Меню Рубрики

Установка производства битумов материальный баланс

Установка производства битума
из мазута УПБ-1

Описание установки УПБ-1

Установка УПБ-1 предназначена для получения окисленных битумов различных марок из гудрона. В установке УПБ-1, по производству дорожного или строительного битума реализована технология получения продукта из гудрона путём окисления кислородом воздуха в проточном реакторе и аппаратах колонного типа. Установка может использоваться в составе МИНИ НПЗ с привязкой к другим установкам (первичной переработки нефти) или как самостоятельное производство.

Нагрев сырья осуществляется рекуперативным теплообменном в теплообменниках и автоматизированным нагревателем углеводородов АНУ-1.2.

Оборудование (теплообменные аппараты, окислительные емкости, насосы) размещается под и на технологической этажерке, состоящей из 3-х уровней. Технологическая этажерка по правилам и нормам ПБ проектируется как железобетонная конструкция.

Перерабатываемое сырье:

Получаемые продукты

  • Битум (дорожный БНД 60/90, БНД 90/130, БНД 130/200, строительный БН 90/10, БН 70/30, кровельный БНК 40/180, БНК 45/190, БНК 90/30)
  • Вакуумный газойль (фракция 360-450)
  • Черный соляр (фракция нк-360)

Габаритные размеры установки УПБ-1

Установка состоит из 2-х основных блоков: блок рекуперации- окисления и блок нагрева сырья. Разделение блоков обуславливается противопожарными требованиями. Расстояние между блоками должно быть не менее 15м.

Блок рекуперации-окисления, представляющий собой трехэтажную технологическую этажерку на которой расположены теплообменное оборудование, , реактор окисления, окислительные емкости, вакуумный блок, насосное оборудование.

  • Ширина — 12 м,
  • Длина — 14 м,
  • Высота колон с фундаментом — до 14 м.

Блок нагрева сырья состоит из печи АНУ -1.2

Габаритные размеры площадки под печью АНУ-1.2

  • Ширина — 4 м,
  • Длина — 8 м,
  • Высота дымовой трубы — до 16 м.

Техническая характеристика МИНИ НПЗ с комплектацией установкой УПБ-1

Таблица 1: Техническая характеристика УПБ-1

Наименование характеристики

средняя производительность по сырью

потребление пара всего НПЗ на базе УПБ-1

температура насыщенного пара

максимальная температура нагрева сырья

общая установленная мощность эл/дв

расход мазута на огневой нагрев

количество оборотной охлаждающей воды

Расход на переработку 1 тн сырья

время выхода установки на режим

Материальный баланс установки

Материальный баланс рассчитан на производство дорожного битума из гудрона тяжелых нефтей. В процессе окисления гудрона в окислительных колоннах, от гудрона с газами окисления отделяется так называемый черный соляр, который может использоваться в качестве печного топлива. Количество черного соляра очень сильно зависит от состава сырья.

Таблица 2: Материальный баланс установки УПБ-1 при получении битума дорожных марок высокосмолистого сырья в расчете времени окисления 8 часов

Принципиальная схема переработки

Описание принципиальной схемы переработки

Сырьё (гудрон) подаётся насосом в блок рекуперации, где нагревается в теплообменных аппаратах за счёт тепла выходящего из блока окисления битума. После сырье направляется в печь, где нагревается до температуры начала окисления 220-260 С. Затем сырье, поступает на окисление в предокислитель и затем в окислительные колонны. Готовый битум из окислительных емкостей поступает в товарно-сырьевой парк или в технологические емкости расположенные рядом с установкой. В процессе окисления вместе с газами окисления из гудрона выделяется черный соляр, который поступает в блок охлаждения и сепарации и далее в продуктовые емкости.

В зависимости от схемы переработки (непрерывная или полу-периодическая) битум охлаждается в процессе откачки через теплообменный аппарат при помощи теплофикационного масла, которое может использоваться для обогрева трубопроводов подаваемое в рубашки вместо пара.. Отсутствие прямого контакта битум-гудрон позволяет избежать всплесков температур на линии гудрона связанных с периодической откачкой битума из буферных емкостей.

Требования к сырью

Производство битума является одним из наиболее сложных процессов с точки зрения технологии. В процессе используется кислород для окисления гудрона и от тонкости регулирования зависит качество получаемого битума.

