Меню Рубрики

Установка плазменной резки применение

Обзор установок плазменной резки металла с ЧПУ и без

В настоящее время [установка плазменной резки] различных металлов применяется при первичной обработке деталей.

Технология обработки металла выбирается в зависимости от его характеристик.

В машиностроительной отрасли используется широкая линейка обрабатывающих центров и станков с ЧПУ. С их помощью производятся детали и узлы различного назначения.

Значительную долю в объеме всех работ по металлообработке занимает раскрой металлического листа на заданные фрагменты.

При выполнении таких операций важно не только вырезать деталь в полном соответствии с шаблоном, но и оптимально использовать всю площадь металлического листа.

Принцип действия плазмореза

Резка металлических сплавов и других материалов с использованием плазмы выполняется на специальной установке, которая называется плазморез.

Надо напомнить, что плазма – это одна из форм существования материи. В окружающей человека среде материальные объекты представляются в твердом, жидком или газообразном состоянии.

Плазма – это четвертое состояние, которое характеризуется высокой температурой.

Установка для плазменной резки создает поток ионизированного воздуха высокой температуры, который и разрезает заготовку.

Рабочая температура этого потока достигает величин от 5000 до 30000 градусов.

Установка состоит из следующих элементов:

Источником питания служит либо трансформатор, либо инвертор. Используя трансформатор, можно резать заготовки большой толщины.

Он без потерь переносит перепады напряжения электрической сети. При этом у него большой вес, низкий КПД и высокая цена.

Инвертор дешевле, экономичнее и значительно легче. У инверторного устройства более высокий КПД по сравнению с трансформатором.

Компактная конструкция позволяет использовать инверторные установки в комплексах с ЧПУ, неудобных и труднодоступных местах.

Сегодня промышленностью выпускается широкая линейка инверторных установок для резки металла с помощью плазмы.

Компрессором в плазморез подается воздух или определенный газ.

Воздух подается под высоким давлением, которое обеспечивает вихревую форму струи.

Плазматрон является основным элементом плазмореза и представляет собой резак, который состоит из следующих элементов:

При подаче напряжения и поджиге дуги возникает поток воздуха, который имеет высокую степень ионизации.

Присутствие ионов превращает воздух из изолятора в проводник электрического тока. При этом формируется электрическая дуга.

Под действием дуги локально разогревается заготовка, металл плавится и образуется рез.

Особенности технологии

В промышленном производстве используются плазморезы непосредственного и опосредованного воздействия. Установка резки плазмой первого типа используется для обработки металла.

При этой схеме в качестве второго электрода выступает сама металлическая заготовка. Такая установка носит название плазменно-дуговой.

Когда выполняется резка непроводящих электричество материалов, то плазма образуется с помощью встроенного электрода. Установка этого типа называется плазменно-струйная.

Цена данной установки выше, при этом ее функциональные возможности значительно шире. На плазморезах с ЧПУ используются оба способа резки.

Если посмотреть на плазменную резку металла через призму физики процесса, то она работает точно так же, как и дуговая. Но при этом привычные электроды не используются.

При этом надо учитывать, что эффективность применения плазменной резки определяется толщиной обрабатываемого материала.

Предельные величины имеют следующие значения:

  • алюминиевые сплавы — 120 мм;
  • медь и бронза — 80 мм;
  • сталь и сплавы — 50 мм;
  • чугун — 90 мм.

Раскрой заготовок на установках с ЧПУ выполняется после разработки программы и точной настройки режима резки.

При всех положительных качествах этого способа резки, цена заготовки должна быть минимальной.

Точность и быстрота резки

Обычная резка листового металла по заранее заданному контуру выполняется на больших скоростях и требует расхода электроэнергии по минимуму.

Для ручных установок плазменной резки скорость реза должна быть не более 6000 мм в минуту. На плазматронах с ЧПУ скорость реза, как правило, ниже.

