Меню Рубрики

Установка подшипников с плавающей опорой

Установка подшипников с плавающей опорой

Валы должны занимать вполне определенное положение в опорах, которые могут быть фиксирующие и плавающие.

В фиксирующих опорах ограничивается осевое перемещение вала в обоих направлениях, а в плавающих осевое перемещение вала в обоих направлениях не ограничивается.

Фиксирующая опора воспринимает радиальную и в любом направлении осевую нагрузку.

Плавающая опора воспринимает только радиальную нагрузку. В схемах на рис. 23.1 и 29.2 вал фиксируется в одной левой опоре одним или двумя радиальными или радиально-упорными подшипниками.

Рис. 23.1. Установка вала в фиксирующей и плавающей опорах

Схемы рис. 23.1 и 23.2 применяют при любом расстоянии между опорами, причем схема (рис. 23.2) характеризуется большей жесткостью фиксирующей опоры.

Осевая фиксация (рис. 23.1) широко применяется в коробках передач, редукторах и т.д. для валов цилиндрических зубчатых передач и приводов валов ленточных и цепных транспортеров.

Осевую фиксацию по схеме (рис. 23.2) применяют в цилиндрических, конических и червячных передачах.

Рис. 23.2. Установка вала
в технологичной фиксирующей опоре

При назначении фиксирующей и плавающей опор учитывают следующие рекомендации:

– подшипники обеих опор должны быть нагружены по возможности равномерно. Поэтому, если опоры нагружены кроме радиальной еще и осевой нагрузкой, то в качестве плавающей выбирают опору, нагруженную большей радиальной силой;

– при температурных колебаниях плавающий подшипник (вместе с валом) перемещается в осевом направлении, что под нагрузкой, изнашивает посадочную поверхность в корпусе. Поэтому, если на опоры действуют только радиальные нагрузки, то в качестве плавающей выбирают менее нагруженную опору;

– если выходной конец вала соединяется с другим валом муфтой, в качестве фиксирующей принимают опору в близи этого конца вала.

Применяют также схемы, в которых осевое фиксирование вала происходит в двух опорах, причем в каждой из них осевое перемещение вала ограничивается только в одном направлении.

Обе схемы (рис. 23.3, 24.4) применяют с определенными ограничениями и связано это с изменением зазоров в подшипниках вследствие нагрева при работе.

Из-за увеличения длины вала осевые зазоры в подшипниках (схема «враспор») еще больше уменьшаются.

Рис. 23.3. Установка вала «враспор»

Для исключения защемления вала в опорах предусматривают осевой зазор «а», величина которого должна быть несколько больше ожидаемой тепловой деформации подшипников и вала. Из опыта эксплуатации этот зазор устанавливают в пределах 0,2…0,5 мм. Конструктивно эта схема (рис. 23.3) наиболее проста и ее широко применяют при относительно коротких валах.

Рис. 23.4. Установка вала «врастяжку»

Поскольку радиально-упорные чувствительны к изменению осевых зазоров, то соотношение l/d можно брать более 10.

При установке вала «врастяжку» (рис. 23.4) осевой зазор в подшипниках при увеличении температуры вала увеличивается (вероятность защемления подшипников уменьшается). Поэтому расстояние между подшипниками можно брать несколько больше, а именно l/d = 8…10.

Более длинные валы по схеме «врастяжку» устанавливать не рекомендуется из-за возможности появления недопустимых для радиально-упорных подшипников осевых зазоров.

источник

Плавающий подшипник

Плавающий подшипник – особенности и применение.

Обычно установка вала выполняется в двух подшипниковых опорах. При этом реализуется одна из трех главных схем монтажа подшипников:

Плавающий подшипник допускает линейное перемещение вала, компенсирует только радиальное усилие. Он обеспечивает следующие ключевые преимущества:

  • компенсация изменений длины вала при нагреве или охлаждении;
  • нейтрализация размерных погрешностей;
  • облегчение монтажа узла, снижение затрат на сборку;
  • отсутствие необходимости в сложных регулировках;
  • упрощение эксплуатации.