Для производства наиболее распространенной марки битума – дорожного подходит не каждый гудрон. Требуется, чтобы в сырье содержалось малое количество парафинов и высокое количество смол, только при этом соотношении возможно достижение необходимых характеристик для сертификации готовой продукции. Это объясняется тем, что парафины не способны окисляться или как то видоизменяться и их присутствие ухудшает соотношение основных параметров битума.

При получении других марок битумов(строительных, кровельных, изоляционных) количество парафинов в сырье не так влияет на качество получаемых продуктов.

источник

Установка производства битумов материальный баланс

Производство битумов

Назначение – получение битумов различных сортов и марок. Для производства битумов применяются следующие способы:

  • Глубокая вакуумная перегонка (получаемый при этом продукт называется остаточным битумом);
  • Окисление нефтепродуктов воздухом при высокой температуре (с получением так называемых окисленных битумов
  • Компаундирование остаточных и окисленных битумов.

Ниже рассматривается процесс производства битумов окислением тяжелых нефтяных фракций.

Сырье и продукция. Сырьем являются остатки атмосферно-вакуумной перегонки нефти (гудроны), побочные продукты производства масел (асфальты и экстракты). Наилучшим сырьем считаются остатки высокосмолистых, малопарафинистых нефтей, наихудшим – остатки высокопарафинистых нефтей, поскольку при окислении этих продуктов образуется большое количество асфальтенов и карбенов, вследствие чего битум становится хрупким и неэластичным.

  • дорожные битумы, применяемые в дорожном строительстве для приготовления асфальтобетонных смесей;
  • кровельные битумы, используемые при изготовлении кровельных покрытий и различных изделий;
  • строительные битумы, используемые при выполнении различных строительных работ, в частности, для гидроизоляции фундаментов зданий;
  • специальные битумы, используемые в различных отраслях промышленности.

Технологическая схема. Окисление остатков проводится как периодическим (в кубах), так и непрерывным (в трубчатых реакторах и окислительных колоннах) способом. Воздух подается с помощью компрессоров или вращающихся диспергаторов (при получении битумов бескомпрессорным методом на установках малой мощности).

Установка состоит из двух блоков – на первом получают строительные, на втором — дорожные вязкие битумы. Гудрон через печь П-1 поступает в емкость Е-1, а затем в смесителях М-1 и М-2 контактирует с воздухом и рециркулирующим окисленным продуктом и далее смесь направляется в трубчатые реакторы первого блока Р-1, Р-2. Продукты окисления из реакторов переходят в испаритель К-1, где происходит отделение газообразной фазы от жидкой. Газы (воздух, пары отгона, окислы углерода и серы) через холодильник Х-1 направляются в сепаратор К-3. Из К-3 выводятся несконденсировавшиеся газы окисления – на сжигание в печь П-3, отгон – через холодильник Х-5 с установки.

Окисленный продукт с низа испарителя К-1 частично возвращается в смесители М-1 и М-2 на рециркуляцию, а балансовый избыток откачивается в емкости Е-3 – Е-6. Из емкостей строительный битум поступает на розлив в крафт-мешки и автобитумовозы.

Читайте также:  Установка датчики нагрузок на ось

Дорожные битумы получают окислением асфальта деасфальтизации по схеме, аналогичной описанной выше (смесители М-3 и М-4 — реакторы Р-3 и Р-4 — испаритель К-2). Окисленный продукт из испарителя К-2 подается в смеситель М-5 на компаундирование с поверхностно-активными веществами и экстрактом селективной очистки масел, а затем попадает в емкости Е-7 – Е-14. Если на предприятии отсутствуют асфальты и экстракты (НПЗ топливного профиля), то дорожные битумы получают окислением гудрона.

Дорожные вязкие битумы разливаются из емкостей Е-7, Е-8 в железнодорожные цистерны, бункерные полувагоны и автобитумовозы. Для получения дорожных жидких битумов вязкие битумы в смесителе М-6 смешиваются с разжижителем – керосино-газойлевой фракцией.

источник

Материальный баланс битумной установки

Сырьем установки являются асфальт и гудрон с установки ВТ. По данным [13] для производства битумов необходимо 10-15% воздуха с содержанием кислорода 20% об. При окислении помимо битума образуются и побочные продукты — газы окисления и отгон (черный соляр). Газы окисления содержат в своём составе некоторое количество углеводородов и их необходимо утилизировать. Дожиг газов окисления осуществляется непосредственно на установке, отгон используется в качестве топлива в технологических печах установки.

