Меню Рубрики

Установка по переработке газового конденсата технология

Установка по переработке газового конденсата (нефти)

Характеристика придонных и резервуарных нефтешламов.

Углеводороды от 5 до 90%
Вода от 1 до 72%
Механические примеси от 0,8 до 85%
Плотность нефтешламов от 830 до 1700 кг/м3
Температура застывания от -3 до +80 град-с
Температура вспышки от 35 до 120 град-с.

Нефтяные шламы являются основными отходами нефтеперерабатывающих и нефтехимических предприятий. Данный тип отходов образуется в процессе бурения скважин, в результате очистки сточных вод содержащих нефть на очистных сооружениях и во время чистки резервуаров. Шламы представляют собой тяжелые нефтяные остатки, которые содержат в среднем (по массе):

  • от 10 до 56 % нефтепродуктов,
  • от 30 до 85 % воды,
  • от 1,3 до 46 % твердых примесей.

Все шламы представляют собой определенную опасность, поэтому они хранятся в специальных шламонакопителях. Шламонакопители, представляющие собой земельные емкости открытого типа предназначенные для хранения шламов, занимают довольно большие территории. Кроме того, подобные сооружения пожароопасны, и являются источником потенциального загрязнения окружающей среды, которое происходит вследствие испарения нефтепродуктов. Результатом такого испарения является загрязнение почв и грунтовых вод. Поэтому сегодня обезвреживание и полная утилизация нефтяных шламов является одной из острейших проблем для нефтедобывающих регионов.

Способы переработки нефтяных шламов

В настоящее время широко применяются следующие методы переработки и обезвреживания нефтяных шламов:

1. Сжигание нефтяного шлама в виде водных эмульсий с последующей утилизаций выделяющегося тепла. Этот способ является самым распространенным, поскольку он наиболее простой и надежный. Однако при данной технологии сложно добиться экономического эффекта, что недопустимо в современных условиях.

2. Обезвоживание и сушка нефтяного шлама с возвратом образованных нефтепродуктов в производство (данный процесс по сравнению с предыдущим более прогрессивный, однако требует куда больших капиталовложений).

3. Переработка нефтяного шлама в пирогаз. Данная технология позволяет повысить коэффициенты использования нефти, и сегодня является самой передовой, поскольку из отходов в данном случае получается высококачественное топливо. Однако не каждый мусороперерабатывающий завод решается установить у себя подобную установку ввиду ее относительно высокой стоимости. Хотя вовсе напрасно – сегодня завод по переработке шламов может являться рентабельным высокодоходным предприятием.

Газовый конденсат по своей сути является жидкими углеводами с содержанием таких легких газов как:

Технология переработки

Переработка газового конденсата заключается в выделении газов из конденсата с целью получения таких видов продуктов в стабильном состоянии как:

Достигается это на крупных предприятиях специализирующихся на переработке газовых конденсатов посредством технологической процедуры, состоящей из таких этапов:

1. Ректификация, заключающаяся в процедуре разделения смеси посредством теплообмена между газовыми и жидкими компонентами;

2. Гидроочистка сернистых соединений в сырье посредством водорода при высоком уровне давления и температуры;

3. Изомеризация, заключающаяся в изменение структуры вещества с целью повышения его октанового числа.

Переработка газового конденсата – это выделение газов из конденсата, и получение, таким образом, двух продуктов в стабильном состоянии, подлежащих дальнейшему использованию: легких углеводов и прямогонного бензина (бензина газового стабильного).

Переработка осуществляется на заводах по переработке газовых конденсатов, самые крупные из которых обладают огромными мощностями (до 6 млн. тонн в год). Вкратце, технологический цикл делится на несколько фаз:

  • ректификация в специальных ректификационных колоннах, непрерывная или периодическая, представляющая процесс разделения смеси, путем теплообмена между жидкой и газовой составляющими;
  • гидроочистка – процесс, направленный на снижение сернистых соединений в нефтепродуктах, происходящий при высокой температуре и повышенном давлении под воздействием водорода;
  • изомеризация (с рециклом) – изменение структуры вещества для повышения октанового числа у бензинов, бывает высоко-, средне-, и низкотемпературной, последняя считается наиболее перспективным методом.
Читайте также:  Установка red alert 3 uprising

Итогом переработки конденсата является получение моторных топлив высокого качества (высокооктановых): бензинового, авиационного, дизельного, а также сырья (полимеров) для производства полиэтилена, полипропилена, полистирола, поливинилхлорида, синтетических каучуков, полиэфира, бутилового спирта, ацетона, фенола и т.д.

Переработка газового конденсата служит для получения таких видов продуктов:

  • Высококачественные моторные масла;
  • Высокооктановые марки бензина;
  • Различные виды полимерных материалов.

