Меню Рубрики

Установка плазменной резки zip

Сообщества › Самодельный Гаражный Hi-End › Блог › Станок плазменной резки с ЧПУ

Пс-с-с-т, пацаны, хотите немного гаражного хайтека? 😉

Обычно, когда мне было нужно вырезать из листового металла какую-то деталь (или много деталей), я обращался в компанию, занимающуюся лазерной и плазменной резкой, и они решали мою проблему. В какой-то момент мне надоело ждать по 5-7 дней, пока исполнят заказ, ездить по пробкам за вырезанными деталями, искать на производстве кладовщика, чтобы забрать заказ и вот это вот все. Человеческий фактор тоже никто не отменял: то подрядчик что-то вырезать забудет, то сам накосячишь с заказом, и приходится по новой ждать, пока вырежут недостающие позиции. Ну и, наконец, ползучий рост цен на все сделал свое дело, и однажды стало понятно, что заказывать резку на стороне становится просто не выгодно.
Пришло время делать ЭТО — строить станок плазменной резки с ЧПУ.

Просмотрев пару сотен различных видео на Youtube и изучив существующие подходы к строительству подобных станков в гаражных условиях, я решил, что при постройке станка буду максимально экономить на механической части и везде, где только возможно, обходиться материалами, которые можно купить в магазине или на строительном рынке. А вот на электронной части, наоборот экономить не буду.
Основная масса проблем, с которой сталкиваются самодеятельные станкостроители, связана как раз с некорректной работой электроники станка. И часто именно она мешает закончить проект и довести его до стадии «боевой» эксплуатации. Поэтому было решено блок управления станком строить, не увлекаясь кроиловом, а механическую часть собирать с минимальным бюджетом и в дальнейшем модернизировать ее по мере необходимости.

Для тех кому интересны подробности, я изложил все соображения вот здесь:

Начал с разработки конструкции. Базу станка решил собирать из стандартного стального профиля сечением 40х40мм и 60х40мм. Конструкция модульная, что в перспективе облегчит доработку и модернизацию (а она 100% понадобится, потому что в таком сложном проекте сделать все сразу идеально невозможно).

Начали с постройки стола, на который в дальнейшем будут устанавливаться все элементы станка:

Готовый стол. Собран из профиля 40х40. Сварки старались делать как можно меньше, чтобы избежать поводок. Все, что возможно, собирали на болтах с помощью заранее вырезанных лазером зажимных пластин. Такая технология сильно экономит время при сборке т.к. не требуется размечать и сверлить крепежные отверстия в элементах из профиля.

Каретки для перемещения портала собрали из вырезанных лазером элементов. В качестве роликов использовали 608-е подшипники.

Ось Z собирали по тому же принципу. В качестве направляющих использовали стандартный профиль 25х25, из готовых элементов взяли только ШВП и подшипниковые блоки для поддержки ее вала.

Далее пришла очередь сборки направляющих…

…и установки портала на стол:

Как я уже говорил, не все идеально получается с первого раза. Чаще всего сталкиваешься с неожиданными проблемами, которые приходится исправлять. Наш проект не стал исключением:

Последним этапом стала сборка водяного поддона. Поскольку возможности поставить мощную вытяжку для удаления продуктов горения металла у меня нет, я решил для сборки окалины использовать ванну с водой. Она не так удобна в использовании, как вытяжка, но у нее есть огромное преимущество с точки зрения пожарной безопасности.

Далее пришла очередь блока управления. Его решил разместить в специально для этих целей купленном готовом шкафу. Шкаф выбрал достаточно большой, т.к. драйверы шаговых двигателей сильно нагреваются при работе, и плотно упаковывать все это хозяйство не полезно. Большой шкаф, 2 приточных и 2 вытяжных вентилятора — это обеспечит нормальную температуру работы драйверов.

Прикинул размещение элементов на монтажной панели…

К сборке подошли весьма параноидально. Все сигнальные цепи были убраны в экранирующую оплетку, которая была заземлена на корпус:

Блок автоматического контроля высоты плазмотрона приобрел готовым. Долго выбирал из нескольких вариантов, предлагаемых в РФ, рассматривал польский блок Proma, но в итоге остановился на блоке Владимира Егорова из Киева, т.к. он показался мне более удобным в плане подключения и работы.