Результаты расчета представлены в таблице 14.

Таблица 14 — Материальный баланс битумной установки

Материальный баланс установки гидрооблагораживания

Расчет материального баланса производится по рекомендациям [8,11,13].

Определение количества, серы удаляемой из фракций.

Из фракции 420-490С сера не выделяется, исходя из данных таблицы 4.

Рассчитаем количество остаточной серы во фракции 490-530С

S2ост=S2(1-0,9)(1-0,8)=0,25*0,1*0,2=0,005 % мас. (2)

Количество остаточной серы во фракции >530С

где Sn-количество серы в соответствующей фракции,

0,9;0,8-глубина обессеривания на первой и второй ступени.[8]

Рассчитаем количество серы удаленно из фракций:

S2=S2- S2ост=0.25-0,005=0,245 % мас. (3)

Выход газа, % мас. на фракцию определяется по формуле [8]

выход газа из фракции 490-530С

В2 газа=S2 * 0,3=0,245*0,3=0,0735 % мас.

выход газа из фракции >530С

В3газа=S3 * 0,3=0,49*0,3=0,147 % мас.

Выход отгона приблизительно принимаем количеству образовавшейся серы, выход отгона для фракции 420-490 приблизительно примем равным 0,1 % мас. исходя из практических данных.

Выход отгона из фракции 490-530С

Выход отгона из фракции >530С

Выход гидрооблагороженного продукта рассчитаем по формуле: [8]

Определяем расход водорода, пошедшего на процесс гидрооблагораживания.

Определим расход водорода на гидрогенолиз сернистых соединений по формуле

где m-коэффициент зависящей от характера сернистых соединений.

Предполагаем, исходя из [13], что во фракции 490-530 содержется 30% сульфидов (m=0,125), 5% дисульфидов (m=0,0938), 49% тиофенов (m=0,25), и 16% бензотиофенов (m=0,187).

Тогда для фракции 490-530 получаем:

Предполагаем, что в рафинате из деасфальтизата фракции >530С гидрируется 23% сульфатов,

4 % дисульфатов, 59 % тиофенов, 14 % бензотиофенов.

Тогда для фракции > 530С получим:

Так как. фракции представлены рафинатами селективной очистки, то содержание непредельных углеводородов ничтожно мало и расходом водорода на их гидрирование можно пренебречь.

Рассчитаем расход водорода на гидрирование тяжелых и средних ароматических углеводородов по формуле: [12]

где М-молярная масса сырья, г/моль.

Предполагаем, что гидрированию до метано-нафтеновых углеводородов во фракции 420-490С подвергаются 4,2 % тяжелых и средних ароматических углеводородов, во фракции 490-530С-13,49 %, во фракции >530С-14,42 %.

молярная масса фракции 420-490С- 421 г/моль

молярная масса фракции 490-530С — 493 г/моль

молярная масса фракции >530С — 538 г/моль

Расход водорода на гидрирование тяжелых и средних ароматических углеводородов для фракции 420-490С

расход водорода на гидрирование тяжелых и средних ароматических углеводородов для фракции 490-530С

расход водорода на гидрирование тяжелых и средних ароматических углеводородов для фракции >530С

Потери водорода с отдувом не учитываются, т.к. в любой линии водорода предусматривается концентрирование водорода в ВСГ до величены 60 %.

Определим общее потребление водорода:

Выход сероводорода определим по формуле:

Рассчитаем количество водорода, поглощаемое сероводородом [8]

для фракции 490-530: Н2н2s= 0,26-0,245=0,015 % мас.

для фракции >530: Н3н2s =0,52-0,49=0,03 % мас.

Количество водорода, вошедшего в состав отгона за счет гидрирования продуктов гидрогенолиза сернистых соединений, составит:[11]

Н2гид= Н21-0,015=0,0341-0,015=0,0191 % мас.

Н3гид= Н31-0,03=0,101-0,03=0,071 % мас.

Уточненный выход отгона составит:

В2*отг=В2отг+0,0191= 0,245+0,0191=0,2631 %мас.

