Меню Рубрики

Установка висбрекинга технологический регламент

НЕФТЕПЕРЕРАБОТКА

ТЕРМОДЕСТРУКТИВНЫЕ ПРОЦЕССЫ

Назначение, варианты, состав установки

Висбрекинг — процесс однократного термического крекинга тяжелого остаточного сырья, проводимый в мягких условиях. Типичное сырье висбрекинга — мазуты, получаемые при атмосферной перегонке нефтей, или вакуумные гудроны. Восприимчивость гудрона к висбрекингу тем выше, чем ниже температура его размягчения и чем меньше асфальтенов, нерастворимых в н-пентане.

Висбрекинг проводится для производства преимущественно жидкого котельного топлива пониженной по сравнению с сырьем вязкости (вариант I), либо с целью производства в повышенных количествах газойля — сырья для установок гидрокрекинга и каталитического крекинга (вариант II). В обоих вариантах побочными легкими продуктами являются газы и бензиновые фракции, выход которых обычно не превышает 3 и 8% (масс.) на сырье. Проведение процесса в более жестких условиях, что оценивается по выходу бензина, может приводить к нестабильности топлив, получаемых смешением остаточного продукта висбрекинга с другими компонентами тяжелого жидкого котельного топлива. Нестабильное топливо расслаивается, в нем образуется осадок.

При проведении висбрекинга по варианту I характерно следующее:

  • сохранение в составе остаточного продукта (называемого ниже висбрекинг-мазутом) всех жидких фракций, кроме бензиновых;
  • высокий выход висбрекинг-мазута (90—93% масс, на сырье);
  • более низкие по сравнению с сырьем вязкость, температуры начала кипения и застывания висбрекинг-мазута;
  • простота и гибкость технологической схемы установки, позволяющие перерабатывать остаточное сырье разного качества.

В результате висбрекинга гудронов значительно сокращается расход маловязкого дистиллятного разбавителя при приготовлении котельного топлива. Содержание тяжелых бензиновых фракций в остаточном продукте висбрекинга ограничивают, учитывая необходимость получения топлива с достаточно высокой температурой вспышки.

При проведении висбрекинга по варианту II установка дополняется вакуумной секцией, предназначаемой для выделения из висбрекинг-мазута вакуумного газойля. В результате процесса потенциальное содержание вакуумного газойля в сырье повышается на 25—40% (об.).

На некоторых заводах часть тяжелого остатка, получаемого по варианту II и являющегося нижним продуктом вакуумной колонны, используется как топливо на самих заводах, а избыток после разбавления маловязким продуктом, например каталитическим газойлем, направляется в резервуар товарного мазута нормированной вязкости.

Установка висбрекинга может входить как секция в состав комбинированной установки, например атмосферная перегонка нефти→висбрекинг атмосферного мазута→вакуумная перегонка→висбрекинг -мазута для выделения газойлевых фракций или висбрекинг атмосферного мазута→выделение газойлей (в частности, под вакуумом)→термический крекинг смеси газойлей с целью увеличения выхода керосиновой фракции. Возможны также варианты установок висбрекинга: на одних нагретое сьфье по выходе из печи направляется в необогреваемый реактор, где в основном и осуществляется неглубокий термокрекинг; на других — нагретое сырье подвергается висбрекингу в обогреваемом змеевике (сокинг-секция), расположенном во второй топочной камере трубчатой печи.

Для висбрекинга гудронов условия процесса такие: температура 460—500°С; давление 1,4—3,5 МПа. Длительность пребывания сырья в зоне реакции определяется с помощью уравнения скорости реакции первого порядка. Требуемый объем реакционной зоны, т. е. того участка змеевика, где температура сырья превышает 399°С, составляет 3,6—4,8 м 3 на каждые 1000 м 3 перерабатываемого жидкого сырья в сутки.

