Меню Рубрики

Установка по разделению азота и кислорода

Получение продуктов разделения воздуха

Для получения основных продуктов разделения воздуха – азота и кислорода -используются воздухоразделительные установки, которые по принципу работы разделены на три основных типа:

  • криогенные — с разделением воздуха методом низкотемпературной ректификации;
  • адсорбционные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью адсорбентов;
  • мембранные — работающие при температуре окружающей среды и обеспечивающие разделение воздуха с помощью полимерных мембран (молекулярных сит), выполненных в виде капиллярных трубок.

Критерием выбора типа установки является необходимый продукт, его состояние (сжиженное или газообразное), чистота, давление продуктового газа, производительность и экономичность.

Криогенные воздухоразделительные установки (ВРУ)

Принцип работы криогенных воздухоразделительных установок основан на низкотемпературной ректификации сжиженного воздуха. Установки состоят из компрессорного, технологического и вспомогательного оборудования. Упрощенная технологическая схема выглядит следующим образом: воздух после сжатия в компрессоре проходит блоки очистки, где освобождается от влаги, углекислоты и углеводородов, расширяется в детандере с понижением температуры, проходит через теплообменники, сжижается и попадает в ректификационную колонну на разделение, после чего, в зависимости от режима, выдается азот или кислород в жидком или газообразном состоянии.

Криогенные ВРУ технически достаточно сложны, требуют значительного времени для выхода на режим, смену режима и отогрев, включают в себя энергоемкую систему очистки, металлоемкое тепло- и массообменное оборудование, детандер, систему автоматики. Криогенные установки требуют высококвалифицированного обслуживания и достаточно энергоемки. Эти недостатки компенсируются возможностью получения сжиженных продуктов разделения воздуха и чистого медицинского кислорода.

НПО «ГЕЛИЙМАШ» выпускает малые криогенные установки по циклу высокого давления в двух базовых исполнениях: стационарную СКДС-100В и транспортабельную ТКДС-100В, размещенную в двух стандартных 20-футовых контейнерах. Станции предназначены для получения газообразного азота или кислорода под давлением, сжиженного азота или кислорода а также сухого воздуха высокого давления, свободного от примесей. По требованиям заказчиков возможно изготовление установок — модификаций базовых моделей.

Адсорбционные воздухоразделительные установки

Для потребителей газообразного азота и кислорода выпускаются адсорбционные воздухоразделительные установки. Их работа основана на селективном поглощении компонентов воздуха молекулярными адсорбентами по технологии Короткоцикловой безнагревной адсорбции (КБА) или в английском варианте Pressure Swing Adsorption (PSA).

При прохождении сжатого воздуха через один из двух попеременно работающих адсорберов происходит преимущественное поглощение азота или кислорода (одновременно с водяными парами, двуокисью углерода и углеводородными соединениями) из воздуха, а оставшийся газ направляется потребителю. Регенерация адсорбента осуществляется при сбросе давления в адсорбере и его продувке. Рабочий процесс на осуществляется при положительной температуре в полностью автоматическом режиме.

К числу факторов, обеспечивающих конкурентоспособность установок КБА (PSA), относится их сравнительная дешевизна, простота монтажа, эксплуатации и технического обслуживания. Кроме того, установки этого типа отличает компактность оборудования, высокая степень безопасности, надежности, автоматизации технологического процесса (включая пуск и остановку), короткий период пуска и практически неограниченная продолжительность рабочей кампании.

Адсорбционный метод разделения воздуха в достаточно большом диапазоне производительности и концентрации отличается большей экономичностью по сравнению с криогенным методом, что связано с меньшим давлением в цикле. Однако этот метод не позволяет получать чистый технический кислород и сжиженные газы.