При резке металла плазмой разрезаемый лист ведет при нагреве, и он начинает изгибаться (да и исходные листы приходят с металлобазы кривыми, как жизнь портовой шлюхи). Чтобы рез был качественным, необходимо, чтобы расстояние от поверхности листа до сопла горелки оставалось неизменным на всем протяжении работы. Блок контроля высоты следит за этим расстоянием и дает команды на подъем или опускание горелки по мере необходимости.

Лицевая панель шкафа выглядит скромно: кнопка включения питания, кнопка аварийной остановки и настройки блока контроля высоты:

Для блока управления нужна стойка. Ее сварили из профиля 60х60мм и поставили на колеса, чтобы было легко перемещать с места на место.

На стойке, кроме самого блока управления, закреплен и источник плазмы. У меня это Grovers Cut 60. Его главные достоинства — пневматический поджиг дуги и резка металла больших толщин (до 25мм с черновым качеством) при работе от 220В. У меня максимальная толщина резки будет 12мм, поэтому такого источника хватит с лихвой.

Станок управляется с компьютера программой Mach3. Я выбирал между Mach3, Linux CNC и Puremotion, но остановился на первом варианте. Одна из причин — большое количество информации по настройке данного пакета и весьма демократичная цена. Кроме того, мой станок управляется не через параллельный порт, а через ethernet. Производитель контроллера (Purelogic) не поддерживает LinuxCNC, поэтому от его использования пришлось отказаться, хотя этот пакет очень стабильно работает и бесплатен.

Читайте также:  Установка chillispot на debian

Тестирование станка начал с перемещений в ручном режиме

Настроил датчики хоуминга и возврат референтную точку:

Проверил, как станок исполняет реальный G-код. Вместо горелки закрепил маркер. Получился станок для рисования 🙂

И, наконец, резка первой детали:

Готовый станок перенесли на подготовленное для него место:

Управляющий станком компьютер находится на противоположном конце мастерской. За счет того, что станок управляется по локальной сети сильно снизилось влияние на линии управления электромагнитных помех, возникающих при резке. Это в свою очередь исключило все трудно диагностируемые ошибки, на которые часто жалуются пользователи программы Mach3, и повысило стабильность работы всей системы.

Станок имеет рабочее поле 1500х1000мм. Т.е. можно взять стандартный лист 1500х3000 или 1500х6000, отрубить от него метровую полосу и работать. Конечно, идеально иметь станок, на который лист укладывается целиком, но я себе такого позволить не могу, т.к. ограничен размерами помещения и тем, что находится оно на 4 этаже, куда большой лист не затащить.

Главный вопрос, который меня волновал при постройке — какая в итоге получится точность с такими примитивными направляющими? Опыт показал, что для большинства стоящих передо мной задач точности достаточно. Фланцы, косынки, закладные, детали станков под сварку, вывески и декоративные элементы — все это режется без проблем, и существующие погрешности на результат не влияют. Да, это, конечно, не лазер. Да, конечно, точность резки еще можно повысить (и я со временем это сделаю). Зато теперь я могу резать детали БЫСТРО, многократно быстрее и точнее, чем вручную, даже с использование шаблонов. Экономия времени и сил колоссальная. Решение заморачиваться с постройкой станка было верным, и итоговый результат стоит потраченных времени и средств (я уже не говорю о полученном в процессе постройки опыте).

P.S. Для тех кому интересна данная тема вот здесь есть еще пара видео на тему данного станка:

Устройство блока управления:

Полный обзор станка и комментарии об опыте его двухмесячной эксплуатации

источник

Обзор установок плазменной резки металла с ЧПУ и без

В настоящее время [установка плазменной резки] различных металлов применяется при первичной обработке деталей.

Технология обработки металла выбирается в зависимости от его характеристик.

В машиностроительной отрасли используется широкая линейка обрабатывающих центров и станков с ЧПУ. С их помощью производятся детали и узлы различного назначения.

Значительную долю в объеме всех работ по металлообработке занимает раскрой металлического листа на заданные фрагменты.

При выполнении таких операций важно не только вырезать деталь в полном соответствии с шаблоном, но и оптимально использовать всю площадь металлического листа.

Принцип действия плазмореза

Резка металлических сплавов и других материалов с использованием плазмы выполняется на специальной установке, которая называется плазморез.

Надо напомнить, что плазма – это одна из форм существования материи. В окружающей человека среде материальные объекты представляются в твердом, жидком или газообразном состоянии.

