

Лазерное излучение обеспечивает наиболее высокую концентрацию нагрева (плотность мощности) 10 8 —10 9 Вт/см 2 , но не для всех технологических процессов это преимущество может быть реализовано. Так, при упрочнении без оплавления существует критическая плотность мощности Екр, выше которой происходит оплавление поверхности. Для различных сталей значение Екр находится в интервале (2-6)10 4 Вт/см 2 , т. е. используется диапазон плотности мощности, характерный для плазменной обработки.

Плазменные источники обеспечивают плотность мощности 10 4 -10 5 Вт/см 2 , т. е. меньше, чем электронный и лазерный луч, но их единичная мощность может достигать 160 кВт и более, а эффективный КПД нагрева — 0,72. Плазменное оборудование по стоимости и сложности изготовления вполне сопоставимо с электродуговым. Его широко применяют для резки, наплавки, напыления, сварки и более ограниченно для упрочнения.

Способы плазменного упрочнения

Следует выделить два направления использования плазменного нагрева. Первое связано с использованием нагрева, осуществляемого плазмой тлеющего разряда в вакуумной камере при давлении остаточного воздуха 1,33-13,3 Па. Этот процесс получил распространение для химико-термической обработки инструмента и других малогабаритных деталей. К недостаткам способа следует отнести наличие вакуумной камеры и ограничение обрабатываемых деталей ее размерами. Кроме того, плотность мощности, передаваемая обрабатываемой детали, небольшая.

К этому же направлению следует отнести и технологию электролитно-плазменного упрочнения. Электролитный нагреватель, включенный в электрическую цепь в качестве анода, подводят к изделию, которое является катодом. Замыкание электрической цепи между анодом-электронагревателем и поверхностью изделия происходит через электролит (водный раствор соли). Преобразование электрической энергии в тепловую идет преимущественно в приграничном к изделию слое. В результате нагрева этот слой переходит в парогазовое состояние, в нем под воздействием приложенного напряжения возбуждаются микродуги. Плотность мощности достигает 2,4 × 10 3 Вт/см 2 . Так как в качестве электролита используют водный раствор соли, то этим же электролитом можно производить охлаждение и закалку нагретых участков поверхности.

Второе направление применения плазменного нагрева базируется на использовании сжатой дуги прямого или косвенного действия, генерируемой специальным плазмотроном. Под воздействием стенок канала сопла и струи плазмообразующего газа столб дуги сжимается, его поперечное сечение уменьшается, а температура в центральной части столба дуги повышается до 10 000-50 000 К. В результате внутренний слой, соприкасающийся со столбом дуги, превращается в плазму, а наружный спой, омывающий стенки канала сопла, остается сравнительно холодным, образуя электрическую и тепловую изоляцию между потоком плазмы и каналом сопла. Этот охлажденный слой газа препятствует отклонению столба дуги от заданного направления и замыканию его на стенку канала сопла. Напряжение сжатой дуги составляет 60-200 В, что в три-десять раз больше, чем в свободной дуге. Плотность тока сжатой дуги достигает 100 А/мм 2 , т. е. на порядок выше, чем у свободной, а удельная мощность достигает 2 × 10 6 Вт/см 2 .

Читайте также:  Установка автосигнализации пантера slk 868rs

Упрочнение сталей с нагревом концентрированными потоками энергии (КПЭ) по аналогии с другими видами закалки заключается в формировании на этапе нагрева аустенитной структуры и ее последующем превращении в мартенсит на этапе охлаждения. При этом подводимая тепловая энергия больше энергии, необходимой для перестройки кристаллической решетки, а сама перестройка происходит с некоторой конечной скоростью. Поэтому превращение осуществляется в интервале температур от Ас1нач до Ас1кон, т. е. окончание аустенитного превращения смещается в область высоких температур Т (рис. 1, область 1).

Вследствие высокой скорости нагрева диффузионные процессы перестройки решетки объемно-центрированного куба избыточного феррита в решетку гранецентрированного куба аустенита могут не заканчиваться на линии GS диаграммы Fe — Fe 3 C и сдвигаться в область более высоких температур (область 2). Также может происходить микроплавление границы цементита с аустенитом (область 3).

