Меню Рубрики

Установка принтера на чпу

3D принтер из настольного фрезерного станка

Установка печатающей головки 3D принтера на настольный ЧПУ, расширяет возможности использования гравировально-фрезерного станка, позволяя печатать 3Д модели из пластика. В итого получаем 3D ЧПУ способный воспроизводить изделия как из пластиковой нити методом печати так и из дерева методом фрезерования. Для управления процессом используются стандартные программы MACH3, CNC USB Controller и др.

Для 3D печати необходим файл формата STL, который поддерживается всеми программами 3D принтеров. Для конвертирования в STL можно использовать Soildworks, google Sketchup и другие программы. А также скачать готовые модели.

Для 3D печати на CNC станке Моделист3040 используем печатающую головку 3D принтера

Обычно в экструдерах 3Д принтеров используются терморезисторы 100К с нелинейной характеристикой, для работы с таким датчиком нужно использовать управляющую электронику от 3Д принтера. Чтобы использовать обычные доступные терморегуляторы датчик температуры необходимо заменить, например, на термопару типа К, что уже сделано в печатающих головках предлагаемых нашим магазином.

И любой терморегулятор, поддерживающий работу с термопарами типа К, например «ОВЕН 2ТРМ1-Н.У.РР», стоимость которого около 4 000,00 рублей.

Выбор двухканального терморегулятора, был связан с возможностью дальнейшего расширения и использования подогреваемой платформы

Так же понадобиться блок питания для нагревателя экструдера, с номинальным напряжением 12В и током не менее 3А, для возможности использования этого же блока и для питания нагревателя подогреваемой платформы и вентилятора экструдера, блок питания применен на ток 10А

Схема необходимых подключений показана на рисунке 1

1. Снять крепление шпинделя и закрепить печатающую головку 3Д принтера, как показано на рисунках 2 и 3

2. Установить печатающую головку на станок Моделист3040, рисунок 4. Аналогично можно установить и на любой другой станок серии «Моделист»

3. Настраиваем драйвер оси А, к которому подключается мотор экструдера:
Рабочий ток двигателя 0,57А.
Шаг 1/16 (для более плавного выдавливания пластика).

В программе «CNC USB controller»
Файл → Настойки → Оси: включаем 4-ю ось и присваиваем ей букву «А».
Файл → Настойки → Настойки → Шагов/Единицу: устанавливаем «85»

Управление осью «А» будет: вниз — выдавливание пластиковой нити через экструдеру, вверх — возврат нити.
Перед тек как нажать на кнопку «возврат каретки в нулевое положение», сбросить счетчик оси А отдельно, иначе экструдер выдавит леску наружу.

4 Генерируем G-код в любой программе для 3D принтеров, например «RepetierHost», рисунок 5.

Рисунок 5. Генерируем G-код в программе для 3D принтеров «RepetierHost»

Для настройки генерации кода в программе «RepetierHost» для печати на гравировально фрезерном станке с ЧПУ, необходимо удалить команды которые добавляются в начале и в конце G- кода: разогрева головки, поиск нуля, охлаждение детали,и т.д.

6. Открыть G-код простым блокнотом , командой «заменить все» заменить букву «Е» на букву «А».

7. И запускаем 3D печать на ЧПУ станке.

Полная инструкция по установке и работе идет в комплекте с набором для установки экструдера на станки серии «Моделист»

источник

Собираем ЧПУ станок из принтера своими руками

Подробное изготовление ЧПУ из принтера, который сделать легко и недорого. Такой агрегат сможет выполнять различные функции. Об этом в нашем материале.

Здравствуйте, дорогие друзья! Сегодня мы расскажем Вам про то, как создать ЧПУ из принтера. Основной причиной того, что сейчас так часто в интернете предлагают переделать из принтера или сканеров самодельные устройства, является то, что многие современные периферийные устройства для ПК настолько сложны с функциональной точки зрения, что в переделанном виде позволяют создавать станки, способные выполнять удивительные задачи.

Приступаем к изготовлению

Чтобы начать изготавливать станок ЧПУ из старого принтера, вам потребуются некоторые запчасти, которые входят в струйные принтеры:

  • Приводы, шпильки, направляющие от принтера (желательно использовать несколько старых принтеров; принтеры необязательно должны печатать);
  • Привод от дисковода.
  • Материал для создания корпуса – фанера, ДСП и т.п.
  • Драйверы и контроллеры;
  • Материалы для крепежей.