Плазма – это четвертое состояние, которое характеризуется высокой температурой.

Установка для плазменной резки создает поток ионизированного воздуха высокой температуры, который и разрезает заготовку.

Рабочая температура этого потока достигает величин от 5000 до 30000 градусов.

Установка состоит из следующих элементов:

Источником питания служит либо трансформатор, либо инвертор. Используя трансформатор, можно резать заготовки большой толщины.

Он без потерь переносит перепады напряжения электрической сети. При этом у него большой вес, низкий КПД и высокая цена.

Инвертор дешевле, экономичнее и значительно легче. У инверторного устройства более высокий КПД по сравнению с трансформатором.

Компактная конструкция позволяет использовать инверторные установки в комплексах с ЧПУ, неудобных и труднодоступных местах.

Сегодня промышленностью выпускается широкая линейка инверторных установок для резки металла с помощью плазмы.

Компрессором в плазморез подается воздух или определенный газ.

Воздух подается под высоким давлением, которое обеспечивает вихревую форму струи.

Плазматрон является основным элементом плазмореза и представляет собой резак, который состоит из следующих элементов:

При подаче напряжения и поджиге дуги возникает поток воздуха, который имеет высокую степень ионизации.

Присутствие ионов превращает воздух из изолятора в проводник электрического тока. При этом формируется электрическая дуга.

Под действием дуги локально разогревается заготовка, металл плавится и образуется рез.

Особенности технологии

В промышленном производстве используются плазморезы непосредственного и опосредованного воздействия. Установка резки плазмой первого типа используется для обработки металла.

При этой схеме в качестве второго электрода выступает сама металлическая заготовка. Такая установка носит название плазменно-дуговой.

Когда выполняется резка непроводящих электричество материалов, то плазма образуется с помощью встроенного электрода. Установка этого типа называется плазменно-струйная.

Цена данной установки выше, при этом ее функциональные возможности значительно шире. На плазморезах с ЧПУ используются оба способа резки.

Если посмотреть на плазменную резку металла через призму физики процесса, то она работает точно так же, как и дуговая. Но при этом привычные электроды не используются.

При этом надо учитывать, что эффективность применения плазменной резки определяется толщиной обрабатываемого материала.

Читайте также:  Установки аргонодуговой сварки универсальные

Предельные величины имеют следующие значения:

  • алюминиевые сплавы — 120 мм;
  • медь и бронза — 80 мм;
  • сталь и сплавы — 50 мм;
  • чугун — 90 мм.

Раскрой заготовок на установках с ЧПУ выполняется после разработки программы и точной настройки режима резки.

При всех положительных качествах этого способа резки, цена заготовки должна быть минимальной.

Точность и быстрота резки

Обычная резка листового металла по заранее заданному контуру выполняется на больших скоростях и требует расхода электроэнергии по минимуму.

Для ручных установок плазменной резки скорость реза должна быть не более 6000 мм в минуту. На плазматронах с ЧПУ скорость реза, как правило, ниже.

И в первом, и во втором случае важно, чтобы качество реза соответствовало требованиям стандартов, отраслевых норм и технических условий.

Одним из критериев оценки качества является конусность реза.

В зависимости от толщины заготовки и класса установки этот показатель может колебаться от 3 до 9 градусов. Идеальный рез не имеет отклонений.

Раскрой металлов

При раскрое металлов и сплавов режим резки выбирается в зависимости от конкретных условий.

Когда режется лист из нержавеющей стали, рекомендуется использовать азот или его смесь с аргоном.

Если применить сжатый воздух, это может повлиять на химические характеристики стали.

Плюс к этому нержавейка чувствительна к влиянию переменного тока.

Учитывая эти обстоятельства, резка стальных заготовок выполняется плазменно-струйным способом.

Плазменная резка алюминиевых сплавов при толщине заготовки до 70 мм выполняется с использованием сжатого воздуха.

Если толщина листа больше 100 мм, то применяется смесь аргона и водорода.

Аппараты плазменной резки

По своей конструкции установки для плазменной резки металла подразделяются на стационарные и переносные.

Следующим отличием при классификации установок является способ пространственной ориентации заготовок в пространстве.

Установки бывают следующего типа:

Конструкция портальной установки по своей компоновке похожа на конструкцию фрезерного станка с ЧПУ подобного типа.

Металлический лист для резки фиксируется под ходовую часть портала. Портал перемещается на роликах по опорным элементам в продольном направлении.