В3*отг= В3отг+0,071=0,49+0,071=0,561 % мас.

Количество водорода, вошедшее в масла за счет гидрирования ароматических углеводородов равно количеству водорода, израсходованного на гидрирование. Тогда уточненный выход гидрооблагороженного продукта составит:

В1*гоп= В1гоп+Н12=99,9+0,0598=99,9598 % мас.

Результаты расчета представлены в таблице 15.

Таблица 15 — Материальный баланс установки гидрооблагораживания

источник

Реализация проекта строительства комплекса по производству битума из мазута.на Сейдинском НПЗ в Туркменистане

На Сейдинском НПЗ в Туркменистане в феврале 2015 г российско -американский консорциум внедрил проект производства высококачественного битума из остатка атмосферной переработки сырой нефти — мазута.

На Сейдинском НПЗ в Туркменистане в феврале 2015 г российско -американский консорциум внедрил проект производства высококачественного битума из остатка атмосферной переработки сырой нефти — мазута.

— Westport Trading Europe Ltd — инвестор проекта ,

— ЗАО «ЦТК-ЕВРО» — разработчик технологии и базового проекта (FEED) совместно с Уфимским институтом нефти и газа .

Комплекс установок компактно расположен на площади 1,5 га и оснащен современным оборудованием.

Высокий уровень автоматизации объекта, контроль и управление технологическими процессами осуществляется с помощью компьютеров со специальным программным обеспечением.

Проектная мощность переработки — 118 тыс т/год прямогонного мазута, производственная мощность — 37,2 тыс т/год нефтяного битума марки БНД 60/90 по ГОСТ 22245-90.

В Туркменистане это первая установка, работа которой основана на процессе висбрекинга нефтяного сырья, позволяющего перерабатывать тяжелые остатки атмосферной дистилляции.

Включение висбрекинга в технологическую схему Сейдинского НПЗ позволило освоить производство высококачественного битума и повысить глубину переработки нефти.

Технологические и технические разработки для этого проекта выполнены ООО «Информ-технология» (Уфа, Башкортостан), дочки ЗАО «ЦТК-ЕВРО», под руководством Г. Валявина и А.Каримова.

Исходные данные на создание установки по производству дорожного битума на Сейдинском НПЗ разработаны по Договору №.01 от 18 мая 2012 г с компанией «Westport Trading Europe Limited» (США).

Учитывая, что качество поступающих на завод нефтей может изменяться, исходные данные были разработаны для получения 2 х видов битума: остаточного и окисленного, по технологической схеме: перегонка мазута → висбрекинг гудрона → перегонка остатка висбрекинга → окисление Висбита.

Эта схема является предпочтительной из-за универсальности.

Читайте также:  Установка программ с диска в линукс

Рисунок 1. Принципиальная схема установки получения окисленного битума по технологии ВИСБИТ на Сейдинском НПЗ

Схема получения остаточного битума и остатка, выкипающего выше 500 ºС

Сырье из емкости Е-1 поступает на прием насоса Н-1, прокачивается через теплообменники Т-1,2,3 и подается в печь П-1.

В теплообменниках Т-2 и Т-3 сырье подогревается за счет тепла отходящего потока тяжелого вакуумного газойля, в теплообменнике Т-1 — за счет тепла отходящего потока легкого вакуумного газойля.

В печи П-1 сырье нагревается до температуры 340-380 °С и по трансферной линии направляется в нижнюю часть вакуумной колонны К-1 на верхнюю ситчатую тарелку.

На входе в печь П-1 подается турбулизатор — вода в количестве 30 кг/ч.

Вакуумная колонна К-1 (Рисунок 2) предназначена для отделения от остатка (гудрона) газойлевых фракций.

Вакуумная колонна К-1 разделена на четыре секции (счет сверху):

1 я секция служит для сбора легкого вакуумного газойля;

2 я секция — для разделения легкого вакуумного газойля (ЛВГ) и тяжелого вакуумного газойля (ТВГ);

3 я секция — для регулирования цвета тяжелого вакуумного газойля;

4 я отгонная секция — для увеличения выхода газойлевых фракций.

