Меню Рубрики

Установка турбины на атмосферный двигатель опель

Что нужно знать об установке компрессора на атмосферный двигатель

Иногда у владельцев автомобилей с атмосферным двигателем возникает желание увеличить мощность мотора. Это можно сделать с помощью турбины. Но возможна ли установка турбины на атмосферный двигатель, и если да, то как ее осуществить?

Зачем устанавливать турбину

Когда говорят «атмосферный двигатель», то подразумевают обычный двигатель внутреннего сгорания, в который воздух попадает естественным путем без дополнительных приспособлений. Воздух смешивается с бензином или другим топливом, попадает в цилиндр, загорается от искры, в результате чего совершается работа. За счет этой работы машина и едет.

Двигатель, к которому подсоединена турбина, называется турбированным. Впервые автомобили с турбированными моторами появились в середине прошлого века.

Плюсы атмосферного двигателя Плюсы турбированного двигателя
Износоустойчивость Более высокая мощность при таком же, как у атмосферного мотора, объеме
Простота в эксплуатации Больший крутящийся момент
Возможность многократного ремонта Экологичнее

Турбина работает за счет выхлопных газов, которые на нее попадают. Вращаясь, она создает давление воздуха, подаваемого в цилиндры, то есть воздух поступает уже не самотеком. Топливная смесь становится более насыщенная воздухом, интенсивнее горит. Турбонаддув позволяет увеличить мощность двигателя на 10%, а в некоторых случаях и больше.

К недостаткам турбированного мотора относят большую требовательность к качеству масла и топлива. Моторное масло и масляные фильтры надо менять в 2 раза чаще, потому что турбокомпрессор работает при высокой температуре. Для стабильного функционирования устройства надо постоянно следить за воздушным фильтром.

Помимо турбины, для увеличения мощности мотора на него можно устанавливать компрессор, который будет нагнетать воздух. Привод компрессора подключают к коленвалу. Компрессор не повышает температуру, поскольку не использует отработанный газ, но он уменьшает полезную работу мотора.

В целом установка компрессора считается более простой задачей, чем монтаж турбины. Ставя перед собой вопрос, выбирать ли компрессор или турбину, зачастую владельцы авто склоняются к первому варианту.

Необходимые элементы для установки турбины

На установку турбины решаются водители, которым не хватает мощности на своем авто. Благодаря турбированию атмосферного двигателя автомобиль становится более экономичным, поскольку мощность мотора возрастает, а объем остается неизменным. Так, после установки турбины на двигатель мощностью 1,4 литра, автомобиль ведет себя, как если бы у него стоял мотор 1,8 литра.

Однако к вопросу надо подходить с осторожностью, поскольку при техническом усовершенствовании автомобиля затрагиваются многие его важные части, применяются дополнительные запчасти.

Вот перечень основных деталей, которые потребуются при установке турбины:

  • непосредственно сама турбина;
  • выпускной коллектор;
  • интеркулер, чтобы охлаждать воздух;
  • магистраль подачи воздуха, которую делают из алюминиевых трубок или нержавейки;
  • силиконовые патрубки для соединения трубок;
  • трубки под подачу охлаждающей жидкости и масла;
  • труба от выхода турбины до глушителя (называется пайп или даун-пайп);
  • форсунки высокой продуктивности;
  • электроника, которая будет контролировать подачу топлива.

Вместо обычного коллектора, нужен турбоколлектор, через который будут проходить выхлопные газы и направляться в турбину.

Коллектор должен быть прочным, толстостенным, поэтому лучше всего сделать его в автомастерской, а не заказывать дешевый вариант в интернет-магазине. Сварка должна быть качественной, чтобы коллектор не треснул, а окалина не попала в турбину.

Чтобы турбина не перегревалась, устанавливают охлаждающую систему. В пайп надо будет встроить датчик лямбда-зонда (датчик кислорода).

Обороты крыльчатки турбины очень высокие. Чтобы она не вышла из строя, надо подвести масло, которое будет поступать из двигателя. Для сбрасывания лишнего давления нужен специальный клапан (блоу-офф).