Полученные станки с числовым программным управлением смогут выполнять различные функции. Всё, в конечном итоге, зависит от устройства, которое будет располагаться на выходе станке. Чаще всего из струйных принтеров делают фрезерный станок с ЧПУ, выжигатель (при помощи установки выжигателя на выходе устройства) и сверлильные машины для создания печатных плат.

Читайте также:  Установка крана в байпас законно

Основой является деревянный ящик из ДСП. Иногда используют готовые, но не составит труда сделать го самостоятельно. Необходимо учесть, что внутри ящика будут располагаться электронные компоненты, контроллеры. Собирать всю конструкцию лучше всего при помощи саморезов. Не забывайте, что детали нужно располагать друг относительно друга под углом 90 градусов и крепить максимально прочно друг к другу.

Создание самодельного станка

Прежде, чем переделать принтеры или сканеры в мини станки, которые смогут выполнять фрезерные работы, следует максимально точно собрать раму конструкции и ее основные составляющие.

На верхнюю крышку устройства требуется установить главные оси, которые являются важными компонентами среди всех профессиональных станков. Осей должно быть всего три, начало работы необходимо производить с крепления оси у. Для того чтобы создать направляющую используют мебельный полоз.

Отдельно отметим создание ЧПУ из сканера. Переделка этого устройства такая же, как и, если бы, под рукой был старый струйный принтер. В любом сканере, есть шаговые двигатели и шпильки, благодаря, которым и производится процесс сканирования. В станке нам пригодятся эти двигатели и шпильки, вместо сканирования и печати будет производится фрезерование, а вместо головки, которая перемещается в принтере, будет использоваться движение фрезерного устройства.

Для вертикальной оси, в самодельном ЧПУ нам пригодятся детали из дисковода (направляющая по которой перемещался лазер).

В принтерах есть так называемые штоки, именно они играют роль ходовых винтов.

Вал мотора должен быть соединен со шпилькой при помощи муфты гибкого типа. Все оси необходимо прикреплять к основаниям, выполненным из ДСП. В конструкциях такого типа фрезер перемещается исключительно в вертикальной плоскости, при этом сдвиг самой детали происходит по горизонтали.

Электронные компоненты будущих станков

Это является одним из самых важных этапов конструирования. Электроника самодельных машин является ключевым элементом управления всеми двигателями и самим процессом.

Работы, которые будут выполняться будущим станком и процессы, возникающие во фрезерном и сверлильном механизмах – очень разнообразны и точны, поэтому нам понадобиться надежный контроллер и драйвер.

Самодельная машина может функционировать на отечественных К155ТМ7, их нам понадобиться 3 штуки.

К каждому драйверу идут проводки от своей микросхемы (контроллеры независимы).

Шаговые двигатели в самодельном аппарате должны быть рассчитаны на напряжение, не превышающее 30-35 В. Часто случалось так, что при повышенной мощности, советские микросхемы-контроллеры перегорали.

Блок питания идеально подходит от сканера. Его нужно подсоединить к блоку к кнопке включения, контроллером и сами устройством (фрезер, дрель, выжигатель и так далее).

Главная плата управления (материнская плата для станка ЧПУ своими руками) должна быть подключена к персональному компьютеру или ноутбуку. Именно при помощи компьютера станок сможет получать четкие задания и превращать их в трехосевые движения, создавая конечные продукты. Идеальным будет программа Math3, которая позволяет создавать эскизы. Также отлично подойдут профессиональные программы для векторной графики.

Конечно, все зависит от вашей фантазии и прочности (грузоподъемности) корпуса и рамы. Однако, чаще всего ваш аппарат сможет разрезать фанеру толщиной менее 1,5 см, трехмиллиметровый текстолит или пластик.

источник

Домашний ЧПУ-фрезер как альтернатива 3D принтеру, часть пятая, обработка

Я начал писать эту статью уже давно, но недавняя статья «Гребной винт «незацепляйка» на станке с ЧПУ» вывела меня из душевного равновесия, и буквально швырнула за дописывание. Это что же такое получается — пока я тут прокрастинирую, в интернете кто-то так и будет неправ? Я же весь на икоту изойду, когда опубликую, и будет мне вместо респекта и уважухи проклятия и позор.
Поскольку статья дописана форсированно, будет некая нестыковка: изначально я планировал подробно описать хотя бы наиболее актуальные стратегии CAM программ, и даже начал это делать на синтетической детали:

Но в связи со спешкой решил скомкать разбор стратегий, надергав оттуда отдельных фраз, и по-чапаевски кинуться в бой. Для этого я зашел на известный многим GrabCAD, нашел первый попавшийся винт, и бессовестно его упер. Винт так себе, да и вообще нормально профилированных винтов при беглом осмотре там не нашел, но самому строить было лень. Так что сейчас маленько еще подрыкаемся и будем пилить производную от этого винта деталь

Читайте также:  Установка защиты в вру

Кому уже интересно — велкам под кат. Много картинок, торопливое изложение и некачественный текст гарантирую.