Теплота реакции термического крекинга

Процесс висбрекинга протекает с поглощением тепла; теплоты эндотермических реакций неглубокой формы термического крекинга разных образцов сырья на 1 кг бензина с концом кипения 225°С приведены ниже:

Сырье Плотность сырья при 20°С, кг/м 3 Теплота реакции при различном выходе бензина, кДж/кг
5%, масс. 10%, масс. 15%, масс.
Мазут бакинской нефти 945 1425 1380 1340
Мазут грозненской нефти 904 1510 1465 1425
Газойль бакинской нефти 853 1260 1240 1270
Дистиллят парафинистый 859 1300 1470 1470
Битум парафинистый 1004 587 922 1006

Характеристики сырья и продуктов висбрекинга

Показатели Мазут легкой аравийской нефти Гудрон легкой аравийской нефти Полугудрон ставропольской нефти
Выходы продуктов, % (масс.):
сероводород 0,2 0,3
газы до С4 2,1 2,2 0,8
фракции С5 и С6 1,4 1,3 ∑5,6 (КК-180°С)
фракция С7-185°С 4,7 4,6
фракция 185-371°С 10,7
остаток (>371°С) 80,9
остаток (>185°С) 91,6 92,6 (НК-180°С)

Итого:

100,0 100,0 99,0
Характеристика сырья:
Плотность при 20°С, кг/м 3 954 1022 918
Вязкость кинематическая при 50°С, мм 2 /с 480 33,3 (при 80°С)
Температура застывания, °С 15 41 49
Коксуемость по Конрадсону, % (масс.) 7,6 20,8 4,3
Содержание, % (масс.) серы 3,0 4,0 0,32
Содержание, % (масс.) азота 0,16 0,31
Характеристика остаточного продукта:
Начало кипения, °С 371 185 180
Плотность при 20°С, кг/м 3 968 1020 896
Вязкость кинематическая при 50°С, мм 2 /с 300 6000 16,8 (при 80°С)
Температура застывания, °С 29 40
Содержание, % (масс.) серы 3,2 4,0 0,2

Октановое число бензиновой фракции висбрекинга находится в пределах от 58 до 68 (моторный метод, без присадки). Содержание серы в бензиновых и керосиновых фракциях существенно ниже, чем в сырье; однако эти фракции обычно нуждаются в очистке. Например, подвергая висбрекингу мазут [мол. масса 407, плотность 938,5 кг/м 3 ; содержание серы 1,81 % (масс.), коксуемость 5,0 %], самотлорской нефти, получали бензин и керосин, содержащие до очистки 0,7 и 1,0 % (масс.) серы.

Технологические схемы висбрекинга

Висбрекинг-установка с реакционной камерой

Горячий мазут, поступающий с нефтеперегонной установки, подается насосом 1 в змеевик печи 2. По выходе из печи сырье подвергается висбрекингу в реакционной камере 3 (реакторе), работающей при давлении около 1,7 МПа. Полученная смесь продуктов, пройдя редукционный клапан 4, направляется далее в фракционирующую колонну 8. До входа в колонну смесь охлаждается за счет подачи в линию холодного газойля, нагнетаемого насосом 7, через теплообменник 6. Остальная часть охлажденного газойля (рециркулят) возвращается этим же насосом в среднюю зону колонны 8. Балансовое количество газойля отводится с установки через холодильник 5.

Для конденсации бензиновых паров и охлаждения газов, выходящих из колонны 8 сверху, служит аппарат воздушного охлаждения 11. После него смесь проходит водяной холодильник 12. В горизонтальном сепараторе 13 (он же сборник орошения) жирные газы отделяются от нестабильного бензина. Часть бензина подается насосом 14 на верхнюю тарелку колонны в качестве орошения; остальное количество отводится с установки.

Легкая керосиновая фракция отбирается из колонны с промежуточной тарелки и насосом 10 выводится с установки. На некоторых установках эта фракция предварительно продувается водяным паром в выносной отпарной колонне.

Описанная установка является частью комбинированной установки, и с низа колонны 8 остаток — утяжеленный висбрекинг-мазут — направляется насосом 9 в вакуумную ступень.

Висбрекинг-установка с сокинг-секцией

Такая установка отличается от рассмотренной выше главным образом тем, что процесс висбрекинга в ней осуществляется в обогреваемом змеевике внутри печи. Поэтому ниже рассматривается только нагревательно-реакторная печь.