Установка по переработке газового конденсата (нефти)

Установка по переработке газового конденсата включает в себя следующие блоки:

Блок гидроочистки фр. НК-360 °С (см. технология гидроочистки);

Блок ректификации продуктов гидроочистки на фракции для дальнейшей переработки;

Блок каталитического риформинга (см. технология каталитического риформинга и техническое описание);

Блок ректификации риформата;

Блок гидроизомеризации легкого бензина;

Блок ректификации гидроизомеризата;

Узел компаундирования товарных продуктов.

Основная продукция установки:

товарные бензины Нормаль-80 по ГОСТ Р 51105-97, Регуляр Евро-92 и Премиум Евро-95 по ГОСТ Р 51866-2002, (соответствует нормам Евро-3) и Супер Евро-98 по ГОСТ Р 51313-99. Установка рассчитана на максимальный выпуск Премиум Евро-95;

дизельное топливо по ГОСТ 305-82 или ГОСТ Р 52368-2005 (Евро-4);

Требования к качеству современных высокооктановых автобензинов, выпускаемых по спецификации Евро-3 и выше ограничивают содержание в них бензола величиной не более 1,0 % об.

Для достижения данного показателя по содержанию бензола в технологии используется процесс гидроизомеризации, который включает в себя гидрирование бензола, содержащегося в фракции нк-85 С продуктов риформинга и в фракции нк-85 °С продуктов гидроочистки, с последующей его изомеризацией в метилциклопентан (МЦП). В процессе протекают также реакции изомеризация н-парафинов в изо-парафины, что также приводит к увеличению октанового числа получаемого продукта. Побочные реакции — раскрытие нафтеновых колец с образованием гексанов и гидрокрекинг сырья до продуктов с меньшим числом углеродных атомов, преимущественно пропана и бутанов.

В данной технологии на блоке гидроизомеризации использовано сырьё, состоящее из смеси фракции нк-85 °С гидрогенизата и фракции НК-85 °С риформата. На этом сырье получается гидроизомеризат с октановым числом по ииследовательскому методу ОЧИ не менее 79 (76 ОЧМ).

Для выпуска товарного бензина Регуляр Евро-92, рекомендуются рецептура 60 % мас. тяжелого риформата и 40 % мас. гидроизомеризата, что соответствует балансовому выпуску продуктов на установке. Для производства бензинов Премиум Евро-95 и Аи-98 необходимо в составе использовать МТБЭ в концентрации до 15 % мас.:

источник

Стабилизация газовых конденсатов

Газовыми конденсатами можно назвать смесь тяжелых углеводородов (ШФЛУ), иногда называемая газовым бензином, выделяемая из газа перед его отправкой в магистральные газопроводы (МГП), а также жидкая смесь тяжелых углеводородов, выносимая газом из скважин в капельном виде и отделяемая от газа методом низкотемпературной сепарации.

Читайте также:  Установка 32 битных библиотек ubuntu

Особенности стабилизации газовых конденсатов

Пластовая продукция ряда месторождений наряду с газообразными компонентами содержит также пентан и более тяжелые углеводороды (С5+), смесь которых принято называть газовым конденсатом.

Наряду с углеводородами С5+ конденсаты содержат также пропан, бутан и другие соединения.

Одни конденсаты обладают ярко выраженным метановым характером, в других преобладают нафтеновые или ароматические углеводороды.

Газовый конденсат одного и того же месторождения может иметь различные показатели.

Это зависит, с одной стороны, от снижения пластового давления месторождения в ходе разработки, с другой — от режима эксплуатации установок, где производится выделение тяжелых углеводородов из газа. Углеводородные конденсаты, получаемые при добыче природного газа, необходимо подвергать стабилизации перед дальнейшей переработкой с целью извлечения низкокипящих углеводородов (до С4-С5), а при переработке сернистого конденсата — и сероводорода.

Газовый конденсат, в основном, это прозрачная жидкость, но в зависимости от глубины, с которой она была извлечена, цвет может меняться от бледножелтого до желтовато-коричневого из-за примесей нефти.

Газовыми конденсатами можно назвать смесь тяжелых углеводородов (ШФЛУ), иногда называемая газовым бензином, выделяемая из газа перед его отправкой в магистральные газопроводы (МГП), а также жидкая смесь тяжелых углеводородов, выносимая газом из скважин в капельном виде и отделяемая от газа методом низкотемпературной сепарации.

Газовый бензин содержит в своем составе углеводороды от этана до гептана, вклю­чительно.

Как товарный продукт нестабильный газовый бензин не находит применения, но входящие в его со­став пропан, изобутан, н-бутан, изопентан и т.д., а также стабильный газовый бензин, имеют широкое применение.

Сырой газовый конденсат, выносимый газом в виде капельной жидкости из скважины (10-500 г/м3) по своему составу более тяжелый и содержит углеводороды от этана (в малых количествах) до додекана (С12) и выше.

Технология переработки этого конденсата включает процессы: стабилизации; обезвоживания и обессоливания; очистки от серосодержащих примесей; перегонки и выделения фракций моторных топлив (с последующим их облагораживанием).

Иногда стабильный конденсат смешивают со стабильной нефтью, тогда последние 3 процесса совмещены с технологией первичной переработки нефти.

