Меню Рубрики

Установка регулятора давления на теплосети

Регулирование давления в тепловых сетях

Для обеспечения надежной работы тепловой сети и абонентских установок необходимо ограничить изменение давления в системе допустимыми пределами. При этом особое значение имеет режим подпитки и изменение давления в обратной магистрали. Повышение давления в обратном трубопроводе может вызвать недопустимый рост давлений в отопительных системах, присоединенных по зависимым схемам. Падение давления приводит к опорожнению верхних точек местных систем и к нарушению циркуляции в них.

Для ограничения колебаний давления в системе в одной, а при сложном рельефе местности в нескольких точках сети изменяют давление в зависимости от режима работы системы. Такие точки называются точками регулируемого давления. В тех случаях, когда по условиям работы системы давление в этих точках поддерживается постоянным как при статическом, так и при динамическом режимах, они называются нейтральными.

Постоянное давление в нейтральной точке поддерживается автоматически подпиточным устройством.

В небольших по протяженности сетях, когда статическое давление может быть равно давлению у всасывающего патрубка сетевого насоса, нейтральная точка О устанавливается у всасывающего патрубка сетевого насоса (рис. 6.3). Давление подпиточного насоса, выбранное из условия заполнения системы водой, сохраняется неизменным и при динамическом режиме, что обеспечивает наиболее простую схему подпиточного устройства.

В разветвленных тепловых сетях (рис. 6.4) закрепление нейтральной точки на одной из магистралей не обеспечивает необходимой устойчивости гидравлического режима. Допустим, что нейтральная точка О закреплена на обратной магистрали района II (график 1). При сокращении расхода воды в сетях этого района потери давления в трубопроводах уменьшаются, что при постоянном давлении в точке О приводит к росту давления у всасывающего патрубка сетевого насоса и к соответствующему повышению давления в магистралях района I (график 2).

Рис. 6.3. Пьезометрический график и схема подпитки сетки с нейтральной точкой у всасывающего патрубка сетевого насоса: РП – регулятор подпитки; ДК – дренажный клапан Рис. 6.4. Пьезометрические графики разветвленной сети с нейтральной точкой на одной из магистралей

При прекращении циркуляции в сети района II, давление во всасывающем патрубке сетевого насоса повысится до статического. Это приведет к дальнейшему росту давления во всех точках системы района I (график 3) и может быть причиной аварий в абонентских системах.

Поэтому нейтральную точку не следует размещать ни на одной из работающих магистралей. Закрепление нейтральной точки должно быть сделано на специально выполненной перемычке у сетевого насоса. Во время работы насоса в перемычке происходит циркуляция воды. Падение давления в перемычке равно падению давления в сети (рис. 6.5, а). Давление в нейтральной точке используется в качестве импульса, регулирующего величину подпитки.

При падении давления в системе и понижении давления в точке О увеличивается открытие регулятора подпитки РП и возрастает подача воды подпиточным насосом. С ростом давления в сети, например, при повышении температуры сетевой воды, давление в нейтральной точке возрастает, и клапан РП прикрывается, уменьшая подачу воды. Если после закрытия клапана РП давление продолжает расти, то дренажный клапан ДК сливает часть воды, давление восстанавливается.

Рис. 6.5. Пьезометрический график и схема подпитки сети с нейтральной точкой на перемычке сетевого насоса: АОВ – пьезометрический график перемычки;
I, II, III – пьезометрические графики соответственно районов I, II, III

Регулирование давления в сети можно осуществить с помощью регулировочных вентилей 1 и 2 на перемычке насоса (рис. 6.5, а). Так, частичное прикрытие вентиля 1 увеличивает давление у всасывающего патрубка сетевого насоса, что приводит к росту давления в сети. При полностью закрытом вентиле 1 циркуляция в перемычке прекращается, и давление у всасывающего патрубка Нвс становится равным давлению в точке О. Давление в системе возрастает. Пьезометрический график перемещается вверх параллельно самому себе и занимает предельно высокое положение. Если закрыт регулировочный вентиль 2 (рис. 6.5), то давление на нагнетательном патрубке сетевого насоса становится равным давлению в нейтральной точке. Пьезометрический график переместится вниз до предельно низкого положения.

При сложном рельефе местности с большой разностью геодезических отметок или в случае присоединения группы зданий повышенной этажности не всегда представляется возможным принять одну величину гидростатического давления для всех абонентов. В этих условиях необходимо разделить систему на зоны с независимым гидравлическим режимом (рис. 6.6).