Плазменный резак, который установлен на портале, имеет степень свободы в поперечном направлении.

На портально-консольной установке лист материала крепится непосредственно под консолью, на которой расположена плазменная горелка.

Цена такой установки бывает ниже, чем у станка другой конструкции.

Установка шарнирного типа получила свое наименование потому, что плазменная горелка в ней расположена на специальной шарнирной раме.

На консоли крепится копир, по которому выполняется вырезка детали. В процессе плазменной резки образуется дым и пыль.

Для того чтобы удалить их за пределы производственного помещения, используется местная вытяжка. Система вентиляции должна оборудоваться в цехе по раскрою металла в обязательном порядке.

Плюсы и недостатки плазменной резки

Если сравнивать с другими способами раскроя листового металла, то плазменная технология обладает некоторыми преимуществами.

Первое, что следует отметить, высокую производительность.

Из этого следует и оптимальная цена изделия, которая складывается из нескольких составляющих – экономия энергии, оптимальное использование металла и высокая точность изделий.

К недостаткам следует отнести ограничения по толщине обрабатываемого металла. К минусам также относится и цена некоторых установок с ЧПУ.

Несмотря на эти ограничения, плазменная резка используется и в производственных целях, и в бытовой сфере.

источник

RedTriton › Блог › Очередной апгрейд ЧПУ-плазмы

Долго ли, коротко ли, а наш станок плазменной резки с ЧПУ заработал денег себе на очередной апгрейд.

Первым делом мы установили купленные ранее планетарные редукторы. Несмотря на то, что посадочные размеры у них выполнены под стандарт NEMA23, поставить их на уже существующую площадку для крепления шаговых двигателей не получилось — редуктора оказались буквально на 1мм шире, чем нужно. Пришлось изготовить новые площадки и развернуть корпус редуктора на 45 градусов. Площадки, само собой, резали на этом же станке. Это фантастический кайф, когда все требуемое можно изготовить прямо на месте, за 5-10 минут, не обращаясь к внешним подрядчикам.

Поставили редуктора на станок и закрепили на них двигатели. В процессе пришлось изготовить переходные втулки, т.к. редуктора рассчитаны на вал 16мм, а диаметр вала двигателя всего 8мм. И, конечно же, у продавцов редукторов в каталоге эти втулки есть, но получить их можно только под заказ, прождав 2 месяца (при том, что стоимость этой втулки всего рублей 200). Хорошо, что в хозяйстве имеется токарный станок, и изготовление втулки перестает быть проблемой 🙂

Стоило ли заморачиваться этой операцией? Вопрос остается открытым. Примененные в блоке управления станком драйвера имеют функцию морфинга и подавления резонанса, поэтому портал перемещается плавно на любых оборотах и без применения редукторов. С другой стороны, редуктора втрое подняли крутящий момент, благодаря чему стало возможно увеличить параметры ускорения шаговых двигателей в управляющем ПО, и портал стал быстрее разгоняться и тормозить, что тоже полезно. Хуже, естественно, не стало, но и революционного прорыва в качестве резки не произошло. Зато я теперь уверен, что двигатели работают без перегрузки.

Ранее я уже писал, что мы отказались от использования Mach3 для управления станком. Причин тому было несколько:
1. Mach3 сам по себе довольно глючный и имеет большое количество мелких проблем, которые никогда не будут устранены по одной простой причине — поддержка этого ПО давным давно прекращена разработчиком.
2. Mach3 не работает на 64-разрядных ОС, поэтому замена компьютера на управляемый современной ОС (а однажды это придется сделать по объективным причинам) превратит станок в тыкву.
3. Mach3 убогий интерфейс (и кастомные скринсеты для него не далеко ушли). Он требует от оператора большого внимания и некоторых специфических знаний. Это означает повышенные требования к персоналу и большое количество брака, если оператор недостаточно толковый.
4. LPT-порт, используемый для управления станком, очень чувствителен к электромагнитным помехам, что становится причиной разных трудно диагностируемых ошибок при работе.

Читайте также:  Установка архив tar gz debian

Кстати, это беда всех недорогих станков с ЧПУ, имеющихся на рынке — ради снижения стоимости для управления ими применяют Mach3 (часто просто ставят демо-версию с ограниченными возможностями, а то и вовсе ломанную софтину). Как следствие — обильный геморрой на ровном месте там, где его можно было бы избежать, заплатив на 50 тыс.руб. больше.