Реализация плавающей схемы производится тремя основными способами:

  • подшипник неподвижно фиксируется на валу с возможностью осевого свободного перемещения в корпусе;
  • верхнее и нижнее кольца фиксируются соответственно в корпусе и на валу, но конструкция подшипника допускает их относительное перемещение;
  • крепление подшипникового узла допускает свободное перемещение вала во внутренней обойме.

Плавающий подшипник используют в следующих основных случаях:

  • значительное расстояние между опорами (более семи диаметров вала);
  • большие температурные перепады при работе;
  • сложность обеспечения высокой точности размеров вала и установки опорных узлов;
  • необходимость осевого смещения вала для работы механизма (регулировка зазора между жерновами мельницы);
  • размещение подшипников в отдельных корпусах.

Внимание! Плавающей обязательно делают менее нагруженную радиальным усилием опору. Так обеспечиваются лучшие условия для осевого смещения вала.

Реализация схемы с перемещающимся подшипником.

Классический и наиболее распространенный вариант предусматривает:

  • предварительный расчет нагрузок для выбора менее нагруженной опоры в качестве плавающей;
  • крепление вала в осевом направлении в фиксированной опоре путем ограничения линейных перемещений внешней и внутренней обойм шарико или роликоподшипника (для такой опоры выбирают подшипники, компенсирующие радиальное и осевое усилие);
  • установка плавающего подшипника путем осевой фиксации вращающейся обоймы с возможностью осевых перемещений неподвижной обоймы (боковые зазоры между неподвижной обоймой и крышками корпуса).

В этом варианте вал может перемещаться вместе со свободным подшипником. При большой длине вала и сложности гарантировать соосность для обеих опор используют сферические самоустанавливающиеся шарикоподшипники, а при повышенных нагрузках сферические роликоподшипники. Используются два одинаковых ролико либо шарикоподшипника, компенсирующих угловой перекос вала до нескольких градусов и несущих как радиальные, так и осевые нагрузки.

Боковой зазор свободного подшипника должен гарантированно превышать величину линейного температурного расширения вала и возможные размерные неточности (набегание допусков линейных размеров). Это широко распространенный в промышленности вариант, используемый, например, в редукторах, перемешивающих устройствах, колесах кранов подъемных.

При возможности обеспечить строгую соосность аналогично устанавливаются более дешевые шарикоподшипники радиальные однорядные. Такая схема используется, например, в центробежных двойных насосах, трансмиссиях автомобильных.

Для компенсации, возникающих при работе механизма больших осевых сил для фиксирующей опоры рационально использовать два шарикоподшипника радиально-упорных либо упорно-радиальный спаренный шарикоподшипник. Для свободной опоры в этой схеме используется радиальный шарикоподшипник. Так фиксируются в редукторах червячные валы.

Важным моментом является выбор посадки свободного шарико либо роликоподшипника, допускающей его осевое смещение.

При выборе допуска отверстия корпуса под плавающий подшипник можно ориентироваться на следующие рекомендации:

  • для тихой работы точных шарикоподшипников – H6 (электродвигатели
    малой мощности);
  • для общего машиностроения – H7;
  • при значительном нагреве, разности температур внешней и внутренней обойм более десяти градусов – G7;
  • при наружном размере внешней обоймы более 250 мм и разности температур внешней и внутренней обойм более десяти градусов – F7.

Расточки чугунных либо стальных корпусов обеспечивают наилучшие условия для линейного смещения подшипника. В корпусах из алюминиевых сплавов желательно устанавливать закаленную втулку из стали. Недостатками схемы со свободным перемещением плавающего подшипника становятся повышенный износ посадочной поверхности и возникновение дополнительной осевой нагрузки.

