Меню Рубрики

Установка расходомерной шайбы в трубопровод

Общие правила монтажа расходомеров

Одним из важных факторов, который должен учитываться при конструктивной разработке расходомеров, является то, как будет устанавливаться данный расходомер.

В большинстве случаев монтаж расходомерных устройств осуществляется в горизонтальном исполнении для того, чтобы получить постоянную величину воздействия силы тяжести на поток жидкости, газа или пара.

Установленный промышленный расходомер

В некоторых случаях, однако, необходим монтаж расходомера в вертикальном исполнении. В таких случаях сила тяжести будет влиять на скорость потока жидкости, газа или пара, действуя в направлении движения потока текучей среды или же в противоположном ему направлении; компенсация этого воздействия должна быть решена в процессе калибровки данной системы.

Защита контрольно-измерительных приборов

В некоторых случаях при измерении расхода жидкости, газа и пара в технологическом процессе приходится иметь дело с горячей текучей средой, которая при попадании в контрольно-измерительное устройство может повредить его.

В подобных технологических условиях для защиты измерительных устройств часто используются конденсационные горшки.

Конденсационные горшки

Конденсационные горшки используются для охлаждения жидкости, газа или пара перед тем, как они попадают в расходомер. Конденсат, который заполняет линию до контрольно-измерительного прибора, выполняет две функции: он является некой средой, проводящей величину давления, и он изолирует контрольно-измерительный прибор, предохраняя его таким образом от перегревания. Обычно конденсационные горшки устанавливаются на одном и том же горизонтальном уровне. Такой тип монтажа исключает воздействие разных по высоте столбов измеряющей жидкости на измерение величины перепада давления.

Монтажная схема с дренажными отстойниками

На рисунке выше показаны два дренажных отстойника, установленных в системе. Иногда дренажные отстойники монтируются на линиях отборов в установке. Загрязняющие примеси оседают в отстойниках и не попадают в устройство. Периодически для того, чтобы удалить оседающие примеси из дренажных отстойников, проводится дренаж отстойников.

Порядок проведения техобслуживания оборудования, смонтированного таким образом, включает в себя периодический дренаж дренажных отстойников и линий отборов для того, чтобы предотвратить их засорение, и визуальную проверку системы, для того, чтобы вовремя обнаружить и заменить любую сильно сработанную или поврежденную часть.

В зависимости от типа, измеряемой жидкости, газа или пара существуют различные методы очистки линий отборов. У большинства заводов существует специальный обязательный порядок проведения этих мероприятий. Проверку каждого блока системы следует проводить тщательно для того, чтобы быть в полной уверенности, что работа каждой части системы соответствует эксплуатационным требованиям. Например, линии отборов следует проверять для того, чтобы вовремя ликвидировать их пережатие или засорение. При ошибках в показаниях системы необходимо снять диафрагму и визуально проверить ее на предмет того, насколько она сработалась.

источник

Измерение расхода жидкости: приборы и методы

Расход – это объем жидкости протекающий в единицу времени через поперечное сечение трубопровода. Измерение расхода жидкости является одной из задач при производственных испытаниях оборудования.

Методы измерения расхода жидкости

Наиболее простые и вместе с тем точные методы измерения расхода жидкости являются объемный и массовый (весовой).

В соответствии с методами измерения, единицами расхода жидкости являются:
— для объемного способа: кг/c, кг/ч, г/с
— для массового способа: м 3 /с, м 3 /ч и т.д.

При объемном способе измерения протекающая в исследуемом потоке(например, в трубе) жидкость поступает в особый, тщательно протарированный сосуд (так называемый мерник), время наполнения которого точно фиксируется по секундомеру.

Если известен объем мерника – V и измеренное время его наполнения – T, то объемный расход будет

При весовом способе взвешиванием находят вес Gv = mv*g (где g – ускорение свободного падения) всей жидкости, поступившей в мерник за время T. Затем определяют её массу

и по ней, зная плотность жидкости (ρ), вычисляют объемный расход

Но объемный и весовой методы измерения расхода жидкости пригодны только при сравнительно небольших значениях расхода жидкости, так как в противном случае размеры мерников получаются довольно громоздкими и, как следствие, замеры очень затруднительными.

Кроме того, этими способами невозможно измерить расход в произвольном сечении, например, длинного трубопровода или канала без нарушения их целостности. Поэтому, за исключением случаев измерения сравнительно небольших расходов жидкостей в коротких трубах и каналах, объемный и весовой способы, как правило, не применяются, а на практике пользуются специальными приборами, которые предварительно тарируются объемным или весовым способом.