По неясным мне причинам я переделал модельку в двухлопастную и отмасштабировал до 180 мм. Но естественно это непринципиально.

Итак, мы имеем деталь с ярко выраженными поднутрениями относительно обрабатываемых плоскостей. Теоретически, мы могли бы ее выпилить за один установ на токарно-фрезерном или на фрезере с вращающейся осью, но это экзотика в наших широтах, так что будем работать как деды завещали — двусторонней обработкой. Для этого добавим к модели вспомогательное тело, которое потом вручную (ну или очень нежными проходами фрезы) отрежем. Чтобы это тело было легко базировать при перевороте, добавим 2 параллельные лыски произвольного размера. В принципе, их глубина некритична, я сделал сквозные опять же из лени.

И в таком виде портируем в PowerMill. К сожалению, у нас не куплен модуль прямого импорта из SolidWorks, поэтому в моем случае портирование прошло не лучшим образом, некоторые поверхности вывернулись, но смысла описывать борьбу с этим, пожалуй, нет. После импорта получилась вот такая загогулина, с ней и будем работать.

Перво-наперво нужно задать заготовку. Для CAM программы это некоторая виртуальная область, в которой он будет считать что есть материал, ну и соответственно его удалять или обходить. В идеале заготовку стоит обмерить, создать в CAD соответствующее тело и импортировать его в CAM. Но в данном случае это неактуально, задаем заготовку типа «цилиндр» по имеющейся модели с припуском 5 мм:

В реальном мире мы можем сделать заготовку произвольной формы заведомо больше чем насчитанные программой 260 по диаметру и хотя бы немножко больше реальной модели по толщине, например 50 мм.

Пробегаем по параметрам, отмеченным в прошлой статье — высоты, подводы, переходы, скорости и так далее. Если задать все это до создания первой траектории, параметры будут наследоваться во все создаваемые траектории, но их можно будет в каждой конкретной траектории поправить.

А теперь — самое веселое. Создаем нашу первую траекторию, пусть это будет выборка. Выборки вообще — класс черновых траекторий для грубого снятия материала. Они не формируют поверхности, только облегчают работу для дальнейших фрез. Выборок существует миллион разных, они могут строиться по самым разным принципам — от погружения (или даже сверления) до полноценных 3D выборок, мы же воспользуемся самым частым вариантом: выборкой 3D смещением. Поскольку нас интересует в первую очередь выборка модели внутри, создадим произвольную границу по модели:

Теперь выборка пройдет только внутри границы, наружный контур для базирования при перевороте обработаем позже.

Итак, жмакаем «создать траекторию» и выбираем среди предложенного разнообразия желанную выборку 3д модели смещением. Задаем ограничение внутри созданной границы, создаем инструмент (я сделал 12ю концевую фрезу), и настраиваем: допуск и припуск (опять же смотрим что это такое в прошлой статье), направление реза, а главное — шаги смещения и высоты. Они зависят от материала, станка, фрезы и т.д., но предположим что мы работаем с МДФ и у нас не совсем расхлябанный станок, тогда можно взять смещение по плоскости в 2/3 диаметра фрезы, а по высоте — в 1/4 диаметра, в нашем случае 8 и 3 мм соответственно.

Нажимаем «выполнить» и получаем чудо чудное — вся моделька исчиркана линиями. Это в общем и есть траектория — визуализация проходов инструмента. Зеленые — рабочие ходы, красные штриховые — отводы, бирюзовые — подводы и фиолетовые — переходы.

Обратите внимание, на визуализации видно, что фреза пройдется по верхнему торцу, и если Вы будете зажимать деталь за него, то горе и фрезе, и крепежу, и заготовке.

Попробуем воспользоваться утилитой симуляции обработки и увидим вот такое:

Заметно что контуры уже просматриваются, но все страшное и грубое. Впрочем, на то она и выборка. Так что займемся чисткой.