Специалисты японской компании NSK рекомендуют для фиксированной установки:

  • однорядные шарикоподшипники радиальные либо самоустанавливающиеся двухрядные;
  • радиально-упорные спаренные или двухрядные упорно-радиальные шарикоподшипники;
  • роликовые цилиндрические подшипники с бортами типов NUP или NH;
  • сферические роликоподшипники;
  • сдвоенные роликоподшипники конические.

Каталог FAG-INA предлагает использовать зеркально спаренные конические роликоподшипники либо шарикоподшипники радиально-упорные при необходимости высокоточного осевого ведения вала в фиксированной опоре. Для этой цели также эффективен радиально-упорный двухрядный шарикоподшипник.

Читайте также:  Установка встроенной духовки и варочной панели

Рекомендованный плавающий подшипник:

  • шарикоподшипник радиальный однорядный;
  • самоустанавливающийся шарикоподшипник двухрядный;
  • самоустанавливающийся роликоподшипник.

Для крепления внешних подшипниковых обойм используются:

  • крышки торцовые;
  • заплечики корпуса;
  • стопорные внутренние пружинные кольца;
  • кольца дистанционные.

Внутренние кольца фиксируются:

  • заплечиками валов;
  • гайками шлицевыми;
  • стопорными пружинными наружными кольцами;
  • торцовыми шайбами с винтовым креплением к валу.

Плавающая схема со смещением колец внутри подшипника

Для высоких оборотов вала и значительных нагрузок используется плавающий подшипник с относительным перемещением внешней и внутренней обойм. Ключевые преимущества такого решения – минимальное трение при осевом смещении, отсутствие износа посадочной поверхности плавающего подшипника.

Возможность линейного смещения обойм предоставляют:

  • роликоподшипник цилиндрический NU с обоймой внутренней без буртиков (отечественное обозначение 32000);
  • роликоподшипник цилиндрический N с обоймой внешней без буртиков (отечественное обозначение 2000);
  • роликоподшипники цилиндрические бессепараторные;
  • роликоподшипники торроидальные типа CARB, разработанные SKF;
  • роликоподшипники игольчатые.

Следует учитывать, что роликоподшипники цилиндрические и игольчатые крайне чувствительны к перекосам вала.

Роликоподшипник типа NU. Роликоподшипник типа N.

Роликоподшипник торроидальный CARB.

Смещение подшипниковых колец.

При монтаже по этой схеме закрепляются наружные и внутренние обоймы фиксированного и свободного подшипников, а смещение вала приводит к относительному перемещению колец подшипника плавающей опоры. На иллюстрации фиксированная опора выполнена с шарикоподшипником радиально-упорным ZKLN, а плавающая с игольчатым роликоподшипником NKIS.

Комбинация зафиксированного шарикоподшипника радиального и плавающего подшипника роликового типа NU рекомендуется для высокооборотных механизмов, например, вентиляторов, двигателей.

Сочетание закрепленного роликоподшипника типа NUP и свободного роликоподшипника NU хорошо работает при значительных усилиях, включая ударные нагрузки. Используется в железнодорожном транспорте.

Высокую жесткость и точность обеспечивает комбинация сдвоенного роликоподшипника конического в фиксированной опоре и цилиндрического роликоподшипника плавающего. Применяется в токарных станках и роликах станов прокатных.

Для комбинации больших радиальных и умеренных осевых сил при высоких оборотах рекомендуется сочетание свободного роликоподшипника NU и группы из шарикоподшипника четырехточечного контакта с роликоподшипником NU. Такое решение используется в редукторах дизельных локомотивов.

Для очень больших значений радиальных нагрузок SKF предлагает вариант со сферическим роликоподшипником двухрядным и роликоподшипником торроидальным CARB в плавающей опоре. Примером их использования могут служить цилиндры сушки машин для производства бумаги.

Особенности реализации плавающей схемы для покупных подшипниковых узлов.