Установки КБА для производства кислорода

Воздухоразделительные установки КБА (PSA) предназначенные для получения кислорода, обеспечивают относительно невысокую концентрацию продукта (не более 95%). Эта величина в определенной степени ограничивает применение установок. Не смотря на ограничения по концентрации кислорода, спектр применения установок достаточно широк:

  • для получения кислорода для автогенных работ (за исключением автоматической резки металлов);
  • в силикатной промышленности и целлюлозно-бумажном производстве;
  • в рыбоводстве;
  • для обработки сточных вод и обеспечения кислородом озонаторных установок;
  • в процессе переработки органических отходов (пиролиз);
  • в микробиологических производствах;
  • в пищевой и фармацевтической промышленностях, в сельском хозяйстве;
  • в других областях для интенсификации технологических процессов.

Установки КБА для производства азота

Серийные воздухоразделительные установки, работающие по принципу КБА (PSA) и предназначенные для производства газообразного азота, обеспечивают чистоту продукта до 99,9995%. Применение дополнительных модулей позволяет получить ещё более чистый азот.

Установки применяются:

  • для обеспечения пожаро-взрывобезопасности во время проведения монтажных, профилактических и ремонтных работ на установках, блоках и элементах нефтегазового комплекса;
  • для создания «азотной подушки» при переливе и транспортировке нефтепродуктов;
  • для создания инертной среды в химических производствах при разделении сложных растворов и смесей, в том числе в лако-красочной промышленности;
  • для создания инертных сред в электронной промышленности;
  • в качестве средств пожаротушения и прекращения процессов тления в технологических процессах;
  • для упаковки пищевых продуктов;
  • в других областях для создания нейтральных сред.
Читайте также:  Установка бортовых компьютеров петербург

Мембранные воздухоразделительные установки

Мембранные воздухоразделительные установки отличаются от остальных выдачей только одного целевого продукта – азота.
По составу оборудования мембранные установки аналогичны адсорбционным, только вместо адсорбционного блока разделения устанавливается блок со стандартными мембранными картриджами. Объем и чистота продуктового азота определяется производительностью компрессора, пропускной способностью мембранных картриджей и соотношением перерабатываемого и продуктового потоков.

Мембраны очень чувствительны к капельной влаге и маслу, поэтому установки эксплуатируются при температуре выше 0?С, а процессу подготовки воздуха уделяется особое внимание.

источник

Установки разделения воздуха

НПК «Грасис» занимается производством, поставками, пуско-наладкой и полным перечнем сервисных услуг такого востребованного оборудования, как установки разделения воздуха для получения азота и кислорода. Данные системы широко применяются в самых различных областях:

  • нефтегазовой, химической, нефтехимической и нефтеперерабатывающей промышленности;
  • электронике и электроэнергетике;
  • металлургии;
  • строительстве;
  • на предприятиях, которые занимаются оптовой торговлей техническими газами.

Установка разделения воздуха позволяет получить кислород или азот в газообразном состоянии, в зависимости от нужд заказчика.

Специалисты НПК «Грасис» используют самые современные технологии и качественные комплектующие при производстве такого оборудования, как установки для разделения воздуха. Это позволяет обеспечить безопасность персонала и добиться высоких показателей чистоты получаемых газов:

Основные типы установок для разделения воздуха

В основу каждого метода разделения газов заложены разные принципы. Мембранные установки производят разделение воздуха за счет различной скорости проникновения отдельных веществ (компонентов) через сверхтонкие полимерные мембраны. Данный процесс, в свою очередь, реализуется вследствие перепада парциальных давлений с разных сторон мембраны. Соответственно, компоненты воздуха можно разделить на трудно- и легкопроникающие через полимерные фильтры газы. Как правило, установки, работающие по мембранному принципу, ориентированы на производство азота и для подготовки и переработки попутного нефтяного газа. Получаемый объем газа, а также его чистота определяются многими факторами и рассчитываются согласно техническому заданию от Заказчика.

Кроме того, большое внимание необходимо уделить процессу подготовки воздуха. Значительным преимуществом при эксплуатации установок данного типа – возможность гибкой регулировки чистоты вырабатываемого газа.