Приборы для измерения расхода жидкости

Трубчатые расходомеры

Одним из таких приборов является трубчатый расходомер или расходомер Вентури. Большим достоинством этого расходомера является простота конструкции и отсутствие в нем каких-либо движущихся частей. Трубчатые расходомеры могут быть горизонтальными и вертикальными. Рассмотрим, к примеру, горизонтальный вариант.

Расходомер состоит из двух цилиндрических труб А и В диаметра d1, соединенных при помощи двух конических участков (патрубков) С и D с цилиндрической вставкой E меньшего диаметра d2. В сечениях 1-1 и 2-2 расходомера присоединены пьезометрические трубки a и b, разность уровней жидкости h в которых показывает разность давлений в этих сечениях.

Расход жидкости в этом случае определяется по тарировочным кривым, полученным опытным путем и дающим для данного расходомера прямую зависимость между показаниями манометра и измеряемыми расходами жидкости. Пример такой кривой на картинке рядом

Расходомерная шайба

Другим широко распространенным прибором для измерения расхода является расходомерная шайба (или диафрагма), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода

Края отверстия чаще всего имеют острые входные кромки под углом 45° или закругляются по форме втекающей в отверстие струи жидкости (сопло). Два пьезометра a и b (или дифференциальный манометр) служат для измерения перепада давления до и после диафрагмы.В основе метода положен принцип неразрывности Бернулли.

Читайте также:  Установка igo на престижио

Расход в этом случае определяется по замеренной разности уровней в трубках. Трубки подсоединяют к датчикам, замеряющим перепад давления. Датчик перепада давления преобразует перепад в электрический сигнал, который отправляется на компьютер.

Крыльчатый расходомер

Расходы могут быть вычислены также в результате измерения скоростей течения жидкости и живых течений потока.

Одним из широко распространенных приборов, применяемых для этой цели является гидрометрическая вертушка. Современный турбинный расходомер устанавливают только на горизонтальном участке трубопровода. Лопасти крыльчатки колеса турбины изготавливают из не магнитного материала.

Вертушка состоит из крыльчатки А, представляющей собой колесо с винтовыми лопастями, насаженное на горизонтальный вал С. Когда она установлена в потоке, крыльчатка под действием протекающей жидкости вращается, причем число её оборотов прямо пропорционально скорости течения. Число импульсов за один оборот крыльчатки равно числу лопастей, а значит частота импульсов пропорциональна расходу.

При вращении лопасти поочередно пересекают магнитное поле, которое наводит электродвижущую силу в катушке в виде импульса. От вертушки вверх выводятся провода В, подающему сигнал к специальному счетчику, автоматически записывающему число оборотов и время.

Приборы для измерения расхода жидкости в этом случае называют турбинными расходомерами

Ультразвуковой метод измерения расхода

Ультразвуковой расходомер работает по принципу использования разницы по времени прохождения ультразвукового сигнала в направлении потока и против него.

Расходомер формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д.

Такой контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды.

Аналогично электронное устройство подает импульсы в обратном направлении, т.е. от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется своей частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды.

Следующим шагом является определение разности Δf указанных частот, которая пропорциональна расходу среды. Приборы для измерения расхода жидкости называются ультразвуковые расходомеры.

Вихревой метод измерения расхода

В основу работы вихревых расходомеров положена зависимость между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании жидкостью специальной призмы, расположенной поперек потока.

В зависимости от конструкции датчика чувствительные тепловые элементы устанавливаются непосредственно в теле датчика или вихревой дорожке.

Если в тело образующее вихри, установить магнит, то он может служить датчиком. Реакция, возникающая при срыве вихрей, заставляет помещённый в поток цилиндр колебаться с частотой вихреобразования. Достоинством вихревых расходомеров является, обеспечение низкой зависимости качества измерений от физико-химических свойств жидкости, состояния трубопровода, распределения скоростей по сечению потока и от точности монтажа первичных преобразователей на трубопроводе. Приборы для измерения расхода жидкости называются вихревые расходомеры.

Видео о измерении расхода

При проведении измерения расхода, в некоторых случая используется понятие количества вещества – это количество жидкости или другой среды, проходящей через поперечное сечение трубопровода в течении определенного промежутка времени(за час, месяц, рабочую смену и т.д.)

Приборы для измерения количества вещества по аналогии с измерением расхода монтируются на – на трубопроводе, с выводом вторичного прибора к оператору.

источник

Диафрагмы для измерения расхода: подробно простым языком

Диафрагмы для измерения расхода — это простые приспособления, которые устанавливаются в трубопроводах для сужения потока жидкости, газа и пара. Это плоский, круглый диск с проходным сечением или отверстием. Диафрагмы обычно классифицируются в зависимости от формы проходного отверстия и/или его расположения на диске.