Максимальное использование покупных узлов и элементов, выпускаемых массовыми сериями, позволяет удешевить продукцию, ускорить производство, повысить качество изделий. При проектировании все шире применяются серийные подшипниковые узлы, поставляемые большинством ведущих производителей подшипников. Такой узел представляет собой корпус с креплением на лапах либо фланцевым, установленный в корпусе шарикоподшипник, уплотнения, винт стопорный для фиксации вала во внутренней обойме, масленку для подачи смазки.

Обычно в таких узлах используется корпусной шарикоподшипник со сферической внешней и удлиненной внутренней обоймами. Он позволяет компенсировать перекосы валов.

При использовании покупных узлов подшипников возникает проблема реализации плавающей схемы. Обычно подшипниковые узлы размещаются по краям вала и крепятся к раме или корпусу машины. После установки вал фиксируется винтами стопорными. При таком способе монтажа компенсируются размерные погрешности. Но тепловое расширение требует организации плавающей опоры. Особенно такая схема актуальна при повышении температуры свыше ста градусов.

В этом случае затягивается стопорный винт только фиксированной опоры. Плавающая опора (с меньшей радиальной нагрузкой) выполняется следующим образом:

  • для шейки вала выбирается допуск с минимальным зазором;
  • стопорный винт подшипникового узла заменяется резьбовым пальцем с цилиндрическим концом;
  • под цилиндрическую часть резьбового пальца на валу выполняется паз.

При работе вращение вала передается шарикоподшипнику через цилиндрическую часть резьбового пальца, установленного на внутренней обойме. При тепловом расширении вала он смещается линейно внутри обоймы шарикоподшипника, а цилиндрическая часть пальца остается внутри паза вала.

Такие решения используются, например, в механизме опрокидывания варочного котла.

Плавающий подшипник позволяет ускорить и облегчить сборку, обеспечивает успешную работу при перепадах температур, компенсирует размерные неточности. Схема со свободным подшипником благодаря своим преимуществам остается одной из основных в машиностроении.

источник

Установка подшипников на вал и в корпус

1. Конструкция мест вала и корпуса под шарикоподшипники

Кольца подшипников являются весьма нежесткими деталями. При продвижении подшипника по валу внутреннее его кольцо под действием неравномерно приложенных внешних сил и сил трения может деформироваться. Чтобы выправить положение подшипника, внутреннее его кольцо следует довести до упора и прижать к буртику вала. Очевидно, что буртик вала должен быть выполнен строго перпендикулярно к оси посадочной шейки вала.

Упорные буртики на валах и в отверстиях корпусов или стаканов (рис. 1) должны быть такой высоты t, чтобы торцы колец подшипников имели достаточно хорошую опорную поверхность и при работе не касались сепаратора подшипника. Поэтому упорные буртики не должны быть чрезмерно большими. В табл. 1 указана наименьшая высота заплечиков в зависимости от размера радиуса r на торце наружного или внутреннего посадочного диаметра подшипника.

Таблица 1. Наименьшая высота заплечика tmin

Номинальное значение радиуса r

на торце посадочного диаметра подшипника

0,5 1 1,5 2 2,5 3 3,5 4
Наименьшая высота заплечика tmin 1 2,5 3 3,5 4,5 5 6 7

Рис. 1. Схема установки шарикоподшипника: а – в корпус; б, в – на вал

Высота заплечиков tmin определяется размером радиуса r:

Числовые значения радиуса r на торце посадочного диаметра подшипника для каждого типа и размера подшипника приведены в каталогах подшипников.

Высота заплечика может быть больше tmin. Однако увеличение t по сравнению с tmin ограничивается условиями демонтажа. Минимальная высота заплечиков для возможности захвата съемником за кольцо подшипника при его демонтаже одинакова для наружного и внутреннего колец подшипника (рис. 1) и ее определяют по табл. 2.

Таблица 2. Минимальная высота заплечиков под съемник

d вала, мм до 15 до 50 до 100 свыше 100
k – t, мм 1 2 2,5 3,0

После определения высоты заплечика вычисляют диаметр буртика для вала и корпуса: d1=d+2t – для вала; D1=D–2t – для отверстия.