Адсорбционный способ разделения базируется на принципе различной зависимости скорости поглощения компонентов газовой смеси адсорбентом от давления и температуры. Данный процесс основан на способности адсорбента поглощать тот или иной газ в прямо пропорциональной зависимости от давления. Так, на примере азотной установки, в то время как в адсорбере, находящемся под давлением, кислород поглощается адсорбентом, в другом адсорбере происходит сброс давления и регенерация адсорбента. Во время работы установки разделения воздуха адсорберы поочередно находятся в стадии поглощения и регенерации. Установки короткоцикловой безнагревной адсорбции (КБА) предназначены для получения газообразного кислорода или азота. Происходит разделение воздуха в полностью автоматическом режиме.

Основные преимущества адсорбционного оборудования:

  • простота эксплуатации и монтажа;
  • относительная ценовая доступность;
  • легкость в обслуживании;
  • компактность основных аппаратов, входящих в установку;
  • высокая степень автоматизации процесса, безопасности и надежности.

Специалисты нашей компании готовы осуществить профессиональный пуск и монтаж адсорбционного оборудования для разделения воздуха на объекте заказчика. Мы осуществляем весь комплекс работ, начиная от подготовки проектной и рабочей документации и заканчивая шеф-монтажом.

Адсорбционные комплексы широко востребованы в фармацевтике, микроэлектронике, пищевой промышленности, при необходимости постоянно получать кислород для газовой резки, сварки и пайки металлов , в микробиологии и рыбоводстве. Наряду со всеми преимуществами и экономичностью метода КБА следует отметить, что он не дает возможности получать сжиженные газы и технический кислород высокой степени чистоты. Данных показателей позволяет достичь криогенный способ разделения воздуха.

Принцип работы и сфера применения криогенных систем

Функционирование данных комплексов базируется на низкотемпературной ректификации сжиженного воздуха. Вследствие разности температур кипения отдельных компонентов смеси появляется возможность отбирать тот или иной газ на разных стадиях процесса. Воздух при переработке находится в двух состояниях – парообразном и жидком. Во время движения по ректификационной колонне вверх паровая фаза обогащается компонентом с более низкой температурой кипения (азотом), а стекающая вниз жидкая фаза насыщается кислородом.

Читайте также:  Установка зажигания на 405 моторе

С конструкционной точки зрения криогенные комплексы для разделения воздуха достаточно сложно устроены. На пуск и выход высокотехнологичных систем на заданную мощность уходит значительно больше времени, чем у мембранного или адсорбционного оборудования. Данные комплексы требуют наличия высокопрофессионального персонала для обслуживания, а также расходуют значительное количество энергии. Тем не менее, криогенное оборудование позволяет получить чистый сухой воздух под высоким давлением, а также свободный от примесей медицинский кислород (согласно требованиям ГОСТ 6331-78 и ГОСТ 5583-78).

Оборудование для выдачи сжиженного газа применяется в следующих случаях:

  • необходимость резервирования криогенных жидкостей при неравномерном потреблении кислорода или азота, а также наличии пиковых нагрузок.
  • Наличие строгих требований технологического процесса на предприятии. Некоторые химические процессы основаны на использовании методов глубокого охлаждения веществ. Установка разделения воздуха позволяет обеспечить постоянную подачу криогенных жидкостей.

Когда предприятие занимается хранением и транспортировкой жидкого азота и жидкого кислорода.

