Меню Рубрики

Установка позиционера на клапан

Что такое электропневматический позиционер?

Используя пневматические системы и для управления различными пневматическими устройствами, помимо пневмопреобразователей, не обойтись без электропневматических позиционеров.

Позиционеры – это специальные устройства, предназначенные для уменьшения или полного снятия рассогласования хода, а также повышения быстродействия и отклика пневматических мембранных и поршневых исполнительных механизмов путем включения обратной связи по положению выходного штока исполнительных механизмов.

Другими словами, позиционеры являются регуляторами в системе контроля, которые обеспечивают заданную координацию положения пневматического исполнительного механизма поступательного или поворотного действия (так называемая, регулируемая величина) и командного сигнала (задающая величина).

Как и любой другой регулятор, электропневматический позиционер имеет свой объект регулирования, задание, параметр, сигнал действующего рассогласования и выходной сигнал управления. При этом, в качестве объекта управления может выступать любой исполнительный механизм – пневмодвигатель вращательного и поступательного действия, пневмоприводы, пневмоцилиндры, а также регулирующие клапана. Объект управления – это то, ради чего задумывалась пневматическая система.

Параметр – применительно к позиционерам – положение штока клапана, положение пневмоцилиндра и т.д.

Заданием является управляющий сигнал от блока управления пневмосистемой или регулятора.

Сигнал действующего рассогласования – это разница между управляющим сигналом и, например, действительным положением штока клапана.

Выходной сигнал управления — это давление сжатого воздуха, которое поступает в рабочую полость исполнительного механизма и изменяет усилие тарированной пружины.

Таким образом, изменяя выходное давление или усилие тарированной пружины, позиционер обеспечивает соответствие положения штока клапана и управляющего сигнала, компенсируя, при этом, усилия, оказывающие воздействие на подвижную систему клапана. Такими усилиями могут быть: статическое и динамическое воздействие регулируемой среды, либо трение в подвижных соединениях.

Стоит отметить, что в некоторых моделях электропневматических приборов конструктивно объединены функции позиционеров и преобразователей, при этом, обратная связь по положению штока или другого рабочего органа механизма, осуществляется при помощи линейно перемещающихся штоков, рычагов, либо эксцентрикового ролика для поворотных механизмов.

Современные цифровые интеллектуальные позиционеры, помимо своей основной задачи – регулирования положения штока клапана, могут выполнять огромное количество дополнительных функций, таких, как: обзор параметров состояния клапана, его автоматическая настройка и диагностика, а также, конфигурирование, моделирование, архивирование данных, получаемых в процессе работы. Однако, не всегда такие возможности позиционера востребованы, поэтому, прежде чем приобретать позиционер с множеством функций, подумайте, может быть для тех процессов, которые Вам необходимо запустить будет достаточно аналогового позиционера или обычного пневмопреобразователя?

На практике, используются, конечно, обычные пневматические и электропневматические позиционеры моделей ПП, ЭПП, ППМ-200, ЭПП-300. Именно они нашли наибольшее распространение на просторах России и стран СНГ.

— Пневматический позиционер ПП – может быть изготовлен как для одностороннего, так и для двустороннего действия. Это самый простой, однако, один из самых надежных позиционеров.

— Позиционер приводных механизмов ППМ-200 – позиционер изготавливается в соответствии с требованиями ПБ 09-540-03, может применяться как для поступательного, так и для поворотного рабочего хода.

— Электропневматический позиционер ЭПП и ЭПП-Ex – могут работать с барьером искрозащиты во взрывоопансых зонах. Имеют уровень взрывозащиты «особовзрывобезопасный».

— Электропневматический позиционер ЭПП-300 – прибор имеет встроенный HART-модем и может соединяться с управляющим устройством (ПК) по аналоговому или цифровому каналу.

Пневматический позиционер ППМ-200

Современные цифровые электропневматические позиционеры используются, также, для управления регулирующими поворотными или линейными клапанами. Принцип действия позиционера, в данном случае, состоит в установке регулирующего органа (штока) в положение, которое соответствует электрическому входному управляющему сигналу. Причем дополнительные функциональные входы могут быть использованы для установки клапана в безопасное положение или его блокировки.

Интеллектуальный позиционер Siemens SITRANS VP

Таким образом, можно сделать вывод о том, что пневматические и электропневматические позиционеры существенно дополняют возможности различных регуляторов давления с пневмоприводом. Позиционеры позволяют исключить гистерезис пневмосистемы (запаздывание отклика привода на команду управляющего блока), увеличить быстродействие и точность поддержания необходимых параметров, обеспечить надежность закрытия клапана при больших перепадах давления и тем самым герметизировать систему.