В вакуумной колонне К-1 смонтированы следующие внутренние устройства:

— сборная тарелка ЛВГ с переточными трубами для перетока избыточного горячего ЛВГ в нижерасположенный низконапорный желобчатый распределитель над второй секцией;

— 1 секция регулярной насадки, состоящая из 5 рядов;

— распределитель верхнего циркуляционного орошения ЛВГ.

— аккумулятор для сбора тяжелого газойля;

-1 секция регулярной насадки, состоящая из 4 рядов.

— слой насадки из 2 рядов выше ввода сырья для регулирования цвета тяжелого вакуумного газойля;

— распределитель промывной жидкости (ТВГ).

— распределитель ввода сырья.

— распределитель ввода водяного пара;

Рисунок . Вакуумная колонна К-1 для Сейдинского НПЗ

В колонне К-1 за счет разряжения и подачи водяного пара из мазута отпариваются газойлевые фракции, накапливающиеся в 1 й (легкого вакуумного газойля) и 2 й (тяжелого вакуумного газойля) секциях.

Со сборной тарелки 1 й секции ЛВГ поступает на прием насоса Н-2 и далее прокачивается через теплообменник Т-1 и холодильник, где охлаждается до 60 0 С.

Необходимое количество холодного ЛВГ подается через распределитель верхнего циркуляционного орошения наверх регулярной насадки в 1 й секции, балансовая часть выводится с установки.

Вакуумный газойль из аккумулятора поступает на прием насоса Н-3. Часть его прокачивается через теплообменники Т-2 и Т-3. После теплообменников поток вакуумного газойля вновь разделяется. Часть потока охлажденного газойля смешивается с горячим вакуумным газойлем и в виде орошения подается под аккумулятор на распределительное устройство в 3 й секции. Балансовая часть охлаждается в холодильнике и выводится с установки.

Пары сверху колонны К-1 поступают в вакуум создающую аппаратуру.

Поскольку секция должна обеспечить работу на 2 х режимах отбора вакуумного газойля, печь предлагается рассчитать на максимальную температуру (380 0С), при которой обеспечивается отбор газойля с концом кипения 525 °С.

Вакуумная колонна должна обеспечивать работу в 2 х режимах — отбор вакуумного газойля с концом кипения 500 °С и 525 °С.

В режиме получения остаточного битума, гудрон снизу К-1 забирается насосом Н-4, охлаждается в погружном холодильнике Т-7 и выводится в кубы готовой продукции. В режиме получения окисленного битума, гудрон снизу К-1 забирается насосом Н-4 и подается в печь висбрекинга П-2.

Схема получения окисленного битума

Со сборной тарелки первой секции ЛВГ поступает на прием насоса Н-2. Часть ЛВГ подается под аккумулятор на распределительное устройство в третьей секции, другая часть прокачивается через теплообменник Т-1 и холодильник, где охлаждается до 600С. Необходимое количество холодного ЛВГ подается через распределитель верхнего циркуляционного орошения наверх регулярной насадки в первой секции, балансовая часть выводится с установки.

Вакуумный газойль из аккумулятора поступает на прием насоса Н-3 и далее прокачивается теплообменники Т-2 и Т-3, холодильник и выводится с установки.

Гудрон (остаток, выкипающий выше 500 °С) снизу вакуумной колонны К-1 забирается насосом Н-4 и подается в печь висбрекинга П-2. Для снижения коксообразования на вход в змеевик печи подается турбулизатор — вода. В печи происходит нагрев сырья (от 300 до 450 °С) и его частичное разложение на газ, бензиновую и дизельную фракции.

Из печи поток направляется в реакционную камеру (сокинг-камеру) К-5. Реакционная камера К-5 служит для увеличения времени пребывания реакционной смеси в зоне реакции. Продукты реакции из сокинг-камеры после смешения с кулингом (квенчем) по штуцеру ввода сырья, с температурой 380 ºС, по распределительному устройству поступают в колонну К-2. Тяжелокипящие продукты реакции стекают на ниже лежащие тарелки и далее в кубовую часть ректификационной колонны. Легкокипящие продукты реакции поднимаются вверх по колонне.

Дистиллят, выводимый с верха К-2, охлаждается и конденсируется в холодильнике Х-4, поступает в сепаратор С-1, где разделяется на газ, конденсат и бензин. Бензин откачивается насосом Н-11, часть его возвращается в К-2 в качестве острого орошения, а балансовое количество выводится с установки.