Для стабилизации газового конденсата используются 3 метода:

1. Ступенчатое выветривание (сепарация, дегазация);

2. Ректификация в стабилизационных колоннах;

3. Комбинирование сепарации и ректификации.

1. Технология стабилизации конденсата дегазацией

Стабилизация газового конденсата дегазацией или сепарацией основана на снижении растворимости низкокипящих углеводородов в конденсатах при повышении температуры и понижении давления.

Обычно такая технология процесса стабилизации применяется на месторождениях, имеющих низкий конденсатный фактор.

Для стабилизации конденсата можно применять 1-, 2- и 3-ступенчатые схемы дегазации.

Выбор количества ступеней зависит от содержания низкокипящих углеводородов в конденсате: чем оно больше, тем необходимо большее число ступеней.

Это объясняется тем, что при увеличении числа ступеней доля отгона на каждой из них уменьшается, а уменьшение доли отгона влечет за собой и уменьшение уноса в газовую сферу целевых углеводородов конденсата.

Принципиальная технологическая схема установки стабилизации газового конденсата 2-ступенчатой дегазацией включает: дроссели; сепараторы 1 й и 2 й ступени дегазации; товарная емкость;

Читайте также:  Установка антабки на атаман

Согласно техпроцесса происходит преобразование: нестабильный конденсат -газы дегазации 1 й ступени- разгазированный конденсат- газы дегазации 2 й ступени -конденсат в товарный парк- вода

Основные преимущества схем дегазации — это простота технологии, низкие металло- и энергоемкость процесса.

Основной недостаток — это нечеткое разделение углеводородов, одни из которых являются целевыми для газов стабилизации, а другие — для стабильного газового конденсата.

При ступенчатой дегазации газа давление на последующей ступени всегда меньше давления на предыдущей.

2. Технология стабилизации конденсата ректификацией

Сбор и утилизация газов дегазации конденсата связаны с большими энергетическими затратами, поэтому при больших объемах перерабатываемого конденсата применяют стабилизацию с использованием ректификационных колонн.

Она имеет ряд преимуществ, в частности, энергия нестабильного конденсата рационально используется, полученный стабильный конденсат отличается низким давлением насыщенных паров и др.

Ректификационная стабилизация газового конденсата проводится чаще всего в 2 х или 3 х колоннах, что дает возможность, кроме газов стабилизации и стабильного конденсата, получить пропан-бутановую фракцию (или пропан и бутан).

На современных установках обычно применяют комбинирование процессов сепарации и ректификации, что позволяет повысить технологическую гибкость процесса и уменьшить энергозатраты. стабилизация конденсат дегазация ректификация

Принципиальная схема типовой установки стабилизации конденсата с использованием 2 х ректификационных колонн включает дегазацию конденсата в сепараторе, разделение отсепарированной жидкости из сепаратора на 2 потока.

Один из них нагревается в теплообменнике и поступает в питательную секцию абсорбционно-отпарной колонны (АОК); другой в качестве орошения подается на верхнюю тарелку АОК.

Используются сепаратор; теплообменник; АОК;трубчатые печи; стабилизатор; конденсатор-холодильник

нестабильный конденсат; стабильный конденсат; газы стабилизации; ШФЛУ;

Технологический режим в АОК следующий: давление 1,9-2,5 МПа; температура вверху 15-20°С, внизу — 170-180°С.

Ректификатом АОК является фракция, состоящая в основном из метана и этана, остатком — деэтанизированный конденсат.

Обычно газ сепарации из сепаратора объединяют с верхним продуктом АОК и после дожатия направляют в магистральный газопровод (МГП).

Деэтанизированный конденсат из АОК направляют в стабилизатор, работающий по схеме полной ректификационной колонны.

С верха стабилизатора отбирают пропан-бутановую фракцию (ПБФ) или широкую фракцию легких углеводородов (ШФЛУ) , а из куба колонны отводят стабильный конденсат .

Давление в стабилизаторе составляет 1,0-1,6 МПа.

Для подвода тепла в кубы колонн используют трубчатые печи.

На усовершенствованных установках стабилизации конденсата для повышения технологической гибкости и возможности переработки облегченного по фракционному составу конденсата из-за истощения месторождения газ сепарации из сепаратора 1 нагревают и подают в куб АОК как отдувочный газ.

Использование газа сепарации в качестве отдувочного позволяет в нижней части АОК снизить парциальное давление компонентов С3+, вследствие чего снижаются необходимое паровое число и количество тепла, подводимого в трубчатой печи.

Схема установки стабилизации конденсата с подачей отдувочного газа включает сепаратор; рекуперативные теплообменники; АОК; трубчатые печи; стабилизатор; конденсатор-холодильник

Во время стабилизации конденсата с с подачей отдувочного газа согласно техпроцесса происходит преобразование: сырой конденсат- стабильный конденсат- газы стабилизации- ШФЛУ.

источник

Добавить комментарий

Adblock
detector