Основная нейтральная точка О закрепляется на перемычке сетевого насоса СН. Статическое давление SI – SI придерживается автоматически регулятором подпитки РП1 и подпиточным насосом ПН1. Дополнительная нейтральная точка ОII размещается на обратной линии в зоне II. Постоянное давление в ней поддерживается с помощью регулятора давления «до себя» РДДС. В случае прекращения циркуляции в сети и падения давления в верхней зоне РДДС закрывается, одновременно закрывается и обратный клапан ОК, установленный на подающей линии. Благодаря этому верхняя зона гидравлически изолируется от нижней. Подпитка верхней зоны осуществляется с помощью подпиточного насоса ПНII и регулятора подпитки РПII по импульсу давлений в точке ОII.

Рис. 6.6. Пьезометрический график и схема тепловой сети с двумя нейтральными точками

Рассмотренная выше технология регулирования давления по так называемой нейтральной точке является общепринятой в учебной литературе, однако редко используется на практике. Как правило, в большинстве систем теплоснабжения основной точкой регулирования давления является точка в обратной магистрали теплоисточника во всасывающем трубопроводе сетевых насосов. Использование этой точки позволяет обеспечить надежную работу сетевых насосов, однако не гарантирует надежного гидравлического режима всей системы. Так, в открытых системах теплоснабжения при максимальном водоразборе возможно опорожнение верхних этажей зданий через обратную магистраль. На кафедре ТГВ УлГТУ разработана современная технология регулирования давления в тепловых сетях по давлению у критического, наиболее неблагополучного абонента (рис. 6.7).

Читайте также:  Установка прибор температуры масла
Рис. 6.7. Схема и пьезометрический график системы теплоснабжения: 1 – местные системы отопления; 2 – подающая магистраль; 3 – обратная магистраль; 4 – теплоподготовительная установка; 5 – сетевой насос; 6 – подпиточный насос; 7 – бак-аккумулятор; 8 – датчик давления; 9 – регулирующий орган регулятора подпитки

В момент максимального водоразбора падает давление сетевой воды в обратной магистрали (линия 2’ на пьезометрическом графике). Снижение давления улавливает датчик давления, установленный на обратной магистрали теплосети в точке подключения «неблагополучной» местной системы отопления. Сигнал от датчика направляется на регулятор подпитки. Подпиточный насос увеличивает подачу воды из бака-аккумулятора в тепловую сеть до тех пор, пока давление не повысится до величины, обеспечивающей минимальный избыточный напор в обратной магистрали тепловой сети (линия 2” на пьезометрическом графике).

источник

Выбор регулятора давления отопления

Здравствуйте, друзья! Эта статья написана мной в соавторстве с Александром Фокиным, начальником отдела маркетинга ОАО «Теплоконтроль», г.Сафоново, Смоленская область. Александр отлично знаком с устройством и работой регуляторов давления в системе отопления.

В одной из самых распространенных схем для тепловых пунктов здании – зависимой, с элеваторным смешением, регуляторы давления прямого действия РД «после себя» служат для создания необходимого напора перед элеватором. Рассмотрим немного, что представляет собой регулятор давления прямого действия. Прежде всего, нужно сказать, что регуляторы давления прямого действия не требуют дополнительных источников энергии, и в этом их несомненное достоинство и преимущество.

Принцип работы регулятора давления состоит в уравновешивании давления пружины настройки и давления теплоносителя, предаваемого через мембрану (мягкую диафрагму). Мембрана воспринимает импульсы давления с обеих сторон и сопоставляет их разницу с заданной, устанавливаемой посредством соответствующего сжатия пружины гайкой настройки.

Каждому числу оборотов соответствует автоматически поддерживаемый перепад давлений. Отличительная особенность мембраны в регуляторе давления после себя – это то, что по обе стороны мембраны воздействуют не два импульса давления теплоносителя, как у регулятора перепада давлений (расхода), а один, а со второй стороны мембраны присутствует атмосферное давление.

Импульс давления РД «после себя» отбирается на выходе из клапана по направлению движения теплоносителя, поддерживая заданное давление постоянным в точке отбора этого импульса.

При увеличении давления на входе в РД, он прикрывается, защищая систему от избыточного давления. Установку РД на требуемое давление осуществляют гайкой настройки.

Рассмотрим конкретный случай. На входе в ИТП давление 8 кгс/см2, температурный график 150/70 °С, и мы предварительно сделали расчет элеватора и просчитали минимально необходимый располагаемый напор перед элеватором, эта цифра получилась у нас равной 2 кгс/см2. Располагаемый напор — это разница давлений между подачей и обраткой перед элеватором.