Из аккумулятора колонны К-2 фракция дизельного топлива забирается насосом Н-5, охлаждается в теплообменнике Т-5 и возвращается в колонну в качестве орошения под аккумулятор.

Балансовое количество дизельного топлива забирается из аккумулятора колонны К-2 и поступает в отпарную колонну К-3, в которую подается водяной пар для отпарки легкокипящих компонентов. Из отпарной колонны дизельная фракция забирается насосом Н-6, проходит пароперегреватель Т-4, холодильник Х-5 и далее делится на два потока. Один поток подается в качестве кулинга на выход из сокинг-камеры, второй поток идет на смешение с легким вакуумным газойлем К-1 и выводится с установки.

Под нижней тарелкой выше уровня жидкости установлен маточник для подачи перегретого водяного пара. Вследствие снижения парциального давления из кубового остатка дополнительно испаряются легкокипящие продукты.

Остаток висбрекинга с низа колонны под собственным давлением, через редуктор подается в вакуумную колонну К-4 (Рисунок 3), где происходит его разделение на вакуумные газойли и вакуумный остаток.

Вакуумная колонна К-4 разделена на 4 секции (счет сверху):

1 я секция служит для сбора легкого вакуумного газойля;

2 я секция служит для разделения ЛВГ и ТВГ;

3 я секция служит для регулирования цвета тяжелого вакуумного газойля;

4 я отгонная секция служит для увеличения выхода газойлевых фракция.

Читайте также:  Установка амортизаторов багажника на седан

В вакуумной колонне К-4 смонтированы внутренние устройства аналогичные колонне К-1 за исключением секции 3, где вместо 2 рядов насадки используется 1 ряд.

Пары сверху колонны К-4 поступают в вакуум создающую аппаратуру.

В колонне К-4 за счет разряжения и подачи водяного пара из остатка висбрекинга отпариваются газойлевые фракции, накапливающиеся в первой (легкого вакуумного газойля) и второй (тяжелого вакуумного газойля) секциях.

Рисунок 3. Вакуумная колонна К-4 для Сейдинского НПЗ

Со сборной тарелки первой секции ЛВГ поступает на прием насоса Н-9. Часть его подается под аккумулятор на распределительное устройство в третьей секции, другая часть прокачивается через холодильник Х-3, где охлаждается до 600С. Необходимое количество холодного ЛВГ подается через распределитель верхнего циркуляционного орошения наверх регулярной насадки в первой секции, балансовая часть выводится с установки.

Тяжелый вакуумный газойль из аккумулятора колонны К-4 поступает на прием насоса Н-7 и направляется на смешение с тяжелым вакуумным газойлем колонны К-1, и далее через холодильник Х-1 выводится с установки.

Гудрон снизу колонны забирается насосом Н-8 и подается на окисление.

Принципиальная технологическая схема окисления
Пуск.

Сырье температурой не выше 260 °С из блока вакуумирования непрерывно забирается насосом Н-8 и подается в окислительную колонну через боковой штуцер. После достижения уровня в колонне 1/3 рабочего уровня в нее через ресивер подается воздух с давлением не менее 3-4 кг/см² воздух в количестве 1/3 от оптимального количества.

Количество подаваемого воздуха в первые 15 минут не должно быть более 100 нм³/час.

Затем по мере заполнения колонны расход воздуха увеличивается до 400 нм³/час. Изменение количества подаваемого воздуха производится изменением автоматического задания в программе управления.

Окисление сырья продолжается до достижения редуктором температуры размягчения по КиШ в пределах нужного параметра. После этого перевести процесс окисления в режим эксплуатации.

Сырье по патрубку поступает во встроенный ГЖКВА (газо-жидкостной кавитационно-вихревой аппарат) колонны К-6 (Рисунок 4), который состоит из двух функциональных камер.

В первой камере смешения происходит взаимодействие закрученного газового потока с образованием газожидкостной смеси. Во второй камере происходит образование мелкодисперсной фазы — пенной.

В пенной камере происходит образование мелкодисперсной пены за счет контакта потока воздуха и пузырьков жидкой фазы скоростной газожидкостной струи. Образовавшаяся мелкодисперсная пена поступает в камеру «пеногаситель». Из пеногасителя газожидкостная смесь восходящим потоком по всей высоте колонны К-6 поступает в зону сепарации колонны.