Другие поверхности смежных деталей должны отстоять от торцов колец подшипников для всех типов подшипников, кроме конических, не менее а=2 ÷ 3 мм (рис. 1, в).

В случае, когда величина заплечиков на валу или в корпусе увеличена, то для демонтажа подшипников необходимо предусмотреть увеличенные фаски или пазы для съемника (рис. 2).

Рис. 2. Пазы под съемник

Переход от посадочного диаметра d к диаметру dt буртика выполняют в виде галтели или канавки с закруглением.

Наибольшее распространение в конструктивном решении получили переходные участки валов в виде канавок. Такое решение обусловлено необходимостью обеспечения шероховатости Ra =0,4 ÷ 1,6 мкм на посадочных поверхностях в местах установки подшипников. Указанную шероховатость целесообразнее всего получить шлифованием. Для выхода шлифовальных кругов на наружных поверхностях валов выполняют канавки (рис. 3, а), а на внутренних поверхностях – проточку канавок у опорных торцов (рис. 3; в, г). Размеры канавок приведены в табл. 6 и 7.

Рис. 3. Переходные участки валов: в виде канавок (а), галтели (б), канавок в корпусе (в, г)

Если отверстие обрабатывается разверткой, то форму проточки берут по рис. 3, в. При шлифовании отверстия и упорного заплечика форма проточки показана на рис. 3, г.

При галтельном переходе (рис. 3, б) радиус R переходного участка вала должен быть меньше радиуса r фаски сопряженного подшипника:

Галтельный переход выполняют, когда посадочную поверхность вала не шлифуют или когда на валу по условиям его прочности нельзя допускать высоких концентраторов напряжений (табл. 5).

Таблица 3. Размеры канавок для вала, мм

Диаметр вала d, мм d1 b h R R1
Свыше 10 до 50 d-0,5 3 0,25 1,0 0,5
Свыше 50 до 100 d-1,0 5 0,5 1,5 0,5

Таблица 4. Размеры канавок в отверстиях корпуса, мм

Диаметр отверстия в корпусе D, мм d2 b h R R1
Свыше 10 до 50 d+0,5 3 0,25 1,0 0,5
Свыше 50 до 100 d+1,0 5 0,5 1,5 0,5
Свыше 100 d+1,0 8 0,5 2,0 1,0

Таблица 5. Галтели и канавки для посадки подшипников качения

rном r1 rном r1 rном b
0,2 0,1 2 1
0,3 0,2 2,5 1,5 0,2-0,8 2
0,4 0,2 3 2 1,0-2,0 3
0,5 0,3 3,5 2 2,5-3,5 4,0-6,0
1 0,6 4 2,5 5 8
1,5 1 5 3
Примечание. В таблице приведен наибольший размер галтели.

2. Конструкция мест вала и корпуса под роликовые подшипники

Особенностью конструкции конического роликового подшипника является то, что сепаратор выступает за пределы наружного кольца на m и n (рис. 4, а).

Это следует учитывать при установке смежных с подшипниками деталей, например, шлицевых гаек (рис. 4, б), или при установке двух рядом расположенных подшипников (рис. 4, в).

Рис. 4. Установка конических роликоподшипников

Смежная деталь должна отстоять от торца наружного кольца конического роликоподшипника на b=4 ÷ 6 мм. Чтобы цилиндрические поверхности смежных деталей не касались сепаратора, высоты h1 и h2 не должны превышать величин: h1=0,1(D–d); h2=0,05(D–d).

Именно поэтому в очень распространенном креплении конического подшипника шлицевой гайкой (рис. 4, б) между торцами внутреннего кольца подшипника и гайки устанавливают дистанционную втулку 1. Примерно половиной своей длины втулка 1 заходит на вал диаметром d, выполненным под установку подшипника, а оставшейся длиной перекрывает канавку для выхода инструмента при нарезании резьбы.