Рис. 1. Участок диаграммы Fe — Fe 3 C с особенностями структурных превращений при высокоскоростном нагреве

При обработке сварочной дугой скорость нагрева достигает 1000-3000 °С/с. При таких скоростях нагрева смещение всех стадий аустенизации в сталях в область более высоких температур может достигать 100-300 °С. В результате нагрева КПЭ формируется структура, особенности которой обусловлены степенью завершенности процесса аустенизации, определяемой скоростью и температурой нагрева, временем воздействия, исходной структурой и др. При достаточно высокой температуре нагрева или при относительно большом времени воздействия возможно формирование однородного аустенита. Уменьшение температуры нагрева и времени воздействия в результате повышения критических точек и замедления процесса гомогенизации приводит к большой неоднородности аустенита в стали, особенно по углероду. Кроме аустенита, в этих условиях при высокой температуре возможно существование нерастворившихся карбидов.

Степень неоднородности структуры, образовавшейся в результате нагрева КПЭ, зависит от дисперсности исходной структуры. Причем чем дисперснее исходная структура, тем меньше неоднородность аустенита.

Процесс обработки КПЭ с целью термоупрочнения характеризуется высокими скоростями охлаждения, которые приводят к закалке поверхностных участков. Для получения мартенсита в сплавах железо—углерод в интервале температур минимальной устойчивости аустенита (400-600 0 С) необходимо обеспечить скорость охлаждения больше критической, которая для большинства сплавов железа находится в интервале 50-200 °С/с. Охлаждение при нагреве КПЭ характеризуется значительно большими скоростями. Так, скорость охлаждения при плазменном упрочнении изменяется в пределах от 10 4 до 10 6 °С/с. Плазменное упрочнение осуществляют без оплавления и с оплавлением поверхности детали.

Установлены энергетические пороги, определяющие режимы упрочнения (рис. 2). Энергетический порог W 1, соответствует нагреву металла до температуры начала аустенитного превращения. Дальнейшее увеличение плотности мощности приводит к возрастанию твердости обрабатываемой стали, которая достигает наибольшей величины при нагреве без оплавления при втором значении энергетического порога W 2. Затем увеличение плотности мощности приводит к незначительному повышению твердости, а третий порог W 3 соответствует началу оплавления поверхности.

Рис. 2. Влияние плотности мощности в пятне нагрева на поверхностную твердость

Плазменное упрочнение без оплавления поверхности наиболее распространено, так как позволяет в широких пределах регулировать твердость, размеры и эксплуатационные характеристики обрабатываемой зоны при сохранении высокого качества поверхности. Упрочнение с оплавлением поверхности обычно используют для достижения особых эксплуатационных свойств.

При плазменном термоупрочнении отдельные слои обрабатываемого участка прогреваются по глубине до различных температур, вследствие чего зона термического воздействия (ЗТВ) имеет слоистое строение. В зависимости от микроструктуры и микротвердости в сталях по глубине ЗТВ различают три слоя (рис. 3).

Рис. 3. Схема строения ЗТВ при плазменном упрочнении

Зона оплавления 1 (первый слой) имеет место при закалке с оплавлением. Как правило, зона оплавления имеет столбчатое строение с кристаллами, вытянутыми в направлении теплоотвода. Основная структурная составляющая — мартенсит, карбиды обычно растворяются. При оптимальных режимах закалки с расплавлением обезуглероживание не происходит, нет пор и шлаковых включений. При плазменной закалке без оплавления первый слой отсутствует.

Второй слой — зона закалки 2 из твердой фазы. Его нижняя граница определяется температурой нагрева до Ас1. В этом случае наряду с полной закалкой происходит и неполная. По глубине данный слой характеризуется структурной неоднородностью. Ближе к поверхности имеются мартенсит и остаточный аустенит, полученные при охлаждении из гомогенного аустенита. Ближе к исходному металлу наряду с мартенситом имеются элементы исходной структуры: феррит в доэвтектоидной стали и цементит в заэвтектоидной.

В переходной зоне 3 (третий слой) металл нагревается ниже точки Ас1. Если сталь имеет исходное состояние после закалки или отпуска, то в результате плазменной обработки в этом слое образуются структуры отпуска — троостит или сорбит, характеризуемые пониженной твердостью.

Зона термического влияния плазменной струи (дуги) имеет форму сегмента, по своему строению она аналогична ЗТВ электронного и лазерного лучей.

При плазменном нагреве не всегда удается избежать накопления теплоты в обрабатываемом изделии. С целью устранения накопления теплоты в изделии используют плазменное упрочнение в жидких средах. Обрабатываемое изделие погружают в жидкость таким образом, чтобы над его поверхностью была жидкая прослойка определенной толщины.

Лащенко Г.И. Плазменное упрочнение и напыление. – К.: «Екотехнолог i я», 2003 – 64 с.

источник