Для температурного графика 150/70 °C минимально необходимый располагаемый напор, как правило, в результате расчета получается 1,8-2,4 кгс/см2, а для температурного графика 130/70 °С минимально необходимый располагаемый напор обычно составляет 1,4-1,7 кгс/см2. У нас напомню, получилась цифра 2 кгс/см2, и график — 150/70 °С. Давление в обратке — 4 кгс/см2.

Следовательно, чтобы добиться необходимого просчитанного нами располагаемого напора, давление перед элеватором должно быть 6 кгс/см2. А на вводе в тепловой пункт, давление у нас, напомню, 8 кгс/см2. Значит, РД у нас должен сработать так, чтобы сбросить давление с 8 до 6 кгс/см2, и держать его постоянным «после себя» равным 6 кгс/см2.

Подходим к основной теме статьи – как выбрать регулятор давления для данного конкретного случая. Сразу поясню, регулятор давления выбирают по пропускной способности. Пропускная способность обозначается как Kv, реже встречается обозначение KN. Пропускная способность Kv считается по формуле: Kv = G/√∆P. Пропускную способность можно понимать как способность РД пропускать необходимое количество теплоносителя при наличии нужного постоянного перепада давлений.

В технической литературе встречается также понятие Kvs – это пропускная способность клапана в максимально открытом положении. На практике зачастую наблюдал и наблюдаю, РД подбирают и затем приобретают по диаметру трубопровода. Это не совсем верно.

Производим далее наш расчет. Цифру расхода G, м3/час получить несложно. Она рассчитывается из формулы G = Q/((t1-t2)*0,001). Необходимая цифра Q у нас есть обязательно, в договоре теплоснабжения. Примем Q = 0,98 Гкал/час. Температурный график 150/70 С, следовательно t = 150, t2 = 70 °С. В результате расчета у нас получится цифра 12,25 м3/час. Теперь необходимо определить перепад давлений ∆P. Что в общем случае обозначает эта цифра? Это разница между давлением на входе в тепловой пункт (в нашем случае 8 кгс/см2) и необходимым давлением после регулятора (в нашем случае 6 кгс/см2).

Производим расчет.
Kv = 12,25/√(8-6) = 8,67 м3/час.
В технико — методических пособиях рекомендуют эту цифру умножать еще на 1,2. После умножения на 1,2 получаем 10,404 м3/час.

Итак, пропускная способность клапана у нас есть. Что необходимо делать дальше? Дальше нужно определиться РД какой фирмы вы будете приобретать, и посмотреть технические данные. Скажем, вы решили приобрести РД-НО от компании ОАО Теплоконтроль. Заходим на сайт компании http://www.tcontrol.ru/ , находим необходимый регулятор РД-НО, смотрим его технические характеристики.

Видим, что для диаметра dу 32 мм пропускная способность 10 м3/час, а для диаметра dу 40мм пропускная способность 16 м3/час. В нашем случае Kv = 10,404, и следовательно, так как рекомендуется выбирать ближайший больший диаметр, то выбираем — dу 40 мм. На этом расчет и выбор регулятора давления считаем законченным.

Далее я попросил Александра Фокина рассказать о технических характеристиках регуляторов давления РД НО ОАО «Теплоконтроль» в системе отопления.

Касаемо, РД-НО нашего производства. Действительно раньше была проблема с мембранами: качество российской резины оставляло желать лучшего. Но уже года 2 с половиной мы делаем мембраны из материала компании EFBE (Франция) — мирового лидера в области производства резинотканных мембранных полотен. Как только заменили материал мембран, так сразу фактически прекратились жалобы на их разрыв.

При этом хотелось бы отметить один из нюансов конструкции мембранного узла у РД-НО. В отличие от представленных на рынке российских и импортных аналогов мембрана у РД-НО не формованная, а плоская, что позволяет при ее разрыве заменить на любой сходный по эластичности кусок резины (от автомобильной камеры, транспортерной ленты и т.д.).

У регуляторов давления других производителей, как правило, необходимо заказывать именно «родную» мембрану. Хотя честно стоит сказать, что разрыв мембраны особенно при работе на воде температурой до 130˚С — это болезнь, как правило, отечественных регуляторов. Зарубежные производители изначально используют высоконадежные материалы при изготовлении мембраны.

Изначально в конструкции РД-НО было сальниковое уплотнение, представлявшее собой подпружиненные фторопластовые манжеты (3-4 штуки). Несмотря на всю простоту и надежность конструкции, периодически их приходилось поджимать гайкой сальника, чтобы предотвратить утечку среды.