Диаметр вала с буртиком d1=0,16(D+5,25d) и проточки определяется как для цилиндрических роликоподшипников без бурта (рис. 4).

В справочниках по подшипникам приведена сводная таблица, которая, используя вышеизложенное, позволяет выбрать необходимые параметры для подшипниковых узлов по типам подшипников.

3. Установка подшипников качения на вал

Внутренние кольца подшипников качения часто закрепляют на валах посредством только соответствующей посадки (рис. 5, а).

Крепление торцовой шайбой (рис. 5, б) – достаточно надежный и простой способ. Его целесообразно применять, когда на вал действует осевая сила, направленная на растяжение винта, или при относительно большой угловой скорости вращения вала.

Рис. 5. Основные схемы крепления подшипников на валу: а – неподвижное соединение по прессовой посадке; б – торцовой шайбой с винтом и стопорной планкой; в – круглой шлицевой гайкой и стопорной шайбой; г – стопорным кольцом; д – конусной разрезной втулкой и натяжной круглой гайкой и стопорной шайбой

Крепление шлицевой гайкой (рис. 5, в) – весьма распространенный метод крепления подшипников, несмотря на более трудоемкий в изготовлении. Наличие у гайки шлицев и лепестков по диаметру шайбы позволяет фиксировать положение гайки при повороте через каждые 15°, что обеспечивает осевое перемещение гайки примерно на 0,06 мм. Это позволяет более тонко регулировать натяг у спаренных подшипников, особенно при создании предварительного натяга.

Крепление пружинным упорным кольцом (рис. 5, г) – вполне надежный и очень простой способ. В последнее время находит все большее применение. Этот способ крепления используется главным образом при отсутствии осевых сил, нагружающих кольцо.

4. Установка подшипников качения в корпус

Работоспособность, надежность и долговечность подшипников качения зависит не только от материалов и качества изготовления их деталей, но и от того, как они установлены в корпус.

Установка наружных колец в корпус осуществляют по посадкам в системе вала.

Установка вала с подшипниками в корпус может быть выполнена по схемам, приведенным на рис. 6.

Известно, что валы должны удерживаться от осевых смещений, т. е. должны быть зафиксированы в осевом направлении относительно корпуса. Поэтому после определения размеров валов, нагрузок и направления действия сил на опоры выбирают одну из нижеследующих схем осевого фиксирования валов и тип подшипников. Размеры A, B и h деталей узла образуют размерную цепь (рис. 6).

Рис. 6. Схемы монтажа валов с подшипниками в корпус

Схема А. Внутренние кольца обоих подшипников закрепляют неподвижно на валу. В корпусе закрепляют неподвижно только наружное кольцо одного подшипника. Наружное кольцо другого подшипника оставляют незакрепленным, «плавающим» в осевом направлении.

Первую опору называют фиксированной, а вторую – плавающей (рис. 7).

Рис. 7. Конструкция узла опоры с фиксированным подшипником, выполненной непосредственно в корпусе (а) и в стакане с плавающей опорой (б)

Осевая установка валов по схеме А имеет следующие достоинства:

  1. Температурные удлинения вала не вызывают защемления тел качения подшипников. В этом случае «плавающая» опора перемещается вдоль оси отверстия корпуса и занимает новое положение, соответствующее изменившейся длине вала.
  2. На размеры корпуса А и вала В можно назначать весьма широкие допуски. Даже грубые ошибки при их выполнении не влияют на точность сборки и работу узла.

Недостатками этого способа являются:

  1. Возможность применения его только с теми подшипниками, которые могут фиксировать вал в обоих направлениях (шариковые радиальные, сферические радиальные шариковые и роликовые и др.).
  2. Вследствие зазоров между кольцами и телами качения радиальная, осевая и угловая жесткости опор очень малы. Осевое смещение, т. е. так называемая осевая «игра» комплекта вала, при подшипниках с диаметром отверстия до 50 мм может, например, превышать 0,1 мм.
  3. Необходимость крепления одного из подшипников как на валу, так в корпусе. Поэтому конструктивное оформление одной из опор вала получается относительно более сложным.