Основные показатели, которыми следует руководствоваться при выборе оборудования для разделения воздуха

Специалисты НПК «Грасис» предоставят подробную консультацию относительно экономической выгоды и целесообразности использования того или иного типа оборудования. Как правило, основными вопросами для заказчика должны стать следующие:

  1. Какая необходима чистота продуктов разделения воздуха на выходе. Технологические процессы на разных производствах требуют различных показателей. Например, азот повышенной чистоты (99,999) можно получить адсорбционным и криогенным методами. Азот с чистотой до 99,9% выгоднее всего получать мембранным способом разделения воздуха. Технический кислород с чистотой не выше 95% добывается на адсорбционных установках.
  2. В каком виде нужны продукты разделения воздуха и каков должен быть их перечень. Адсорбционные и мембранные комплексы дают возможность получить только 1 вещество – азот или кислород в газообразном виде. В то время, как криогенное оборудование позволяет одновременно добывать кислород, азот, аргон (по требованию заказчика и другие газы).
  3. Энергетическое потребление систем разделения воздуха. Это достаточно важный показатель, т. к. обязательно следует учитывать удельный расход электроэнергии на кубометр или килограмм получаемого продукта.
  4. Производительность комплекса.
  5. Условия эксплуатации оборудования для разделения воздуха. От данных показателей зависит количество обслуживающего персонала на предприятии, частота проведения ремонта отдельных элементов.

Преимущества сотрудничества с НПК «Грасис»

Поставляемое нами оборудование:

  • дает возможность разделять воздух на необходимые в технологическом процессе компоненты с заданной степенью чистоты;
  • может доставляется на объект заказчика в модульном виде, что обеспечивает сжатые сроки разгрузки и монтажа;
  • быстро проходит стадию пуско-наладки благодаря высокой квалификации и большому опыту наших сотрудников;
  • прошло весь комплекс заводских испытаний, что минимизирует вероятность выхода отдельных его компонентов из строя и обеспечивает длительную бесперебойную эксплуатацию.

Вы всегда сможете получить у наших сотрудников необходимую консультацию по разделению такого технологически важного вещества, как воздух. Мы осуществляем выполнение заказов «под ключ», что включает в себя как подготовку необходимой документации, так и обучение персонала на месте использования оборудования.

Более подробно Вы можете ознакомиться с азотным и кислородным оборудованием на странице www.grasys.ru

Узнать более подробно о выполненных проектах компании

источник

Разделение воздуха на азот и кислород

Разделение основано на различии температур кипения сжиженного азота (–196°С) и кислорода (–183°С). Если сжижать воздух, а затем дать ему испариться, то в газообразную фазу будет переходить более низкокипящий компонент (азот), и пары обогатятся им, а жидкость – кислородом.

Разделение воздуха на азот и кислород состоит из трех основных стадий: очистка и сушка, сжижение, ректификация воздуха.

При очистке и сушке воздух освобождают от пыли, водяных паров, диоксида углерода, чтобы исключить при сжижении образование льда.

Сжижение воздуха основано на способе, предусматривающем охлаждение газа при его адиабатном расширении с выполнением работы. В адиабатном, т.е. не имеющем теплообмена с окружающей средой состоянии, процесс расширения сопровождается уменьшением внутренней энергии системы и связанной с нею температуры.

Сжатие воздуха осуществляется в турбокомпрессоре с производительностью до 25 тыс. м 3 /г с давлением нагнетания более 0,7 МПа.

Ректификация воздуха с испарением азота из кипящего воздуха приводит к получению смеси, содержащей 93% азота и 7% кислорода. Практически полное разделение воздуха на эти компоненты реализуется двукратной ректификацией в двуполостном аппарате, выполненном из нержавеющей стали. Установка производит 15 тыс. м 3 /г азота чистотой 99,998% и 8 тыс. м 3 /г кислорода 95-процентной концентрации.

Читайте также:  Установка по прокачке амортизаторов kyb

На воздухоразделительных установках можно получать инертные газы в соответствии с их температурами кипения при наличии дополнительных колонн для ректификации нужного газа.

Для удовлетворения нужд потребителей газообразного кислорода и азота воздухоразделительные установки строят ближе к потребителю и транспортируют газы по трубопроводам. Для нужд мелких потребителей в состав установки включают газонаполнительную станцию, на которой наполняют кислородные или азотные баллоны 40м 3 под давлением до 20 МПа.