Установка турбины

Можно ли поставить турбину на автомобиль, зависит от конкретной модели авто. В некоторых случаях проще приобрести новую машину, чем подбирать запчасти. Если же вы решили это сделать, то найдите хорошего мастера, потому что самостоятельно справиться с установкой довольно сложно.

Процесс переоборудования начинается с того, что все детали в автомобиле, связанный со впуском и выпуском воздуха, снимают. Новый турбоколлектор соединяют с турбиной, которую разворачивают так, чтобы работа с присоединением патрубков была максимально упрощена.

Подшипники турбины, которая вращается с большой скоростью, постоянно нуждаются в смазке. Трубку подачи масла подключают к месту в двигателе, где масло идет под давлением.

Для подключения можно также использовать тройник датчика давления масла. Другой конец трубки подсоединяют к верхней части картриджа турбины. Сливаться масло будет уже под низким давлением в поддон через специальный сосок. Система охлаждения будет подключаться с другой стороны от водяной помпы.

Поскольку в двигатель будет поступать больше воздуха, ему потребуется больше топлива. Чтобы увеличить его подачу, устанавливают более производительные форсунки. Не помешает также установка нового топливного насоса, соответствующего форсункам. Но делать ли это, решают в каждом конкретном случае.

Избыточное давление воздуха в двигателе будет контролировать электроника. К ней подключают датчики температуры охлаждающей жидкости и воздуха. Контроллер должен быть откалиброван так, чтобы топливо впрыскивалось ровно в необходимый момент времени, связанный с состоянием двигателя.

Отдельно проводят электронную настройку, чтобы автомобиль мог нормально ездить и по городу, и по скоростной трассе.

Прошивкой мотора должен заниматься специалист с большим опытом за плечами. В противном случае, сбив заводские настройки, можно привести двигатель в нерабочее состояние, и затем тратить деньги на его ремонт.

Если на автомобиль будет установлен компрессор, то настройка пройдет значительно проще. Не потребуется такое количество дополнительных деталей. Он сможет работать на низких и на высоких оборотах.

В целом процесс переоборудования довольно трудоемкий и требует навыков. Соответственно и цена вопроса будет высокой. Нужно ли вам это, решайте сами. Зато при успешном монтаже турбины динамические характеристики автомобиля значительно улучшаются.

источник

Opel Astra Turbo 002 › Бортжурнал › Турбина на малообъемных двигателях) Полезно и интересно!

Наткнулся на просторах интернета на очень достойную статью, предлагаю всем интересующимся ознакомиться и взять на заметку!

Что надо знать о турбинах на «проходных» моторах и когда их не надо бояться

Что надо знать о турбинах на «проходных» моторах и когда их не надо бояться
Ни для кого не секрет, что сделало двигатели 1.5 dCi, 1.4 TSI, 1.4 TDI, 1.4 HDI, 1.3 CDTI и им подобные настоящими героями нашего времени и почему автомобили, оснащенные такими моторами, получили название «проходных». Но как эти двигатели показали себя в белорусских условиях эксплуатации, чем успели «порадовать» владельцев, известно лишь специалистам, которым приходится заниматься ремонтом указанных моторов.

Читайте также:  Подогрев двигателя спутник установка

Чтобы узнать, в чем заключаются проблемы, которые в малолитражных двигателях создает система турбонаддува, каковы их причины, что должен знать и делать владелец, чтобы турбокомпрессор на «проходном» двигателе прослужил как можно дольше, корреспондент abw.by побеседовал с директором компании «Турбохэлп» Алексеем Оргишем.

— Рабочий объем до полутора литров, но внушительная по старым меркам мощность — отличительная особенность «проходных» моторов. Как это отражается на турбине?