Осевая установка вала по схеме А может применяться:

  1. При любом расстоянии между опорами вала (ограничением является допустимый перекос колец подшипников).
  2. В случаях, когда радиальная и осевая «игра» вала не влияет на работу узла.

Осевая установка вала по схеме А широко применяется в коробках скоростей, в редукторах и в других узлах для валов цилиндрических зубчатых передач.

Радиальная и осевая «игра» валов нарушает точность зацепления конических и червячных пар. Поэтому осевая фиксация валов, на которых имеются конические или червячные колеса и червяки, по схеме А, как правило, не применяют.

Необходимо следить за тем, чтобы оба подшипника нагружались равномерно. Поэтому если опоры нагружены, кроме радиальной, также осевой силой, то для выравнивания нагрузки между обоими подшипниками в качестве «плавающей» выбирают более нагруженную опору.

Если в опорах вала установлены только радиальные подшипники, то подшипником, фиксирующим вал от осевого перемещения и воспринимающим осевую силу, рекомендуется принимать тот, который имеет наименьшую радиальную нагрузку. При наличии упорного или радиально-упорного двухрядного или многорядного подшипника все радиальные подшипники этого вала должны быть плавающими. Оба кольца подшипников, фиксирующих валы от осевого перемещения, а также вращающиеся кольца всех подшипников для предотвращения их проворота по посадочным поверхностям при динамических нагрузках соответственно закрепляют на валах и в корпусах. Это закрепление осуществляют посредством посадок колец на валы и в корпусах с натягом, а также с помощью других различных средств закрепления.

Для осуществления свободных осевых перемещений наиболее подходят радиальные роликоподшипники с цилиндрическими роликами и радиальные шарикоподшипники с незакрепленными наружными кольцами (рис. 7, б).

Для фиксации положения наружных колец радиальных роликоподшипников могут быть использованы пружинные стопорные кольца эксцентрические внутренние для крепления подшипников в корпусе по ГОСТ 13943-86.

Схема Б. В данной схеме в отличие от схемы А в фиксированной опоре вала устанавливают два подшипника (рис. 8). Внутренние кольца подшипников обеих опор закрепляют на валу.

Рис. 8. Конструкция опор с фиксированной парой подшипников, выполненных по схемам «в распор» (а, б) и «в растяжку» (в)

Наружные кольца подшипников, расположенных в фиксированной опоре, закрепляют в корпусе. Наружное кольцо подшипника плавающей опоры оставляют свободным.

В фиксированной опоре радиальные и осевые зазоры сводятся к минимуму соответствующей регулировкой, и «игра» валов почти отсутствует. Жесткость опоры увеличивается. Кроме того, расположение двух подшипников в фиксированной опоре увеличивает и жесткость вала. Эта схема осевой фиксации обладает теми же достоинствами, что и схема А. Единственным ее недостатком является некоторое усложнение фиксированной опоры вала, которое, однако, компенсируется повышением ее жесткости.

Осевую установку валов по схеме Б можно применять при любом расстоянии между опорами валов зубчатых зацеплений цилиндрических, конических и червячных передач.

Выбор фиксированной и плавающей опор производят по рекомендациям, приведенным для схемы А.

Схема В. Торцы внутренних колец обоих подшипников упирают в буртики вала и в торцы других деталей, сидящих на валу. Внешние торцы наружных подшипников упирают в торцы крышек или других деталей, закрепленных в корпус.

Эту схему называют также осевой установкой подшипников «в распор».

Погрешности при изготовлении деталей по размерам А, В и h приводят к изменению зазора. Поэтому на размеры А, В и h устанавливают более жесткие допуски, чем при установке валов по схемам А и Б.

При тепловом удлинении вала, в случае недостаточного зазора а, может произойти заклинивание тел качения подшипников. Поэтому осевое фиксирование по схеме В применяют при относительно коротких валах.