Вообще, исходя из опыта, любое сальниковое уплотнение имеет склонность к потере герметичности: фторкаучук (EPDM), фторопласт, политетрафторэтилен (PTFE), терморасширенный графит — ил-за попаданий механических частиц в область сальника, из «корявой сборки», недостаточной чистоты обработки штока, термического расширения деталей и т.д. Течет все: и Данфосс (чтобы они не говорили), и Самсон с LDM (хотя здесь это исключение), про отечественную регулирующую арматуру я вообще молчу. Вопрос только в том, когда потечет: в течение первых месяцев эксплуатации или в дальнейшем.

Поэтому мы приняли стратегическое решение отказаться от традиционного сальникового уплотнения и заменить его сильфоном. Т.е. использовать так называемое «сильфонное уплотнение», дающее абсолютную герметичность сальникового узла. Т.е. герметичность сальникового узла теперь не зависит ни от перепадов температур, ни от попадания механических частиц в область штока и т.д. — она зависит исключительно от ресурса и циклопрочности применяемых сильфонов. Дополнительно, на случай выхода из строя сильфона, предусмотрено дублирующее уплотняющее кольцо из фторопласта.

Впервые мы применили это решение на регуляторах давления РДПД, а с конца 2013 года начали выпускать и модернизированный РД-НО. При этом нам удалось вместить сильфоны в существующие корпуса. Обычно самым большим (да и по сути единственным минусом) сильфонных клапанов является увеличенные габаритные размеры.

Хотя, мы считаем, что примененные сильфоны не полностью подходят для решения этих задач: думаем, что их ресурса не хватит на все положенные 10 лет работы регулятора (которые обозначены в ГОСТе). Поэтому сейчас мы пробуем заменить используемые трубчатые сильфоны на новые мембранные (их ещё мало кто использует), которые имеют в несколько раз больший ресурс, меньшие габариты при большей «эластичности» и т.д. Но пока за год выпуска сильфонных РД-НО и за 4 года выпуска РДПД ни одной жалобы на разрыв сильфона и утечку среды не было.

Ещё хотел бы отметить, разгруженную клеточную конструкцию клапана РД-НО. Благодаря этой конструкции, он имеет почти идеальную линейную характеристику. А так же невозможность перекоса клапана в результате попадания всякого хлама, плавающего в трубах.

источник

Читайте также:  Установка гбо мытищи пирогово

Как «лечить» перепады давления в системе отопления + нормы на рабочие отклонения

При монтаже отопительной системы в трубопровод врезают несколько манометров. С помощью данных измерительных приборов контролируют рабочее давление в системе отопления. В случае фиксации отклонений от нормируемых значений принимаются меры по устранению причин, вызвавших изменения в работе системы. Критичным считается падение уровня давления на 0,02 МПа. Оставлять без внимания перепады давления в системе отопления ни в коем случае нельзя, так как это негативно сказывается на эффективности обогрева помещения, работе установленного оборудования и сроке его эксплуатации. В период подготовки к новому отопительному сезону проводятся опрессовочные работы, во время которых в системе создается избыточное давление для выявления «слабых» участков и их заблаговременного ремонта. Протестированная таким образом система позволяет быть уверенным в том, что все ее элементы способны выдержать гидравлические удары, возникающие в теплосети.

Какое значение давления считают нормой?

Давление в автономно работающей системе отопления частного дома должно составлять 1,5-2 атмосферы. В домах, подключенных к централизованной теплосети, это значение зависит от этажности объекта. В малоэтажных зданиях величина давления в отопительной системе находится в диапазоне 2-4 атмосферы. В домах-девятиэтажках данный показатель равен 5-7 атмосферам. Для систем отопления высотных сооружений оптимальным значением давления считается 7-10 атмосфер. В теплотрассе, идущей под землей от ТЭЦ до точек теплопотребления, теплоноситель подается под давлением в 12 атм.

Для снижения напора горячей воды на нижних этажах многоквартирных домов используют регуляторы давления. Повысить напор теплоносителя на верхних этажах позволяет насосное оборудование.

Ручной балансировочный клапан (регулятор), оснащенный измерительными ниппелями игольчатого типа, позволяет контролировать перепад давления в системе отопления

Влияние температуры теплоносителя

После завершения монтажа отопительного оборудования в частном доме приступают к закачке теплоносителя в систему. При этом создают в сети минимально возможное давление, равное 1,5 атм. Это значение будет увеличиваться в процессе нагрева теплоносителя, так как в соответствии с законами физики происходит его расширение. Изменяя температуру теплоносителя, можно корректировать величину давления в теплосети.