В левой топочной камере вдоль боковых стен и у потолка расположены нагревательные радиантные трубы, а в правой топочной камере — радиантные трубы сокинг-секции, с регулируемым, но самостоятельным подводом тепла в эту секцию. Уходящие из топочных камер I и III дымовые газы поступают через проемы внизу внутренних стен в конвекционную камеру II. Здесь восходящий поток дымовых газов охлаждается, отдавая тепло на нагрев сырья (при наличии для него конвекционного змеевика), испарение воды и перегрев водяного пара при размещении в камере трубчатых элементов парового котла-утилизатора или пароперегревателя.

Длительность пребывания сырья в сокинг-секции зависит от его расхода (подачи в змеевик печи), давления на участке паро- и газообразования, а также от расхода водяного пара, вводимого в радиантные трубы. Для подавления реакций смесь, выходящая из сокинг-секции, охлаждается путем ввода в нее рециркулирующей жидкости.

Печь оснащена контрольно-измерительными приборами и регуляторами, такими, как: указатели температуры (УТ) стенок радиантных труб; регулятор температуры (РТ) сырья при выходе его из нагревательного змеевика; регулятор температуры продуктов висбрекинга при выходе их из сокинг-секции; регулятор давления (РД) на выводной линии.

С увеличением глубины крекинга сыря и при перегреве труб усиливается отложение кокса на внутренней поверхности змеевика сокинг-секции, что сокращает длительность рабочего пробега печи. Рекомендуемые значения тепловых напряженностей радиантных поверхностей нагрева (подсчет по наружному диаметру труб) в печах висбрекинг-установок следующие:

  • нагревательная секция 102—113 МДж/(м 2 ·ч);
  • сокинг-секция 68—80 МДж/(м 2 ·ч).

Эти значения приемлемы при одностороннем факельном облучении труб, располагаемых у потолка и стен с шагом, равным двум диаметрам.

источник

Установка висбрекинга

Цель установки

Установка висберинга – это термический неглубокий крекинг тяжелых видов сырья, таких как гудрон, мазут и других остаточных продуктов.

Целью установки висбрекинга является снижение вязкости остаточных продуктов и дальнейшее использование их в качестве компонента в производстве разных марок топочного мазута. В ходе сложных химических процессов распада и синтеза углеводородов с использованием высоких температур, получается некоторое количество бензина и газа.

Сырье

Сырье используемое на установке – это смесь гудрона и мазута.

Продукты висбрекинга

Продукты получаемые в результате работы установки:

Схема

Принцип работы установки

Сырье поступает с установок первичной переработки нефти с температурой до 140 С в емкость прямого питания.

Далее с помощью сырьевых насосов основным потоком перекачивается через теплообменники, в которых проходит нагревание до 300 С за счет тепла отходящего крекинг остатка. И двумя потоками через конвекционную камеру трубчатой печи, где принимает температуру 350 С

Предварительно подогретая смесь скапливается в буферальной емкости. Откуда с помощью печного насоса, четырьмя параллельными потоками подается в радиантные камеры печи, происходит нагревание до 445-460 С. В змеевиках печи на 20% происходит реакция расщепления.

Реакционные камеры

На выходе из печи четыре потока змеевиков объединяются в два трубопровода, по которым смесь поступает в реакционные камеры.

Назначением реакционных камер является углубление крекинга путем дополнительного выдерживания продуктов расщепления при высоких температурах.

Камера представляет собой полый цилиндрический аппарат. Диаметр составляет 2 метра, а высота 15 метров. Выдерживает высокое давление до 20-30 атмосфер.

Смесь подается снизу вверх для обеспечения турбулентного движения продуктов. Для этого входной патрубок снабжен насадкой с завехрителем. Во избежание коксования предусмотрена его промывка – флегмой собственной выработки.

Время прохождения продукта по камере оставляет 30 минут снизу вверх. После чего по шлемовой линии он выводится в ректификационную колонну.

Квенч – струя флегмы, которая подается в линию для прекращения реакции.