Схема концентрической диафрагмы Схемы эксцентрической и сегментной диафрагм

Применение диафрагмы

Размер, форма и расположение отверстия диафрагмы — это конструктивное решение, зависящее от того, для каких установок предназначена эта диафрагма. Например, эксцентрическую диафрагму можно было бы использовать для влагонасыщенных газов, это бы позволило конденсирующейся в нижней части трубопровода жидкости пройти через отверстие. Сегментную диафрагму, с проходным отверстием в виде части окружности, расположенным в верхней части, установленной в горизонтальном положении трубы, можно было бы использовать для жидкостей с большим насыщением газами, которые могут подниматься и скапливаться в верхней части трубопровода. В любом из случаев целью этих конструктивных решений является предотвращение скопления какого-либо вещества выше по потоку относительно диафрагмы. Это будет изменять расход жидкости, газа или пара и приводить к неточностям во время измерений.

Диафрагма, установленная между двумя фланцами

Это пример трубопровода с концентрической диафрагмой, установленной между двумя фланцами. Фланец — это венец вокруг трубы, с помощью которого осуществляет болтовое соединение двух секций труб. Перепад давления, созданный в результате установки диафрагмы, измеряется с помощью расположенных по обе стороны диафрагмы отборов. Отбор — это отверстие в трубе с вмонтированной в него трубкой.

Расположение отборов в месте установки диафрагмы

Маркировка диафрагм

Обычно на диафрагмах стоит маркировка с указанием информации по поводу размера проходного отверстия. Как правило, эта информация отштампована на хвостовике диафрагмы. Кроме размера проходного отверстия, там может быть и другая информация, такая как: название завода-изготовителя и код материала, из которого изготовлена диафрагма, соответствующий размер трубы, для установки в которую сконструирована данная диафрагма. Эта информация предельно важна для киповца, которому приходится заниматься заменой диафрагм при повреждении или по причине того, что она сработалась. На хвостовике новой диафрагмы, которую устанавливают, должна быть такая же маркировка с информацией идентичной информации заменяемой старой диафрагмы.

Читайте также:  Установка гбо на опель с моновпрыском

Маркировка на хвостовике диафрагмы

По причине того, что диафрагмы могут быть специальной конструкции для правильной бесперебойной эксплуатации, необходимо соответствующее проекту размещение проходного отверстия. Многие производители при маркировке всех своих диафрагм добавляют слова «Up» (вверх) или «Inlet» (входная). В противном случае, при отсутствии данных слов в маркировке, общее правило монтажа всех диафрагм такого: устанавливать диафрагму нужно таким образом, чтобы сторона с маркировкой была входной для проходящего через диафрагму потока. Ориентация при установке диафрагм без маркировки определяется в зависимости от типа ребер проходного отверстия.

Типы ребер диафрагм проходного отверстия

На рисунке выше в качестве примера изображены две диафрагмы со следующими типами ребер проходного отверстия: ребро диафрагмы со скосом и с углубленной фаской, нарезанной по краю ребра. В обоих случаях ребро проходного отверстия с другой стороны диафрагмы обычное прямоугольное, без скоса или фаски.

В обоих случаях, как при установке диафрагм с маркировкой, так и при установке диафрагм без маркировки, следует устанавливать диафрагму так, чтобы поток входил в диафрагму со стороны обычного прямоугольного ребра проходного отверстия. Скошенное или с нарезной фаской ребро проходного отверстия должно находится со стороны ниже по потоку относительно диафрагмы.

Замена диафрагмы

По мере сработанности обычное прямоугольное ребро у диафрагмы становиться округлым и приходит необходимость замены её на новую. При замене диафрагмы по причине того, что она сработалась, должны быть учтены два основных фактора: новая диафрагма должна быть идентична сработанной, и установка диафрагмы должна быть выполнена в соответствии с правильной ориентацией сторон диафрагмы.

источник

Перед установкой расходомера.

Когда Ваш расходомер выбран и готов к установке, остается проверить только несколько важных моментов и важных параметров, чтобы убедиться, что Ваш расходомер будет правильно настроен и установлен, для того, чтобы избежать повреждения Вашего расходомера.

Повреждение расходомера могут вызвать:

• неправильный подбор расходомера по скорости потока,

• неправильный подбор расходомера по давлению в системе,

• неправильный подбор расходомера по температуре измеряемой жидкости и химической совместимости.

Так же важными факторами, которые могут повлиять на продолжительность работы расходомера, могут быть:

• наличие механических примесей,

• установка расходомера в небезопасной зоне.