Разность температурных деформаций вала и корпуса можно вычислить по формуле:

где αB и αk – коэффициенты линейного расширения материала вала и корпуса; ΔtB и Δtk – изменение температуры вала и корпуса; l – расстояние между внешними торцами подшипников.

Чтобы избежать заклинивания подшипников, необходимо при сборке узла обеспечивать условие α≥δt.

Разность α–δt назначают в зависимости от типа подшипников и требований точности, предъявляемых к узлу. Так, например, если опорами вала являются радиальные шариковые или роликовые подшипники, на валу расположены цилиндрические зубчатые колеса, то можно допустить значительную осевую «игру» комплекта подшипников на валу. На работу подшипников и зацепления осевая «игра» вала даже до 1…2 мм влияния не окажет и можно принять α–δt=1…2 мм. Если же на валу посажены конические или червячные колеса или другие детали, которые должны занимать точное осевое положение, то осевая «игра» вала ограничивается минимальными величинами.

Известно, что если в опоре, состоящей из радиально-упорных шариковых или конических роликовых подшипников, имеется значительный осевой зазор, то нагрузка распределяется между телами качения крайне неблагоприятно. Поэтому для этих подшипников лучше, когда разность α–δt очень мала или даже отрицательна, т. е. образован небольшой натяг.

Короткие валы при отсутствии значительного нагрева можно крепить посредством двух опор. При сборке для предупреждения защемления тел качения в радиальных подшипниках предусматривают минимальный осевой зазор а=0,2 ÷ 0,3 мм между крышкой подшипника и наружным кольцом, а в радиально-упорных – осевую регулировку путем изменения общей толщины набора прокладок б между фланцем крышки подшипника и его корпусом (рис. 9).

После того как установится при работе узла нормальный тепловой режим, зазор уменьшается до нормальных пределов или исчезает. Величину начального зазора а устанавливают обычно для каждого изделия опытным путем.

Рис. 9. Конструкция узла, выполненная по схеме В

Поэтому данная схема осевой фиксации валов применяется при относительно коротких валах и при дуплексировании (подборе пар подшипников для установки с предварительным натягом) упорных шарикоподшипников, которые применяются в быстроходных механизмах по схеме Б.

Схема Г. Внешние торцы внутренних колец подшипников обеих опор упирают в торцы деталей, закрепленных на валу (рис. 10). Внутренние торцы наружных колец подшипников упирают в буртики отверстий корпуса или стаканов, поставленных в корпусе.

Рис. 10. Конструкция узла, выполненная по схеме Г

Эту схему называют также осевой установкой «в растяжку».

При температурном удлинении вала, установленного по этой схеме, расстояние между подшипниками увеличивается, и поэтому заклинивание тел качения не происходит, что является ее достоинством.

Однако между внешними кольцами подшипников и упорными буртиками корпуса может образоваться зазор, который распределяется между внутренними и наружными кольцами подшипников и не нарушает работы подшипников. Однако, при определенных условиях, зазор может достичь предела, который нежелателен для радиально-упорных шариковых и особенно для конических роликовых подшипников.

Поэтому данную схему осевой установки валов применяют, как и предыдущую, при относительно коротких валах.

Если опорами валов служат радиальные шариковые подшипники или сферические шариковые и роликовые подшипники, которые не боятся увеличенных осевых зазоров, то схему Г можно применять и при относительно длинных валах.

Осевая установка валов по схеме Г требует упорных буртиков (стаканов) в отверстиях, а также регулировочных гаек или других устройств и навыков в их регулировке.

Учитывая, что температурные удлинения по величине незначительны и могут быть определены их значения, в некоторых конструкциях используют жесткие пружины, включая тарельчатые, которые поддерживают натяг в подшипниках в заданных пределах. Это позволяет реализовать преимущества данной схемы установки подшипников.

источник

Добавить комментарий

Adblock
detector