При движении газожидкостной смеси вверх проходит дополнительная реакция окисления с дальнейшим контактом жидкостной фазы и кислородом воздуха.

Необходимый для процесса окисления воздух забирается из атмосферы компрессорами через фильтры и подается в колонну К-6 через ресивер воздуха. Расход воздуха во встроенный ГЖКВА регулируется прибором FRC.

Температура окисления регистрируется прибором TJRSAH.

По максимальной температуре окисления сырья в колонне К-6 260 °С имеется сигнализация, по максимальной температуре окисления 275 °С блокировка по отсеку воздуха, подаваемого на окисление отсечными клапанами.

Окисленный продукт (битум) с температурой не выше 260 °С сбоку колонны К-6 откачивается насосом Н-10 через погружной холодильник Т-7 в кубы готовой продукции Р-1-3.

Рисунок 4. Сборочный чертеж колонны окисления

Для достижения показателей соответствующих нормам требований откачка производится с верхнего или с нижнего уровня. Нижний патрубок колонны предусмотрен для полной разгрузки колонны. Из кубов Р-1-3 готовый продукт наливается по сливному коллектору в автоцистерны или ж.д.

При не достижении показателей качества битума установка переключается на работу с рециркулятом в режим периодического действия. Задвижка на линии подачи сырья закрывается, также закрывается линия откачки битума в кубы готовой продукции. Задвижка на линии рецикла открывается.

Во избежание вскипания готового продукта перед наливом его в цистерны добавляют антипенную присадку ПМС 200А.

Уровень битума в кубах для готовой продукции Р-1-3 измеряется и по максимальному уровню имеется сигнализация.

Температура окисленного битума на выходе из Р-1-3 регистрируется соответственно. По минимальной температуре окисленного битума на выходе из Р- 1-3 имеется сигнализация (1300С).

Уровень продукта в окислительной колонне К-6 регулируется прибором, клапан которого установлен на линии откачки продукта с низы колонны К-6 в кубы Р-1÷3. По максимальному уровню в К-6 (85%) и по минимальному уровню (55%) имеется сигнализация, по минимальному уровню (51%) имеется блокировка отсечки воздуха, подаваемого на окисление сырья в колонну К-6.

Давление в окислительной колонне К-6 регулируется прибором, клапан которого находится на линии выхода газов окисления из колонны К-6 в С-2, и должно быть не выше 0,6 кгс/см2 (изб.).

Содержание кислорода в газах окисления не должно превышать 4% объемных. По максимальному содержанию кислорода 3,9% в газах окисления на выходе из колонны К-6 имеется сигнализация и 4,0% блокировка на отсечку воздуха, подаваемого на окисление в колонну К-6.

Газы окисления, пары отгона сверху из колонны К-6 поступают в сепаратор С-2, который служит для разделения газов окисления от сконденсировавшихся паров воды и углеродов.

Газы окисления, отработанный воздух и не сконденсировавшаяся часть отгона отводятся сверху из С-2 через огнепреградитель в печь дожига газов окисления.

Температура в камере сгорания печи регулируется прибором, клапаны которого находятся на линии подачи топливного газа и жидкого топлива к форсункам печей. По максимальной температуре в камере дожига печи 11000С имеется сигнализация.

Температура дымовых газов на выходе из печи измеряется прибором и не должна превышать 10000С.

Сконденсировавшаяся часть паров отгона (черный соляр) собирается в нижней части сепаратора С-2. Черный соляр периодически откачивается через погружной холодильник Т-7 в мазутопровод.

Для поддержания необходимой температуры (120-230 °С) в кубах для готовой продукции Р-1÷3 имеется электрический или паровой подогрев.

Температура в кубах для готовой продукции Р-1÷3 регистрируется соответственно вверху и внизу.

При отсутствии места в кубах готовой продукции Р-1÷3 битум откачивается в мазутопровод или парк насосной.

Паспортные данные на мазут Сейдинского НПЗ

Характеристика исходного мазута и гудронов, получаемых по технологии «Висбит»

Физико-химические показатели окисленного битума

Материальный баланс установки при получении остаточного и окисленного битума

Материальный баланс при получение остаточного битума, тонн/год

Материальный баланс при получение окисленного битума, тонн/год

источник

Добавить комментарий

Adblock
detector