— Отражается на очень строгих допусках, какой параметр ни возьми, будь то размеры или требования к качеству масла и регламенту обслуживания двигателя. Из-за высоких оборотов ротора турбина нуждается в качественной смазке, пожалуй, как ни один другой узел двигателя. Но если турбине мотора классического объема 2-2,5 литра нарушение регламента по замене масла, например, по забывчивости владельца на 2-3 тысячи километров, как правило, ничем страшным не грозит, то для двигателя малого объема это критично. Узкие размерные допуски — это раз. Малая турбина более высокооборотистая — это два. Пошел износ от тех включений, которые с грязным маслом попали в турбину, — увеличились люфты и появился дисбаланс.

Далее начинается биение вала, разбиваются втулки, уплотнительные колечки. Появляется вой, течь масла, пропадает тяга…

Наконец, компрессорные и турбинные колеса начинают задевать за корпус. Из-за этого малые турбины очень быстро выходят из строя. Причем если большую турбину еще можно успеть вовремя снять и обойтись частичной заменой каких-то деталей, малых объемов это не касается — тут турбины практически всегда разлетаются вдрызг.

— То есть самое главное, что должен учитывать владелец автомобиля с малолитражным турбированным двигателем, — что турбины в этих моторах крайне требовательны к состоянию масла?

— Да. Главный бич — несвоевременная замена расходных материалов. Производителями и их официальными дилерами из каких-то своих соображений сейчас устанавливаются удлиненные интервалы между обслуживаниями. Многие наши владельцы этим пользуются — а почему нет, если производитель разрешает? При этом не учитывается, что эти рекомендации относятся к машинам новым, а мы ведь не о них речь ведем. У нас покупаются подержанные машины в лучшем случае с пробегом 100-150 тысяч километров. Во-вторых, под обслуживание с интервалом 30 или сколько-то там тысяч используются оригинальные расходные материалы, а какое масло и фильтры покупают у нас? В-третьих, эти машины в большинстве своем гарантийные. Если на них что-то с турбиной случится, это вообще не проблема владельца. Это проблема того, кто установил удлиненный интервал и по гарантии должен поменять турбину. У нас же, учитывая, что машины подержанные, что они не на гарантии, должно быть так: замена масла через 10-12 тысяч, масло — «синтетика» обязательно с необходимыми допусками. Экономить не нужно, иначе эта экономия выйдет боком. Когда разбираешь турбину, это все видно.

Вот, к примеру, ротор в сборе. Видите, какие риски на втулках? Их не должно быть вообще. Это от грязи — от тех частиц, стружки, продуктов износа, что попали в масло.

А здесь риски и выработка на самом валу. Как раз там, где стояли подшипники скольжения. Почему не появиться биению? Вот что значит несвоевременная замена масла и масляного фильтра.

— Но не маслом же единым? Что-то еще оказывает влияние на срок службы турбины в рассматриваемых моторах?

— FAP- и DPF-фильтры или катализатор. Особенно сажевый фильтр, который сейчас есть фактически на всех «проходных» дизелях. Когда эти узлы забиваются сажей и нагаром, выхлопные газы не уходят туда, куда должны, а идут обратно в турбину. Они оказывают на турбинное колесо давление, в этом случае появляется продольный люфт. Обратите внимание на колесо справа: полоски на его тыльной стороне как раз указывают, что на колесо давили выхлопные газы. Слева пример того, как должно выглядеть колесо, если FAP-фильтр или катализатор не были забиты. Поскольку мы говорим только о «проходных» моторах, неисправности по причине неправильного обслуживания и из-за FAP-фильтра в наибольшей степени характерны именно для их турбин.

— Влияет ли на срок службы турбины «пенсионерский» стиль езды?

— Думаю, влияет, но косвенно. При езде с небольшими оборотами больше образуется сажи, значит, быстрее засоряется FAP-фильтр. Опять же, чтобы его прожечь, точно надо ехать поэнергичнее. Как сказывается забитый сажевый фильтр на турбине, я говорил. Бензиновых моторов это касается меньше, хотя, конечно, катализатор тоже может зарасти нагаром, но у бензиновых другая беда.

Турбированный бензиновый двигатель сам по себе горячий. А каналы подачи масла в турбину узенькие и из-за высокой температуры имеют свойство закоксовываться. Поступление масла уменьшается и от этого турбина обязательно пострадает. Когда разбираем турбину и видим, что поверхность ротора посиневшая, значит, было масляное голодание. Ротор перегрет. Вообще есть много разных причин для досрочного выхода турбины из строя.