Частые ошибки при установке:

• неправильная ориентация расходомера при установке;

правильная ориентация неправильная ориентация

• при установке в линию тяжелых расходомеров, необходимо предусмотреть дополнительный крепеж, чтобы снять нагрузку с мест технологического присоединения расходомера к трубопроводу;

• перед применением из трубопровода не был удален весь воздух, и жидкость была пущена сразу максимальным потоком;

• отсутствие фильтрации перед расходомером;

• в цепи между расходомером и контроллером отсутствует или используется неверно подобранный нагрузочный резистор.

При неправильной ориентации расходомера при установке, вес роторов будет давить на подшипники, а так же на стенки и/или основание измерительной камеры, вызывая износ. Кратковременный эффект неправильной ориентации расходомера при установке — потеря точности (зависящая от смазывающей способности измеряемой жидкости). Долгосрочный эффект: износ измерительных механизмов, уменьшенный срок службы расходомера. Жидкость может протекать через расходомер горизонтально или вертикально, но при любой установке необходимо убедиться, что оси шестерней горизонтальны. Убедиться в правильности установки легко — после установки крышка терминала или дисплей показывающего устройства расположены вертикально.

Направление потока.

Расходомеры с импульсным выходом учитывают измеряемую жидкость вне зависимости от направления ее прохождения. Механические расходомеры учитывают измеряемую жидкость только при прохождении жидкости в одном направлении, которое указано маркировкой на корпусе расходомера. В случае неправильной ориентации механического расходомера, из-за вращения шестерней в обратном направлении может быть поврежден как сам расходомер, так и механический сумматор.

Подключение к трубопроводу.

1. Чтобы избежать повреждения Вашего расходомера рекомендуется соблюдать следующие условия:

2. Производитель не рекомендует устанавливать расходомеры средних и больших потоков в трубопровод перед насосом («на разряжении»).

3. Давление, температура жидкости и окружающей среды должна оставаться в установленных безопасных пределах.

4. Рекомендуется установка запорного клапана перед расходомером.

5. Для вертикальных инсталляций: жидкость должна проходить через расходомер снизу вверх. При этом расходомер будет оставаться заполненным жидкостью, и в нем не будет скапливаться воздух.

6. Трубопровод должен быть устроен таким образом, чтобы расходомер всегда был заполнен жидкостью.

7. При установке расходомеров средних и высоких потоков (или расходомеров на высокое давление) необходимо обеспечить отсутствие нагрузки на места технологических присоединений расходомера к трубопроводу.

8. Не рекомендуются технические решения, при которых выходное отверстие расходомера одновременно является выходным отверстием системы (трубопровода), т.к. это ведет к снижению точности измерений.

9. Если Ваш расходомер установлен между двумя отсечными клапанами, необходимо установить клапан сброса давления, чтобы избежать критического повышения давления в случае изменения температуры.

10. Всегда важно иметь байпас, это позволит изолировать расходомер и фильтр от общей линии, что позволит обеспечить простой доступ к расходомеру и фильтру для их чистки и обслуживания.

11. Измеряемая расходомерами с овальными шестернями жидкость должна быть абсолютно чистой (размер частиц менее максимально допустимого для расходомера данной размерности).

Фильтрация и фильтры.

Читайте также:  Установка радио пульта на лебедку

Твердые частицы могут попасть в систему различными путями, например:

— Пыль из негерметичных хранилищ измеряемой жидкости.

— Износ оборудования (насосы, миксеры) и системы перед расходомером.

Фильтр должен устанавливаться перед любым расходомером с овальными шестернями. Степень фильтрации должна быть не хуже:

— для расходомеров с проходным диаметром 1/8″-3/8″ (4-8 мм) 200 меш (75 мкм);

— для расходомеров с проходным диаметром 1/2″-2″ (15 -50 мм) 100 меш (150 мкм);

— для расходомеров с проходным диаметром 3″- 4″ (80 -100 мм) 40 меш (350 мкм).

Y — образный фильтр (фото справа) обычно является наиболее предпочтительным выбором, т.к. он легче, меньше, экономичнее и дает наименьшую потерю давления, по сравнению с другими типами фильтров.

Удаление воздуха:

Один из самых важных аспектов в работе расходомеров на овальных шестернях то — что расходомер измеряет все, что через него проходит: и жидкость и воздух (в т.ч. растворенный, в виде пузырей). Наличие в измеряемой жидкости воздуха ведет к искажению полученных данных. Пар и воздух, в том числе и растворенный, могут вызвать повреждение расходомера. В том случае, если в жидкости присутствует воздух, рекомендуется установка фильтра с воздухоотделителем. Воздухоотделитель всегда рекомендуется устанавливать перед расходомером с овальными шестернями. Фильтры-воздухоотделители способны улавливать большое количество воздуха, который находится в системе.