Длительное хранение кислорода и азота и их перевозки на значительные расстояния осуществляют в жидком виде, используя теплоизолированные стационарные или передвижные авто- и железнодорожные танки объемом до 30 м 3 .

Получение водорода и синтез аммиака

Синтез аммиака является одним из наиболее крупнотоннажных производств. Основную долю аммиака получают прямым синтезом из азота и водорода. Ресурсы атмосферного азота огромны и ведущий процесс его извлечения из воздуха четко определился. Производство аммиака регламентируется технологией получения водорода.

Ведущим способом производства водорода стал способ конверсии углеводородных газов, прежде всего, природного. Для получения из метана водорода в качестве окислителя используют водяной пар и кислород, реализуя две основные реакции

В промышленности используют схемы конверсии природного газа при обычном и повышенном давлении. В настоящее время широкое распространение получил способ двухступенчатой паровой и паровоздушной конверсии. Состав конверсионного газа на выходе из второй стадии, %: 61,7 Н2; 0,5 СО; 17,4 СО2; 20,1 N2; 0,3 СН4. Конвертированный газ подвергают тщательной очистке от СО, СО2,СН4, Аr, водяных паров.

Образование аммиака осуществляется по реакции, которая реализуется в колоннах синтеза аммиака при давлении 32 МПа, температуре 450–520°С.

Перевозят аммиак в железнодорожных цистернах емкостью до 90 т или автотранспортом в цистернах до 3 т. Жидкий аммиак можно транспортировать по трубопроводам при температуре более 0°С и давлении нагнетания 8,2 МПа. Например, трубопровод Тольятти–Одесса протяженностью 2195 км пропускает 2,7 млн. т жидкого аммиака в год.

Утилизация отходов

Ежегодное количество опасных химических отходов, образующихся в мире, оценивается в 340 млн. т. Значительную их долю составляют производства основной химии. Наиболее крупнотоннажные отходы – пиритные огарки и фосфогипс.

Пиритные огарки – побочные продукты обжига серного колчедана (пирита) при получении серной кислоты. На 1 т последней их выход составляет около 2 т. Пиритные огарки нашли широкое применение в производстве портландцемента в качестве железосодержащей добавки, составляющей 3–5% цементной сырьевой смеси. Использование пиритных огарков в цементной промышленности нерационально из-за безвозвратной потери находящихся в них цветных металлов: меди и цинка.

За рубежом пиритные огарки применяют для выплавки чугуна, которой предшествуют различные формы обжига пиритных огарков, позволяющие очищать их от цветных металлов и переводить их в товарные продукты.

Пиритные огарки используют как медное микроудобрение. Они также находят спрос при производстве красок – сурика (свинцовых белил) и мумие (красного пигмента на основе оксида железа).

Более крупнотоннажными являются отходы фосфогипса, образующегося при производстве экстракционной фосфорной кислоты. При ее получении на 1т Р2О5 образуется 4,5 т фосфогипса. В отвалах России заскладировано около 140 млн. т шлама фосфогипса, который используется на 10%. При направлении фосфогипса на производство гипсовых вяжущих его подвергают промывке водой, флотации или другим способом очистки.

1 Приведите примеры использования продукции отраслей основной химии в различных областях народного хозяйства.

2 Какие неорганические кислоты производятся в наибольших количествах и укажите способы их получения?

3 Назовите основные типы минеральных удобрений.

4 Укажите основные способы и технологии получения минеральных удобрений.

5 Перечислите основные методы переработки природных фосфатов в удобрения.

6 Перечислите виды азотных удобрений и способы их получения.

7 В чем заключаются преимущества комплексных удобрений и микроудобрений перед простыми?

8 Какова роль отдельных газов (воздух, кислород, азот, водород) в технологических процессах?

9 Раскройте сущность трех основных стадий разделения воздуха на азот и кислород.

10 Как осуществляется синтез аммиака?

11 Укажите основные варианты утилизации отходов производств основной химии.

источник

Добавить комментарий

Adblock
detector