Читайте также:  Установка антенны ниссан примера

Автоматизировать контроль рабочего давления в отопительной системе можно с помощью установки расширительных баков, не допускающих чрезмерного увеличения напора. Данные устройства включаются в работу при достижении уровня давления, равного 2 атм. Происходит отбор излишков разогретого теплоносителя расширительными баками, благодаря чему напор удерживается на нужном уровне. Может случиться так, что емкости расширительного бака не хватает для отбора излишек воды. При этом давление в системе приближается к критической планке, находящейся на уровне 3 атм. Ситуацию спасает предохранительный клапан, позволяющий сохранить в целости отопительную систему путем освобождения ее от лишнего объема теплоносителя.

При естественной циркуляции теплоносителя создается статическое давление в системе отопления, которое измеряется 1 атмосферой на каждые 10 метров высоты водяного столба. При монтаже циркуляционных насосов к статическому показателю добавляется величина динамического давления, показывающая, с какой силой давит принудительно движущийся теплоноситель на стенки трубопровода. Установка максимального давления в автономной системе отопления производится с учетом особенностей отопительного оборудования, использованного при монтаже. Например, при выборе чугунных батарей надо учитывать, что они рассчитаны на эксплуатацию при давлении, не превышающем 0,6 МПа.

Точки врезок манометров в систему отопления: до и после котла, циркуляционного насоса, регулятора, фильтров, грязевиков, а также на выходе тепловых сетей из котельной и на их входе в дома

Причины роста и падения давления в системе

Одной из самых распространенных причин падения давления в системе отопления является возникновение утечки теплоносителя. «Слабыми» звеньями чаще всего становятся места соединений отдельных деталей. Хотя и трубы прорвать может, если они уже сильно изношены или бракованные. О наличии течи в трубопроводе говорит падение уровня статического давления, замеряемого при отключенных циркуляционных насосах.

Если статическое давление в норме, то неисправность надо искать в самих насосах. Чтобы облегчить поиск места протечки, надо отключать поочередно различные участки, следя за уровнем давления. Определив поврежденный участок, проводят его отсечение от системы, ремонтируют, уплотняя все соединения и заменяя детали с видимыми дефектами.

Устранение видимых протечек теплоносителя после их обнаружения во время обследования контура отопительной системы частного дома или квартиры

Если давление теплоносителя падает, а место протечки найти не удается, то вызывают специалистов. Используя профессиональное оборудование, опытные мастера закачивают воздух в систему, предварительно освобожденную от воды, а также отсеченную от котла и радиаторов. По свистящему воздуху, вырывающемуся сквозь микротрещины и ослабленные соединения, легко обнаруживают места протечки. Если потери давления в отопительной системе не подтвердились, то приступают к проверке исправности котельного оборудования.

Использование профессионального оборудования при поиске скрытых протечек. Сканер обнаружения избыточной влаги позволяет максимально точно определить трещину в трубе

К причинам, приводящим к снижению в системе давления из-за неисправности котельного оборудования, можно отнести:

  • скопление накипи в теплообменнике (характерно для районов с жесткой водопроводной водой);
  • появление микротрещин в теплообменнике, вызванное физическим износом оборудования, профилактическими промывками, заводским браком;
  • разрушение битермического теплообменника, произошедшее во время гидроудара;
  • повреждение камеры расширительного бачка отопительного котла.

В каждом случае проблема решается по-разному. Жесткость воды понижают с помощью специальных добавок. Поврежденный теплообменник запаивают или меняют. Встроенный в котел бачок заглушают, заменяя его внешним устройством, имеющим подходящие параметры. Обслуживанием котлов должен заниматься инженер, обладающий соответствующей квалификацией.

Причины роста давления в системе:

  • остановлено движение теплоносителя по контуру (проверить регулятор отопления);
  • постоянная подпитка системы, происходящая по вине человека или в результате сбоя автоматики;
  • перекрытие крана или задвижки по ходу движения потока теплоносителя;
  • образование воздушной пробки;
  • засорение фильтра или грязевика.

Запустив систему отопления, не стоит ждать моментальной нормализации уровня давления. В течение нескольких дней из закачанного в систему теплоносителя будет выходить воздух через автоматические воздухоотводчики или краны, установленные на радиаторах. Восстановить напор теплоносителя удается его дополнительной закачкой в систему. Если данный процесс затягивается на несколько недель, то причина падения давления кроется в неправильно рассчитанном объеме расширительного бака или наличии мест утечки.

источник

Добавить комментарий