При измерении высоковязких жидкостей (> 100 cP), или когда измеряется жидкость с большим количеством растворенного воздуха, необходима установка большого воздухоудалителя перед расходомером, но сразу после большого бака воздухосепаратора, который даст время растворенному в жидкости воздуху, газу или пару выделиться, перед тем как измеряемая жидкость попадет в расходомер.

Процедура начала работы .

Основная причина повреждения расходомеров с овальными шестернями — это неправильный ввод в эксплуатацию и/или неправильный повторный ввод в эксплуатацию после долгого простоя:

— новая (или измененная) система обычно содержит большие объемы воздуха.

— в новой (или измененной) системе обычно содержится большое количество механических загрязнений (части уплотнений, металлическая пыль, ржавчина, окалина и т.п.)

Перед первым включением (повторным включением после длительного простоя или модификации системы) необходимо полностью промыть систему, чтобы обязательно удалить из нее весь воздух и механические примеси. В случае если Вы установили байпасную линию, Вы легко сможете изолировать расходомер и промыть систему, избежав повреждения расходомера. В том же случае если байпаса нет — рекомендуется демонтировать расходомер из линии и заменить его соответствующей трубой на время промывки системы.

При эксплуатации система рекомендуется периодическая проверка и очистка фильтра.

Обслуживание и чистка.

Так как расходомеры на овальных шестернях являются механическим измерительным устройством, со временем некоторые детали в разной степени могут быть подвержены износу. Для увеличения срока службы расходомера (-ов) рекомендуется периодически проводить осмотр и техническое обслуживание оборудования.

Степень износа деталей напрямую зависит от скорости потока измеряемой жидкости, ее плотности, вязкости, смазывающей способности, чистоты и времени постоянной работы расходомера.

До того как начать техническое обслуживание расходомера, убедитесь в нижеследующем:

— расходомер изолирован из линии, все сигналы тревоги и контроля отключены.

— расходомер отключен от сети питания.

— расходомер не находится под давлением, измеряемая жидкость слита из расходомера.

Периодическое техническое обслуживание рекомендуется осуществлять каждые 6-12 месяцев в зависимости от условий эксплуатации.

Факторы, уменьшающие интервалы обслуживания:

— частые или большие перепады температур.

— длинные периоды работы на режимах, близких к номинальному показателю (0,8-1,0 от максимального).

При установке расходомера в линию, в которой предусматривается температурная очистка линии (очистка линии острым паром) и/или очистка химическими реагентами без демонтажа и изоляции расходомера из линии, необходимо убедиться что:

1) Не будет превышен температурный режим, т.е. при обработке системы паром температура не будет повышаться больше чем на 10 °C в минуту, в противном случае будет поврежден геркон (сухой контакт).

2) При использовании химических реагентов необходимо убедиться, что материалы счетчика совместимы с данным химическим реагентом и он не вызовет повреждение расходомера.

Каждый расходомер калибруется на фабрике и снабжен заводским сертификатом калибровки, в котором указано количество импульсов на единицу объема (для импульсных расходомеров) или погрешность (для механических расходомеров). Калибровка на фабрике выполняется методом «Master meter» (калибровка при помощи специального высокоточного «мастер- расходомера») с использованием калибровочной дизельной жидкости Кастрол 4113. При измерении жидкостей со схожими параметрами по смазывающей способности и вязкости (3-100 cP) и калибровочного коэффициента фабрики — отклонений в измерениях не будет. Для других жидкостей рекомендуется провести полевую калибровку на той жидкости, которую планируется измерять.

При любой полевой калибровке необходимо помнить о следующем:

— плохо организованная процедура калибровки и/или использование неточно оттарированного контрольного сосуда приведет к получению неверных результатов и, как следствие, ухудшит точность работы расходомера.

— чтобы снизить влияние возрастания и уменьшения потока при начале и окончании проведения калибровки рекомендуется проводить процедуру полевой калибровки в течение не менее 2-3 минут.

Возможные способы стандартизации полевой калибровки:

— использование весов (весовой метод)- один из самых распространенных методов, однако этот метод может быть самым неточным. Весы должны быть точно (и желательно недавно) откалиброваны и иметь точную градуировку, чтобы достичь достаточной точности;

— «Мастер-расходомер» — один из самых распространенных способов калибровки на заводах и фабриках, предпочитаемый из-за достаточно высокой точности и практичности;

— калибровочный сосуд — наименее практичный, наиболее долгий, но и наиболее точный метод.

источник