Миграция на Puremotion прошла абсолютно безболезненно, благо блок управления станком был построен на их компонентах и оказался готов к этому мероприятию с самого начала. Бесплатный тестовый 30-дневный период позволил тщательно изучить ПО вдоль и поперек, поэтому когда пришло время принимать решение о покупке лицензии, я сказал «ДА» максимально полной версии.

Далее пришла очередь аппарата плазменной резки. Стало понятно, что из Grovers Cut60 мы выросли, и нужен более серьезный аппарат с большей производительностью. Главное, что доставляло хлопоты — малый срок жизни расходных материалов (катодов и сопел) и весьма среднее качество их изготовления. Как ни крути, как ни колдуй с давлением воздуха, высотой резки и другими параметрами, а за смену приходилось менять расходники по 5-6 раз. Была и еще одна проблема — этот аппарат не зажигает дугу, пока не закончится 10-секундная продувка после того, как дуга погасла. Из-за этого за смену потери рабочего времени доходили до 1.5 часов. Добавим сюда невысокую скорость резки из-за малой мощности аппарата и ставит понятно, почему со временем он перестал нас устраивать.

На замену Grovers’у пришло вот это

Для установки горелки на место потребовалось изготовить новое крепление и переходную пластину, которая позволила закрепить все на старой оси Z. Длинный шланг-пакет позволил отказаться от закрепленного над рабочим столом «гуся» и убрать все в гибкий кабель-канал. Станок стал не только выглядеть аккуратнее, но и укладывать на рабочий стол листы проще — ничего не мешается.

Отказались мы и от использования автоматического контроля высоты (THC) Владимира Егорова. Для бюджетного станка это вполне себе работоспособное решение, но для более продвинутого источника плазмы лучше использовать более подходящие инструменты. Так мы пришли к контроллеру THC1 от Purelogic — это было логично, раз уж станок управляется их же софтом, полностью поддерживающим это железо.
THC1 получает все данные о состоянии дуги со специализированного интерфейса источника плазмы и по нему же управляет поджигом. С управляющим компьютером все связывается по ethernet, а значит мы имеем весьма надежное соединение и возможность передавать сигнал на практически неограниченное расстояние. Имеем функцию «умного прожига» (или «подпрыжки», что защищает сопла плазмотрона от преждевременного износа при прожиге), а также функцию «anti-dive», защищающую от резкого опускания горелки при прохождении через уже прорезанные участки. И, главное, никаких дополнительных плагинов и прочих софтовых костылей, как это было бы в случае c Mach3 — все уже штатно встроено в Puremotion.

Управляющий блок контроллера высоты разместили в шкафу

Делитель закрепили непосредственно над источником плазмы и подключили к его ЧПУ-интерфейсу

На этом эпопея не закончилась. При первом запуске выяснилось, что Hypertherm’у катастрофически не хватает производительности компрессора. Ресивер опустошался быстрее, чем компрессор мог его наполнить, давление воздуха в магистрали падало ниже критического, и аппарат гасил дугу. Дешевые аппараты, кстати, функции контроля давления в магистрали не имеют, и вы можете годами резать, даже не подозревая о проблеме и удивляясь низкому качеству реза.

Чтобы решить проблему с воздухом, обзавелись бежецким компрессором K-2. У него всего 150л ресивер, но зато производительность 680л/мин на выходе (!) при 900л/мин на входе и высокая мобильность за счет установленных колес. Со временем оснастим его дополнительным стационарным ресивером литров на 230.

Когда все, наконец, завелось, радости не было предела. Достаточно уже того, что скорость резки 6мм стали выросла в 3 раза. Это стало возможным за счет увеличения мощности аппарата и оптимизации сопутствующих процессов. Полюбуйтесь: 6мм сталь, 2550 мм/мин (можно быстрее, но качество края уже будет не очень).

А вот результат резки 12мм стали. Детали сняты прямо со станка, дополнительная обработка не производилась.

Таким образом мы получили станок промышленного уровня, отличающийся лишь скромными размерами рабочего стола (что связано с имеющимися у нас ограничениями по площади). Со временем мы планируем переезд в помещение большей площади, и там уже построим рабочий стол большего размера. Пожалуй, на сегодня с этим станком сделано уже все, что только было можно. Осталось дооснастить его одним очень полезным дополнительным инструментом, но это будет уже другая история.

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *