Меню Рубрики

Установка по производству дешевой электроэнергии

МИНИЭЛЕКТРОСТАНЦИЯ ДЛЯ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ МОЩНОСТЬЮ ДО 2 МВт

Производство дешевой электрической энергии — от 1,1 руб/кВт

Установки по производсту электроэнергии из любой органической массы, в том числе древесной щепы, опила, пеллет.

ПРИМЕР ЗАТРАТ на получение 1000 кВт (1 МВт) электрической энергии

54 312 000 руб (учитывается тариф 6,2 руб/кВт)

9 636 000 руб (учитывается тариф 1,1 руб/кВт)

Средняя окупаемость любой миниэлектростанции составляет — не более 2 лет (далее экономическое обоснование с окупаемостью).

ВОЗМОЖНЫЕ МОДИФИКАЦИИ: 100 кВт, 250 кВт, 300 кВт, 500 кВт, 750 кВт, 1000 кВт, 1250 кВт, 1500 кВт, 1750 кВт, 2000 кВт.


Дополнительным бонусом работы установки по производству электроэнергии является производство древесного угля, который может быть дополнительно продан в качестве сырья для дальнейшего производства сорбентов очистки воды и газов, удобрения для сельскохозяйственных предприятий, а также в качестве собственного сырья для производства торрефицированных пеллет. Также в процессе работы установки вырабатываются пиролизные смолы, которые могут быть синтезированы в тяжелый газоиль или синтетические виды топлива, или использованы в качестве печного топлива для котельных установок. При переработке вторсырья и учете их в экономике проекта, срок окупаемости значительно сокращается.

ОРАНЖЕВАЯ ЛИНИЯ — стоимость электростанции на древесной биомассе, при подаче на входе сырья в виде бревен естественной влажности (до 60%) с диаметром до 200 мм

СИНЯЯ ЛИНИЯ — стоимость электростанции на древесной биомассе, при подаче на входе сырья в виде сухой (влажность до 12%) дробленой (крупность минус 6) щепы.

источник

5 способов получить автономное электричество для частного дома

Плюсы автономного электроснабжения

Казалось бы, смысл в автономной системе электроснабжения только один – это когда рядом с домом нет ЛЭП, а тянуть собственную линию слишком дорого. Однако многие домовладельцы создают собственную систему электроснабжения даже в том случае, если уже подключены к общей системе.

Так в чем же выгода автономного электроснабжения?

  • В независимости. Своя система защитит от отключений электроэнергии по различным поводам. Автономная система тоже не застрахована от аварий и других неприятностей, но если создать дублирующие устройства, то защищённость от случайностей достигнет максимума.
  • В экономичности. Электроэнергия, подаваемая по единой системе, дорогая. Создание автономной системы тоже дело не дешёвое, но многие домовладельцы считают, что окупается она очень быстро, и столь же быстро становится делом не просто дешёвым, но и выгодным.
  • В мобильности. Автономная система, построенная на нескольких источниках электроэнергии, позволяет быстро реагировать на ситуацию, оставаясь при свете в любых ситуациях.

Какой источник автономного электроснабжения выбрать

Получить электроэнергию можно даже от печки. Однако, если учесть фактор затрат времени и сил, то всерьез можно рассматривать только те источники, которые могут работать сами по себе. По этой причине самыми популярными являются следующие способы обеспечения дома электричеством.

1. Генератор на жидком топливе

Например газовые генераторы доступны в самых разных вариантах, но использовать их в качестве постоянного источника электроэнергии в жилом доме не целесообразно. Причина заключается в:

  1. дороговизне горючего;
  2. шумности работы генератора;
  3. наличие выхлопных газов;
  4. необходимости выделения для генератора отдельного помещения или навеса.

Цены генераторов на жидком топливе начинаются от 30 тысяч рублей. Однако дешевизна полученной электроэнергии иллюзорная, поскольку должна быть умножена на стоимость топлива.

На фото газовый генератор HONDA HG 5500 (SE) мощностью 4.0кВт, цена 121 тысяч рублей

2. Солнечная электростанция

Солнечная электростанция не требует внимания и топлива. Единственное, что им нужно – это интенсивный свет, а поскольку это топливо природа поставляет не регулярно, то и мощные аккумуляторы. При наличии последних в условиях климата с большим количеством солнечных дней обеспечить дом электричеством вполне возможно.

Цены на комплект солнечной электростанции начинаются от 130 тысяч рублей. Окупаемость высокая, поскольку некоторые модели могут без проблем работать тридцать лет.


На фото «Солнечная дача» мощностью 1,6 кВт/400Ач/1000 Вт, цена 160 тысяч рублей за комплект

3. Ветрогенератор

Ветрогенераторы не менее популярны, чем солнечные батареи. Однако они еще более зависимы от капризов погоды, поэтому полагаться только на этот источник энергии можно не везде.

Самые простые ветрогенераторы стоят от 30 тысяч рублей. Их можно использовать для локальной выработки электроэнергии, но решить проблему полного энергоснабжения дома они не смогут. Более мощные ветряные генераторы для полноценного обеспечения жилища электричеством (от 3 кВт) обойдутся в 150 тысяч и выше.


Полноценный ветрогенератор мощностью 10 кВт стоит не менее 500 тысяч рублей. При среднем домашнем потреблении 250 кВт в месяц и цене 4 руб/кВт, такой ветряк будет окупаться более 40 лет

4. Мини гидроэлектростанция

Для мини ГЭС необходим водоток с небольшим перепадом высот для обеспечения эффекта падающей воды. В месте такого перепада устанавливается небольшая турбина, и электричество будет поступать в ваш дом постоянно, а главное – бесплатно. Под миниГЭС можно использовать естественный ручей или речку, а можно прорыть небольшой канал, проходящий через ваш участок. Однако такая ГЭС будет работать только в тёплое время года, потом придётся перейти на другие источники.


Если собирать гидроэлектрастанцию на 3-5 кВт из подручных материалов, то стоимость устройства не превысит 20 тысяч рублей

5. Альтернативные источники малой мощности

Сюда можно отнести электричество из земли и атмосферное электричество. Рассчитывать на полноценное элетроснабжение в обоих случаях не приходится, но для «дачных» нужд такие источник вполне пригодны.

источник

Расчет себестоимости производства солнечной электроэнергии для собственных нужд домохозяйства в центре Европы

Как ответ на комментарии к цене электричества в Германии и резонному вопросу «Так доколе народ будет это терпеть?» я решил привести свой расчет в данной статье.

Вступление

Данный расчет я делаю уже второй раз. Первый делал пару лет назад, и следующий буду делать как только появятся обновленные данные. Он не рассчитывает на объективность, а служит только для ответа на вопрос «Есть ли смысл?»

Задача рассчитать себестоимость солнечной электроэнергии, выработанной у себя дома с учетом сегодняшних цен на оборудование и текущие сроки эксплуатации и без учета различных субсидий, «зеленых тарифов» и прочей фигни, так это все равно рано или поздно отменят, а Солнце — оно постоянно. Полученную цифру можно будет сравнить с текущей ценой электроэнергии в данном регионе и понять будут ли окупаться инвестиции в собственный ВИЭ.
Я специально учитываю только основное оборудование и не учитываю стоимость монтажных работ, проводки и т.д, так как это не должно сильно влиять, но усложняет расчет.

Начальные условия

Для расчетов возьмем такие начальные условия.

  • Пусть у нас будет дом где-то в центре Европы, например под Мюнхеном. Это необходимо для определения инсоляции и соответственно необходимой площади солнечных батарей.
  • У нас есть достаточно большая площадь для установки батарей, направленная на юг.
  • Годовое потребление нашего домохозяйства пусть будет 4000 кВт*ч. Пусть оно будет равномерно распределено по месяцам. Т.е. месячное потребление составит 4000 / 12 = 333 кВт*ч.

Расчет оборудования и его стоимости

Первый дисклеймер — сразу скажу, расчет будет делаться для «честной» системы, в которой пик потребления может не совпадать с пиком производства, и поэтому система будет состоять из солнечных батарей + аккумуляторов + инвертора. Это на мой взгляд единственный вариант системы, позволяющий в лучшем случае полную автономность и независимость от сетевых тарифов. В худшем случае вы будете изредка подсасывать электричество из сети. Примерная схема данного решения приведена на рисунке внизу.

В общих словах это работает так: солнечные панели подключены к домашней сети переменного тока через инвертор. Батареи тоже подключены к этой же сети через свой инвертор. Домашняя сеть также соединена с обычной сетью. Умный менеджмент контролирует работу инверторов таким образом, чтобы всегда максимально использовался потенциал солнечных батарей. Т.е. если энергии солнца достаточно для питания всех домашних устройств, избыток энергии забирается батареей из домашней сети и она заряжается. Когда же солнце исчезает, домашняя сеть начинает питаться от батареи, разряжая ее. Только в том случае, когда батарея полностью разряжена и солнца нет, дом начинает забирать электричество из сети.

Второй дисклеймер — так как погода непостоянна, мы говорим о средне статистических цифрах. В реальности может месяц идти дождь и тогда все расчеты не имеют никакого значения.

Солнечные батареи

Итак начнем с солнечных батарей. Нам надо узнать сколько их нужно, чтобы обеспечить нашу потребность в электричестве в худшем случае. Мы знаем две цифры — необходимое количество электричества — 4000 кВтч/год и местоположение — г. Мюнхен.

Расчет инсоляции

По местоположению нам надо получить среднее количество солнечной радиации на квадратный метр. Оно считается в кВтч/м2/день. То есть сколько энергии получает от солнца каждый квадратный метр поверхности за один день. Для расчета используем вот этот калькулятор, который даст нам статистику по месяцам с учетом облачных дней, туманов и т.д.

Так как нам надо наше электричество и зимой, когда солнце светит мало, нас интересует месяц с самой низкой инсоляцией — декабрь или январь. Это даст нам наихудший вариант для расчетов.
Можно считать для плоской поверхности и потом находить оптимальный угол солнечных батарей, но калькулятор сделает это за нас, поэтому сразу кликаем на оптимальный наклон для зимы (27 градусов) и получаем заветные цифры:

Т.е минимальная инсоляция у нас будет в декабре и составлять 1.51 кВтч/м2/день. Мало? Но не забываем, что это в день. А в месяц наберется 1.51*30,5= 46кВтч/м2.

Определение количества панелей

Чтобы перевести полученную цифру в электричество, нам надо:

а) Определиться с типом солнечных панелей и их КПД
б) Определиться с количеством солнечных панелей

По а) я не долго думая выбрал вот эти.

Почему их? Не знаю, наверное потому, что мы на Хабре и для нас важно наличие технических данных, даташитов и прочих пруфов. По ссылке все это присутствует.

В чем прикол в солнечно-батарейном строении? В том, что производители всех солнечных батарей уже в названии модели приводят заветную цифру — выработку при номинальной инсоляции в 1000Вт/м2. В данном случае она равна 330Вт и одной этой цифрой привязывает и КПД и площадь.
Площадь этой солнечной панели стандартная – 1,6м. Значит ее КПД будет 330/(1000*1,6)=20,6%, что соответствует даташиту. И прикол получается, что умножив 330Вт на 1.51 — среднюю инсоляцию в декабре, мы получим 498Вт*ч — именно столько электричества выработает нам одна такая панель в Мюнхене зимой в день, настроенная на зимний угол. Это важная цифра для дальнейших расчетов.

По б) необходимое количество панелей определяем так. Так как нам калькулятор выдал генерацию в день, то и потребление надо пересчитать на дни. Т.е. делим 4000 кВтч на 365 и получаем 10,96 кВтч/день. Зная, что одна панель нам выдаст 498 Вт*ч легко определить, что нам понадобится 10,96/0,498= 22 панели.

Много это или мало — каждый решает сам. Тут есть такие нюансы:

  • эти панели должны быть установлены строго на юг под углом 27 градусов. То есть если брать плоскую крышу, реально занимаемая площадь панелями будет больше. Гораздо больше.
  • если же крыша имеет скат, но не направлена строго на юг, производительность батарей будет меньше.
  • Следует учитывать, что 22 панели понадобятся в случае, если мы хотим даже в декабре получать всю потребляемую электроэнергию от солнца. Если же мы смягчим это условие, например решив, что в ноябре, декабре и январе мы можем подсасывать из сети, то минимальная инсоляция у нас уже будет 2.59 (в Октябре) и общее количество необходимых панелей уменьшится до 10,96/(2,59*0,330)= 13. Т.е почти в 2 раза меньше.

Мы еще вернемся к вопросу выбора количества панелей, когда будем считать себестоимость. Хотя нет, наверное. Давайте сразу определимся здесь.

Цена вопроса

Итак идем на сайты по продажам солнечных батарей и гуглим нашу панель VBHN330SA16. У меня получились цены от 250 до 280 евро за одну панель. Т.е 22 панели обойдутся нам в 22*270(среднее)= 5 940 Евро.

Теперь, внимание! Так как это не ноунейм мы читаем даташит и видим, что Панасоник дает гарантию на панели в 25 лет. При этом он гарантирует, что панели деградируют не более, чем на 10% за это время. Беря этот срок за срок жизни и считая, что через 25 лет мы выбрасываем эти панели, нетрудно расчитать и себестоимость киловаттчаса при условии, что мы будем отбирать только наши 4000кВтч в год. За 25 лет мы снимем 100 000 кВтч(100МВтч). Делим 5 940 евро на 100000, получаем 0,0594 евро/кВтч или грубо говоря 6 евроцентов за кВтч.

Напоминаю, что это только составляющая от солнечных батарей. И это только в том случае, если мы будем запасать все вырабатываемое электричество где-то и потом использовать (в декабре, конечно).

Солнечный Инвертор

Идем дальше — инвертор. Тут я немного плаваю, поэтому прошу в комментариях подсказать, если неправильно посчитал.

Выбор

Если считать, что нам в день надо потребить не менее 10кВтч, я думаю, что пиковая мощность должна быть где-то киловатта в 4-5. Может где-то есть данные о пиковой инсоляции в полдень в декабре, чтобы посчитать хватит его или нет.

Цена вопроса

Типовой инвертор — тот же SMA Sunny Boy 4.0 стоит примерно 1000 евро. Т.е опять же разделив эти деньги на нашу выработку, получаем + 0,01 евро.

  • Уже видно, что солнечный инвертор — это минимум в общей стоимости. Поэтому можно без проблем взять подороже и помощнее. У нас мощный массив солнечных батарей.

Аккумуляторы

Выбор

Тут у меня простой выбор — Tesla Powerwall. www.tesla.com/de_DE/powerwall?redirect=no
7200(специально не учитываю установку) евро за 13,5 кВтч емкости. 10 лет гарантии. 4,6кВт мощности. Мощность — ОК, соответствует солнечному инвертору, но вот с емкостью не очень. Если наш дом потребляет 11кВтч в день, то 13,5 кВтч хватит едва на сутки. Надо ставить больше. Хотя бы 2 шт.

Цена вопроса

Так как гарантия на Powerwall всего 10 лет, без ограничений по перекачанным киловатт-часам, то и считаем, что за 25 лет мы поменяем 2+2+2/2=5 Powerwalloв общей стоимостью 7200*5= 36 000 евро. Делим на 100000кВтч и получаем 0,36 евро.

Итоги

Себестоимость за кВтч

Итоговая себестоимость солнечного электричества у нас оказалась равна:

  • Солнечные батареи: 0,06
  • Инвертор: 0,01
  • Аккумуляторы: 0,36

Всего: 0,43 евро.

Из этой суммы львиная доля приходится на аккумуляторы, и в основном из-за возможно малого срока службы — всего 10 лет. Но будем надеяться, что это скоро изменится в лучшую сторону. Возможна экономия за счет того, чтобы солнечные панели подключались напрямую к Powerwall через DC/DC преобразователь. Так можно сэкономить на одном инверторе. Но это в итоге будет опять же пара центов в стоимости киловатт-часа.
Интересно, что стоимость солнечных батарей в итоговой себестоимости оказалась достаточно низкой — в основном благодаря долгому сроку службы. Поэтому тут экономить на железе не имеет смысла, а лучше вложиться в надежную технику, чтобы избежать дорогостоящих замен батарей на высоте. Ну и варьировать количеством панелей можно без особого влияния на итоговую цену электричества.