По шлемовым линиям камер продукт перемещается в рефиктиционную колонну на 15 и 19 тарелки. С верха рефиктиционной колонны углеводородный газ и пары бензина по шлемовой линии с температурой 150-210 С поступает в АВО.

Газосепаратор

Сконденсированные и охлажденные продукты реакции поступают в газосепаратор бензина, где происходит разделение на фазы: газообразную жидкую.

С нижней части бензинового газосепаратора, вода выводится в промышленную канализацию. А углеводородные газы выводятся с верхней части установки.

Нестабильный бензин откачивается из газосепаратора насосом и, в дальнейшем, разделяется на два потока:

  1. Первый поток идет на первую тарелку колонны в качестве острого орошения.
  2. Второй поток – в блок стабилизации бензина, откуда, уже стабильный бензин выводится с установки для потребления.

Ректификационная колонна

Флегма из ректификационной колонны с помощью насосов передается в распределительный коллектор и делится на три потока.

  1. Первый поток, проходя по трубам сырьевого теплообменника, в котором отдает тепло сырью и уходит в холодильник. И охлаждается в нем да температуры от 50 до 100 С и подается в виде холодной струи в шлемовые линии реакционных камер.
  2. Второй поток флегмы – идет по трубному пространству теплообменника подогрева топливного газа, по трубам ребойлера, где подогревает бензин низа колонны, направляется в АВО. С температурой 170-200 С флегма возвращается на 12 тарелку ректификационной колонны в качестве орошения.
  3. Третий поток уходит в распределительный коллектор, откуда флегма в качестве турбулизатора поступает в сырьевые потоки печи во избежание коксования и уплотнения продуктов на стенках труб, а так же на промывку завехриелей реакционных камер.

Снизу ректификационной колоны крекинг остаток, с помощью насосов, прокачивается по трубам теплообменников, где происходит теплоотдача сырью, поступающему в буферную емкость.

Далее проходит через три параллельно работающих холодильника, где охлаждается до температуры не более 130 С. После чего выводится из установки в товарно-сырьевой цех, как компонент топочного мазута.

Материальный баланс

Ниже приведен материальный баланс установки висбрекинга гудрона:

Видео работы установки

источник

Назначение процесса висбрекинга и его место в схеме НПЗ

Федеральное государственное бюджетное учреждение высшего профессионального образования

«Удмуртский Государственный Университет»

Институт нефти и газа им. М. С. Гуцериева

На тему: «Висбрекинг»

По дисциплине: Химия

Барышев Никита Александрович

1. Назначение процесса висбрекинга и его место в схеме НПЗ…………. 4

2. Технологический режим установки висбрекинга …….………….…..…. 6

3. Факторы, влияющие на процесс ………. ………………………………. 8

4. Основные регулируемые параметры висбрекинга ……..………………. 10

5. Особенности проектирования установок висбрекинга……………….….12

6. Висбрекинг-установка с сокинг-секцией…………………..…….………..13

7. Висбрекинг-установка с реакционной камерой……………. ………. ….15

Список использованной литературы…………………………………………..20

Висбрекинг — наиболее мягкая форма термического крекинга, представляет собой процесс неглубокого разложения нефтяных остатков (мазутов и гудронов) в относительно мягких условиях (под давлением до 5 МПа и температуре 430-490°С) с целью снижения вязкости остатков для получения из них товарного котельного топлива. Процесс эндотермический, осуществляется в жидкой фазе. Возможности висбрекинга по увеличению выработки светлых нефтепродуктов ограничены требованиями к качеству получаемого остатка. Степень превращения сырья в этом процессе минимальная, отбор светлых нефтепродуктов из гудрона не превышает 5-20%, а из мазута — 16-22%. При этом получается более 75% условно непревращенного остатка — котельного топлива.

На современных нефтеперерабатывающих заводах висбрекинг позволяет:

· сократить производство тяжелого котельного топлива;

· уменьшить количество прямогонных дистиллятов для разбавления тяжелых, высоковязких остатков (гудронов), используемых в качестве котельного топлива;

· расширить ресурсы сырья для каталитического крекинга и гидрокрекинга;

· выработать дополнительное количество легких и средних дистиллятов, используемых как компоненты моторных и печных топлив.