И в первом, и во втором случае важно, чтобы качество реза соответствовало требованиям стандартов, отраслевых норм и технических условий.

Одним из критериев оценки качества является конусность реза.

В зависимости от толщины заготовки и класса установки этот показатель может колебаться от 3 до 9 градусов. Идеальный рез не имеет отклонений.

Раскрой металлов

При раскрое металлов и сплавов режим резки выбирается в зависимости от конкретных условий.

Когда режется лист из нержавеющей стали, рекомендуется использовать азот или его смесь с аргоном.

Если применить сжатый воздух, это может повлиять на химические характеристики стали.

Плюс к этому нержавейка чувствительна к влиянию переменного тока.

Учитывая эти обстоятельства, резка стальных заготовок выполняется плазменно-струйным способом.

Читайте также:  Установка плит перекрытия ребристых

Плазменная резка алюминиевых сплавов при толщине заготовки до 70 мм выполняется с использованием сжатого воздуха.

Если толщина листа больше 100 мм, то применяется смесь аргона и водорода.

Аппараты плазменной резки

По своей конструкции установки для плазменной резки металла подразделяются на стационарные и переносные.

Следующим отличием при классификации установок является способ пространственной ориентации заготовок в пространстве.

Установки бывают следующего типа:

Конструкция портальной установки по своей компоновке похожа на конструкцию фрезерного станка с ЧПУ подобного типа.

Металлический лист для резки фиксируется под ходовую часть портала. Портал перемещается на роликах по опорным элементам в продольном направлении.

Плазменный резак, который установлен на портале, имеет степень свободы в поперечном направлении.

На портально-консольной установке лист материала крепится непосредственно под консолью, на которой расположена плазменная горелка.

Цена такой установки бывает ниже, чем у станка другой конструкции.

Установка шарнирного типа получила свое наименование потому, что плазменная горелка в ней расположена на специальной шарнирной раме.

На консоли крепится копир, по которому выполняется вырезка детали. В процессе плазменной резки образуется дым и пыль.

Для того чтобы удалить их за пределы производственного помещения, используется местная вытяжка. Система вентиляции должна оборудоваться в цехе по раскрою металла в обязательном порядке.

Плюсы и недостатки плазменной резки

Если сравнивать с другими способами раскроя листового металла, то плазменная технология обладает некоторыми преимуществами.

Первое, что следует отметить, высокую производительность.

Из этого следует и оптимальная цена изделия, которая складывается из нескольких составляющих – экономия энергии, оптимальное использование металла и высокая точность изделий.

К недостаткам следует отнести ограничения по толщине обрабатываемого металла. К минусам также относится и цена некоторых установок с ЧПУ.

Несмотря на эти ограничения, плазменная резка используется и в производственных целях, и в бытовой сфере.

источник

Плазменная резка. Принцип работы

Плазменная резка осуществляется аппаратом под названием плазморез. Он создаёт поток высокотемпературного ионизированного воздуха (плазмы), который разрезает заготовку.

Принцип плазменной резки основан на свойстве воздуха в состоянии ионизации становиться проводником электрического тока.

Плазморез создаёт в плазмотроне плазму (ионизированный воздух, разогретый до высокой температуры) и сварочную дугу, которые осуществляют раскрой материала.

Устройство плазмореза

Плазморез состоит из нескольких блоков:

Устройство плазмореза. Плазменная резка осуществляется плазморезом, который состоит из нескольких блоков

Источник электропитания

Источником электропитания может быть:

  • трансформатор. Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор. Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция и схема подключения плазмотрона

Конструкция плазмотрона состоит из следующих составляющих:

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Результат работы плазмотрона

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 1500 м/с скоростью выхода).

Читайте также:  Установка газа на харриер

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резке подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности . Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона. При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.
Читайте также:  Установка гбо описание монтаж

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие.

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ.

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью, и соответственно, производительностью, и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

источник

Добавить комментарий

Adblock
detector