источник

Регулирующий клапан – электропривод, МИМ или позиционер?

Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.

Читайте также:  Установка пружин floyd rose

1. Клапаны с электроприводом и трёхпозиционным управлением

Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).

Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.

Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).

2. Клапаны с мембранным исполнительным механизмом (МИМ)

Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.

Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).

Рисунок 3 — ЭПП ASCO Sentronic LP

В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.

Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.

Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.

Рисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП

Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.

Линейность

Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.

Читайте также:  Установка веб сервер линукс

Чувствительность

Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.

Гистериз

Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.

Рисунок 6 — Чувствительность

Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.

Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.

В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.

Рисунок 8 — Схема контура регулирования при спользовании клапана с позиционером

3. Позиционер управления клапаном

Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.

Рисунок 10 — Регулирующий клапан ASCO с позиционером

Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.

Читайте также:  Установка линукса без интернета

Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.

Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.

При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.

4. Выводы

На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.

Клапаны с электроприводом и управлением «больше меньше»

Рисунок 11 — Клапаны с электроприводом и управлением «больше меньше»

  • низкая скорость работы
  • ограниченная применимость
  • высокое энергопотребление (вызывает сложности при построении систем с автономным резервированием питания)
  • управление дискретными сигналами
  • простой и понятный принцип работы + цена
  • требуют использования специальных регуляторов

Клапаны с МИМ и ЭПП

  • высокое быстродействие
  • низкое энергопотребление
  • расширенная сфера применения
  • управление пропорциональным сигналом
  • чрезвычайно высокая сложность компенсации нелинейностей в контуре управления
  • сложность оценки точности, особенно в динамических режимах работы
  • требует для работы сжатый воздух

Клапаны с позиционером

  • высокое быстродействие
  • низкое энергопотребление
  • автоматическая компенсация нелинейностей
  • лёгкое построение двухконтурной системы управления с минимумом трудозатрат
  • наиболее широкая сфера технологических применений
  • управление пропорциональным сигналом
  • требует для работы сжатый воздух

Инженер ООО «КИП-Сервис»
Быков А.Ю.

источник

Установка позиционера на клапан – Инструкция по эксплуатации Samson 3785 Позиционер Profibus

Страница 10

Установка позиционера на клапан

Установка позиционера производится либо
прямым монтажом на SAMSON-привод тип
3277,

либо согласно NAMUR (IEC 60534-6)

на клапаны в исполнении с литой рамой, а
также на стержневые клапаны.

В соединении с промежуточной вставкой
прибор может использоваться в качестве
поворотного позиционера, монтируемого на
поворотных приводах.

Ввиду того, что позиционер поставляется
единым

принадлежностей, необходимые монтажные
детали

необходимо найти в приведенных ниже
таблицах.

заглушки сброса воздуха. Отработанный
воздух выводится из позиционера наружу
через

дополнительного оснащения, см. также
рис. 3, 5 и 6.

К каждому позиционеру для сброса воздуха
прилагается

защитной крышкой на обратной стороне
регулятора).

Только после этого будет обеспечиваться
степень защиты IP65 от проникновения
грязи и влаги.

оснащение приведено в таблицах 1, 2 и 3
на стр. 13
.

переключения (привод 120см

позиционера должна выполняться на левой
стороне привода.
При этом стрелка на черной крышке
прибора

мембранную камеру.

Исключение!
Регулирующие клапаны, в
которых

привода. В данном случае монтаж должен
выполняться справа, а стрелка направлена
в противоположную сторону от мембранной
камеры.

Привинтить зажимную скобу (1.2) на
шток привода таким образом, чтобы
крепежный винт вошел в углубление
штока привода.

путевого перемещения D1 или D2 к
передаточному рычагу позиционера.

Укрепить промежуточную плату (15) с
уплотнением на раме привода.

Установить позиционер таким образом,
чтобы рычаг D1 или D2 скользил по
средине штифта зажимной скобы, а
затем привинтить на промежуточной
плате (15).

Приводы с эффективной площадью 240,
350

подключения на соединительном блоке
(

рис. 3) по направлению стрелки,

изображенной на этом блоке, таким
образом, чтобы символ привода для
конструкции

выдвигается» (соответственно «шток
привода втягивается») совпадал с
конструкцией

источник

Добавить комментарий

Adblock
detector