Для начала, чтобы два раза не вставать, подумаем, что мы тут можем сделать установленной 12 мм концевой фрезой. Ну конечно плоскости и вертикальные стенки! Делаем чистовую обработку «плоскости смещением», устанавливаем шаг в 1/3-1/4 фрезы, убираем ограничение границей, получаем первые «боевые» поверхности, которые уже не надо будет менять — верх ступицы винта и верх обечайки:

Читайте также:  Установка всех программ msvcp

Дальше займемся отвесными стенками. Их у нас 3: внутренняя обечайка, наружная базирующая и ступица. Поскольку ступица прилегает к лопастям, мы пока про нее забудем и займемся обечайкой. Итак, снова создаем границу — произвольную по модели со смещением чуть более чем на полдиаметра фрезы внутрь:

И запускаем траекторию постоянной Z. Обратите внимание, что я не выставлял подводы — несмотря на то что траектория чистовая, меня не очень заботит качество поверхности на обечайке. Теоретически можно было вообще оставить тут все в черновой, но я буду использовать эти поверхности в качестве базирующих, поэтому припуск надо убрать под ноль.

Естественно, в таком варианте фреза пройдет вдоль всей наружной стенки, и если реальная заготовка была сравнима по толщине с заданной в траектории, то добра не будет. Можно вручную удалить часть проходов на произвольном уровне от верха заготовки, нам достаточно буквально 3-5 мм для надежного базирования.

Теперь таки поменяем фрезу на чистовую, пусть это будет 6 мм радиусная. Создадим границу для обработки лопасти. Для этого сначала скопируем границу из предыдущего пункта (которая офсет внутрь от обечайки) и добавим к ней смещенный на 3,5 мм контур ступицы. Должно получиться нечто вроде такого:

теперь выделим нужную нам поверхность лопасти и создадим границу по поверхности, ограниченную предыдущей границей:

Ну и в этой границе пройдемся банальным 3D смещением:

В данном случае, смещение вполне оправданно — материал мягкий и гомогенный, фреза относительно большая. В случае если бы жесткость системы была недостаточной для материала, правильней было бы обрабатывать стратегией «обработка поверхности», «параметрическим смещением» или по шаблонам-потокам, но это более трудоемко.

Чтобы не строить заново границу, банально сделаем копию этой траектории с поворотом на 180 градусов — это обработает вторую лопасть.

Что у нас осталось? А, ступица же. Обарботаем ее «постоянной Z» чистовой фрезой в границе +3,5 мм от контура ступицы, бессовестно украденной из предыдущей. Не забываем поставить осевой припуск: иначе фреза оставит на поверхности лопасти следы. Получится так:

Ну и проработаем угол сочленения лопасти с ступицей стратегией «чистовая угла однопроходная» внутри все той же границы +3,5 мм от ступицы. Подводы в таком виде оставили бы следы на ступице в нормальном материале, но мы все еще работаем с МДФ, поэтому не паримся.

Проверим на симуляции что же у нас получилось. Дважды выдано предупреждение о врезании в материал: первый раз на второй операции — когда 12я фреза вошла в заготовку в районе лыски, второй раз — при засверливании отверстия в ступице, чистовая обработка шариком идет по неснятому материалу. Простим меня за это и не будем исправлять, это не аварии, по крайней мере не в нашем материале.

А теперь делаем хитрый финт. Создаем Локальную систему координат с обратной стороны заготовки, ориентированную в обратную сторону по Z.

На физическом уровне заготовку переставляем вверх ногами, базируясь по обечайке и лыскам на ней. Я предпочитаю создать модель суппорта и вырезать посадочное место в бросовом материале, но это на любителя, некоторые пользуются другими способами зажима и выкатыванием (определением положения) имеющихся чистовых поверхностей.

Первые 3 траектории — выборку, плоскости и постоянную Z обечайки просто копируем с изменением системы координат. Так же поступаем с обработкой ступицы и проработкой угла лопасти. Сами лопасти придется обработать заново — стратегия обработки смещением не позволяет баловаться с изменением ориентации системы координат. Но это уже не беда, это мы уже умеем. Итого траектории обратной стороны выглядят так:

Для удобства я обычно либо в процессе обзываю траектории интуитивно-понятно, либо перед финальной симуляцией переобзываю, чтобы не запутаться. Формат не принципиален, я для себя назначил «номер-СК-тип-инструмент» например «4-1 низ постз ш6». После этого Можно запустить симуляцию и насладиться результатом:

Мое ИМХО, вполне рабочая деталь получилась. Можно делать заготовку, ставить на станок и в добрый путь. Удачи в переводе материала в стружку, камрады!

Если кто пропустил, но интересно, предыдущие статьи цикла:

источник