Кредит

Так как денег на такие инвестиции у нас обычно нет в наличии, и мы хотим платить за наше электричество желательно небольшим ежемесячным платежом, надо брать кредит.

Итак мне нужно 43 тыс евро разовых инвестиций на оборудование. Точнее не так. Мне нужно 7000 евро на солнечные батареи на 25 лет и 14400 за два Powerwallа на 10 лет, так как Powerwallов нам нужно сперва только 2 шт.

ОК, я иду в ближайший банк и беру два кредита под 2% — например вот тут.

Забиваем указанные суммы в Darlehen-калькулятор и получаем ежемесячные платежи в 29,67 и 132,50 евро в месяц или суммарно 162,17*12=1946 евро в год — вот цена нашего дармового электричества с учетом кредита и выплачивания ежемесячных сумм вместо одноразовых инвестиций.
В результате электричество дорожает с 43 до 49 центов или на 14%.

Итоговый дисклеймер

  • Если сравнить полученную цену с ценой электричества из розетки в Германии в 0,30 евро, то можно предположить, что данный проект пока не окупается. Но, стоит учесть, что если статистика покажет, что Powerwall может прожить те же 25 лет без замены, то общая стоимость солнечного кВтч снизится до 0,21-0,22 евро (0,25 с учетом кредита), что может стать уже гораздо интересней. Поэтому я принципиально считаю, что 30 центов — это психологический барьер, выше которого народ начнет серьезно задумываться о том, чтобы переходить на локальную генерацию в данном регионе. И этот барьер снижается, так как батареи дешевеют, а электромобили появляются.
  • Так как погода непостоянна, все это всего лишь статистика. Можно поиметь всего два солнечных дня в декабре и придется сосать электричество из сети или подключать другие варианты генерации (дизель, или брать из своего электромобиля).
  • Поэтому сеть нужна по-любому, но из нее надо будет сосать достаточно маленькую мощность.
  • Понятно, что летом у нас будет гораздо большая выработка электричества, чем зимой — примерно в 2,7 раза, или почти 30кВтч/день при потреблении в 11кВтч/день. Т.е. летом надо максимизировать потребление, так как оно фактически бесплатное — кондиционеры можно не выключать. И вообще, чем больше вы сможете расходовать электричества летом, тем дешевле оно будет. Т.е всякие бойлеры и прочее надо переводить на электричество тоже.
  • И вообще летом за неделю будет набегать лишнего электричества почти на один «бак» для Теслы Модел С, поэтому электромобиль — это маст хэв в таком случае. На халяву рассекать.
  • Ну и есть такое преимущество — если свет везде отключат, у вас он все равно останется. В Германии, конечно, не принципиально, но все же.
  • Существует мнение, что солнечная электростанция на крыше поднимает стоимость дома. То есть инвестиции окупаются еще и за счет этого.

Короче преимуществ ИМХО больше, чем недостатков.

В комментариях предлагаю обсудить именно статью, дисклеймеры, нюансы и возможности получения лучших цифр, уточненных данных, для другой территории и т.д. Зеленую энергетику же вообще предлагаю обсуждать в уже упомянутой в начале статье.

источник

Читайте также:  Установка алюминиевого балконного блока

Добавить комментарий

Наименование показателя Подключение к электрической сети общего пользования Строительство миниэлектростанции
Капитальные затраты на установку 1000 кВт, руб. 15 000 000 руб. 64 000 000 руб.
Оплата за подключение за 1000 кВт, руб. 30 000 000 руб.
Стоимость выработки электроэнергии, руб/год
Затраты капитальные и эксплуатационные за 1 год 99 312 000 руб. 73 636 000 руб.
Затраты капитальные и эксплуатационные за 3 года 207 936 000 руб. 92 908 000 руб.