— Например, топливная система не в порядке — выхлоп становится грязным, температура отработавших газов увеличивается, а страдает от этого турбина. Я бы посоветовал узнавать там, где турбину ремонтировали, в чем была истинная причина неисправности. Хороший специалист по тому, что он увидел при разборке турбины, должен подсказать, в какую сторону «копать». Не устраните первопричину — имеете шанс вскоре снова «попасть» на ремонт турбины.

— А что вы посоветуете делать при покупке автомобиля с «проходным» двигателем?

— Лучше всего показать машину профессионалам. Правда, не всегда это возможно. Тогда надо послушать, как турбина работает. На то, что с ней что-то не так, укажет вой или резкий неприятный звук. Обязательно надо проверить уровень масла, сделать поездку не меньше чем на 10 километров и снова проверить масло. Если уровень упал — это только турбина, вряд ли двигатель за 10 километров столько «съест». Дымность выхлопа, запах горелого масла тоже показатели. Но человек должен иметь понятие, что такое вой, а что такое нормальный свист турбины, как выглядит дым, когда горит масло, а как — когда с подачей топлива в двигатель проблемы. То же самое с тягой. Надо представлять, как едет такой же автомобиль с исправной турбиной, чтобы было с чем сравнивать тот, который покупается, а для этого нужно заранее на подобной машине поездить. Можно снять патрубок, который идет к турбине от воздушного фильтра, и проверить люфт ротора. Но люфт есть во всех турбинах, новых и не новых. И он разный на разных моделях турбин, поэтому опять же человек должен знать, какой люфт для конкретной модели нормальный, а какой — нет. Больше ничего при покупке без снятия турбины не сделаешь. Так что либо покупатель должен быть специалистом, либо нужно пригласить на осмотр знающего человека.

Читайте также:  Установка клапанов на двигатель зид

— Турбина вышла из строя, принимается решение купить «бэушную» на «разборках». Что скажете по этому поводу?

— Что тут скажешь? Это кот в мешке. Что эту турбину сняли с машины, которая проехала 15-20 тысяч и попала в аварию, что хозяйкой была бабушка, которая только в церковь ездила, и так далее — из области сказок. Если смотреть на вещи трезво, если знаешь, какие машины разбираются на запчасти, такая покупка — самый нежелательный вариант решения вопроса.

— Напоследок спрошу: надо бояться малых объемов или не надо?

— Бояться не надо. Если двигатель исправен, если его правильно и своевременно обслуживать, если давление масла в норме, если мощность искусственно не увеличили чип-тюнингом, турбина будет работать и отработает столько, сколько ей отмерил производитель. Плохо, что отмерили турбинам на «проходных» моторах и самим этим моторам 200-250 тысяч километров, но, сами понимаете, это совсем другая история.

источник

Opel Astra GTC Желток powered by EDS › Бортжурнал › Интересная статья про турбонаддув

Всем привет!
Наткнулся на интересную статью о турбокомпрессорах. Написана очень легким языком, все просто и понятно. Сам прочитал с удовольствием, многое повторил, но многое и почерпнул.

А с чего все началось? А с того, что сидел я и думал, какими еще способами можно поднять мощность моего малообъемного движка 1.4Т? Ну вот и наткнулся на интересную статейку касательно турбины. В ней рассказано и про турбояму и почему она возникает, и как температура воздуха влияет на характеристику топливной смеси, и про отличие последовательного наддува от твинскрола и от турбины с изменяемой геометрией. В общем, читайте.

Что такое турбонаддув
Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.
Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.
Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.
Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.
Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

Читайте также:  Установка двигателя тойота на бмв

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.
Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.
А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.
У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.
По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.
Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.
Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.
На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах
Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.
Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.
Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».
Вот так.

Всем спасибо. Если было информативно, полезно и интересно, то жмакаем лайк и добавляем овера. Вам несложно, а мне — приятно))

источник

Добавить комментарий

Adblock
detector