Назначение процесса висбрекинга и его место в схеме НПЗ

Назначение: При работе в режиме термического крекинга — получение дополнительных количеств светлых нефтепродуктов термическим разложением остатков от перегонки нефти, при работе в режиме висбрекинга — улучшение качества котельного топлива (снижение вязкости).

Производство нефтепродуктов и химического сырья из нефти организовано на нефтеперерабатывающих заводах (НПЗ). Переработка нефти на НПЗ осуществляется с помощью различных технологических процессов, которые могут быть условно разделены на следующие группы:

v Первичная переработка ( обессоливание и обезвоживание, атмосферная и атмосферно — вакуумная перегонка нефти, вторичная перегонка бензинов, дизельных и масляных фракций).

v Термические процессы (термический крекинг, висбрекинг, коксование, гидролиз).

v Термокаталические процессы (каталический крекинг-реформинг, гидроочистка.

v Процессы переработки нефтяных газов (алкилирование, полимеризация, изомеризация).

v Процессы производства масел и парафинов ( деасфальтизация , депарафинизация, селективная очистка, адсорбционная и гидрогенизационная доочистка).

v Производство битумов, пластичных смазок, присадок, нефтянных кислот, сырья для получения технического углерода.

v Процессы производства ароматических углеводородов ( экстрация , гидроалкилирование, деалформинг, диспропорционирование).

Нефти по своему составу и свойствам различаются весьма значительно. Физико — химические свойства нефтей и составляющих их фракций оказывают влияние на выбор ассортимента и технологию получения нефтепродуктов. При определении направления переработки нефти стремятся по возможности максимально использовать индивидуальные природные особенности химического состава.

Переработку нефтей малосернистых высокопарафинистых и высокосернистых парафинистых осуществляют с одновременным получением фракций бензина, керосина, дизельного топлива, вакуумного газойля и гудрона.

Наибольшую трудность в нефтепереработке представляет квалифицированная переработка гудронов (особенно глубоковакуумной перегонки) с высоким содержанием асфальто — смолистых веществ, металлов и других гетеросоединений, требующая значительных капитальных и эксплуатационных затрат. В этой связи на ряде НПЗ нашей страны и за рубежом ограничиваются переработкой гудронов с получением таких не топливных нефтепродуктов, как котельное топливо, битум, нефтяной пек, нефтяной кокс и т.д.

Получающийся гудрон непосредственно не может быть использован как котельное топливо из-за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов — это висбрекинг с целью снижения вязкости, что уменьшает расход разбавителя на 20 — 25% масс, а также соответственно увеличивает общее количество котельного топлива.

Висбрекинг (в переводе с английского «cнижение вязкости») — процесс крекинга гудрона, проводимый при температурах 450 — 480оС с целевым назначением снижения вязкости котельного топлива.

К преимуществам висбрекинга перед другими процессами относятся: гибкость процесса, что позволяет непосредственно перерабатывать тяжелые нефтяные остатки, относительная простота технологии, низкие капитальные и эксплуатационные затраты. Висбрекинг характеризуется невысокой конверсией нефтяных остатков, но позволяет в 10 и более раз снизить вязкость исходного сырья с целью получения стандартного котельного топлива.

Процесс висбрекинга гудрона в технологической схеме НПЗ играет важную роль, поскольку оказывает очень сильное влияние на глубину переработки нефти и на общие экономические показатели производства нефтепродуктов. Позволяет корректировать структуру выхода продуктов, для более полного соответствия потребностям рынка, и достичь следующих целей:

· увеличить глубину переработки нефти на 16 — 18% и достичь уровня 70-72%.

· высвободить дополнительный объем вакуумного газойля для продажи.

· увеличить производство более ценного топочного мазута.

· повысить выработку автомобильного бензина на 1,4-2% масс на нефть.

Внедрение процесса висбрекинга гудрона позволяет значительно улучшить экономические показатели предприятия.

источник

Читайте также:  Установки для компремирование газа

Добавить комментарий

Adblock
detector