Меню Рубрики

Установка вооружения на самолет

Лазерное оружие: перспективы в военно-воздушных силах. Часть 2

Военно-воздушные силы (ВВС) всегда находятся на острие научно-технического прогресса. Неудивительно, что такое высокотехнологичное оружие, как лазеры, не обошло стороной этот вид вооружённых сил.

История лазерного оружия на авиационных носителях начинается с 70-х годов XX века. Американской компанией Avco Everett был создан газодинамический лазер мощностью 30-60 кВт, габариты которого позволяли разместить его на борту крупного самолёта. В качестве такового был выбран самолёт-заправщик КС-135. Лазер был установлен в 1973 году, после чего самолёт получил статус летающей лаборатории и обозначение NKC-135A Лазерная установка размещена в фюзеляже. В верхней части корпуса установлен обтекатель, закрывавший вращающуюся башню с излучателем и системой целеуказания.

К 1978 г. мощность бортового лазера увеличили в 10 раз, также увеличили запас рабочего тела для лазера и топлива для того, чтобы обеспечить время излучения 20-30 секунд. В 1981 г. были предприняты первые попытки поразить лазерным лучом летящую беспилотную мишень «Rrebee» и ракету «Sidewinder» класса воздух-воздух (в-в), окончившиеся безрезультатно.

Самолет еще раз модернизировали и в 1983 г. повторили испытания. В ходе испытаний лучом лазера с борта NKC-135A были уничтожены пять ракет «Sidewinder», летевших в направлении самолета со скоростью 3218 км/ч. В ходе других испытаний в этом же году NKC-135A разрушил лазером дозвуковую мишень BQM-34A, которая на малой высоте имитировала атаку на корабль ВМС США.

Примерно в то же время, в которое создавался самолёт NKC-135A, в СССР также прорабатывался проект самолёта носителя лазерного оружия — комплекс А-60, о нём рассказано в первой части статьи. В настоящий момент статус работ по данной программе неизвестен.

В 2002 году в США была открыта новая программа – ABL (Airborne Laser) по размещению лазерного оружия на самолёте. Основная задача программы – создание воздушного компонента системы противоракетной обороны (ПРО), для поражения баллистических ракет противника на начальной фазе полёта, когда ракета наиболее уязвима. Для этого требовалось получить дальность поражения цели порядка 400-500 км.

В качестве носителя был выбран крупный самолёт Boeing 747, который после модификации получил наименование – prototype Attack Laser model 1-A (YAL-1A). На борту было смонтировано четыре лазерных установки – сканирующий лазер, лазер для обеспечения точного наведения на цель, лазер для анализа влияния атмосферы на искажение траектории луча и основной боевой высокоэнергетический лазер HEL (High Energy Laser).

Лазер HEL состоит из 6 энергетических модулей – химических лазеров с рабочим телом на основе кислорода и металлического йода, генерирующих излучение с длинной волны 1,3 мкм. Система наведения и фокусировки включает в себя 127 зеркал, линз и светофильтров. Мощность лазера около одного мегаватта.

Программа испытывала многочисленные технические сложности, расходы превзошли все ожидания и составили от семи до тринадцати миллиардов долларов. В ходе разработки программы получены ограниченные результаты, в частности уничтожено несколько учебных баллистических ракет с жидкостным ракетным двигателем (ЖРД) и на твёрдом топливе. Дальность поражения составила порядка 80-100 км.

Основной причиной закрытия программы можно считать применение заведомо бесперспективного химического лазера. Боезапас лазера HEL ограничен запасами химических компонент на борту и составляет 20-40 «выстрелов». При работе лазера HEL выделяется огромное количество тепла, которое выводится наружу с помощью сопла Лаваля, создающего поток нагретых газов, истекающего со скоростью в 5 раз больше скорости звука (1800 м/с). Сочетание высоких температур и пожаро-взрывоопасных компонент лазера может привести к трагическим последствиям.

То-же самое произойдёт с российской программой А-60, в случае, если она будет продолжена с использованием ранее разрабатывающегося газодинамического лазера.

Тем не менее, программу ABL нельзя считать полностью бесполезной. В ходе неё получен бесценный опыт по поведению лазерного излучения в атмосфере, разработаны новые материалы, оптические системы, системы охлаждения и другие элементы, которые будут востребованы в будущих перспективных проектах высокоэнергетического лазерного оружия воздушного базирования.

Как уже говорилось в первой части статьи, в настоящее время существует тенденция отказа от химических лазеров, в пользу твердотельных и волоконных лазеров, для которых не надо возить отдельный боекомплект, и достаточно электропитания, обеспечиваемого носителем лазера.

В США существует несколько программ лазеров воздушного базирования. Одна из таких программ – это программа разработки модулей лазерного оружия для установки на боевые самолёты и беспилотные летательные аппараты – HEL, реализуемая по заказу агентства DARPA компаниями General Atomics Aeronautical System и Textron Systems.

Компания General Atomics Aeronautica совместно с компанией Lockheed Martin разрабатывает проект жидкостного лазера. К концу 2007 года прототип показал мощность 15 кВт. Компания Textron Systems работает над собственным прототипом твердотельного лазера с керамическим рабочим телом под названием ThinZag.

Конечный результат программы должен представлять собой лазерный модуль мощностью 75-150 кВт в виде контейнера, в который устанавливаются литий-ионные батареи, система жидкостного охлаждения, лазерные излучатели, а также система сведения лучей, наведения и удержания на цели. Модули могут интегрироваться для получения необходимой конечной мощности.

Как и все высокотехнологичные программы по разработке принципиально нового вооружения, программа HEL сталкивается с задержками реализации.

В 2014 году компания Lockheed Martin совместно с DARPA начали лётные испытания перспективного лазерного оружия Aero-adaptive Aero-optic Beam Control (ABC) для авиационных носителей. В рамках этой программы производится отработка технологий наведения высокоэнергетического лазерного оружия в диапазоне 360 градусов на экспериментальном самолёте-лаборатории.

В ближайшей перспективе в ВВС США рассматривается интеграция лазерного оружия на новейший истребитель-невидимку F-35, а в дальнейшем и на другие боевые самолёты. Компания «Локхид Мартин» планирует разработку модульного волоконного лазера мощностью порядка 100 кВт и коэффициентом преобразования электрической энергии в оптическую свыше 40%, с последующей установкой на F-35. Для этого Lockheed Martin и «Исследовательская лаборатория ВВС США» заключили контракт на сумму 26,3 млн долларов. К 2021 году Lockheed Martin должна представить заказчику прототип боевого лазера, получившего название SHIELD, который можно будет монтировать на истребителях.

Рассматривается несколько вариантов размещения лазерного оружия на F-35. Один из них предполагает размещение лазерных систем в месте установки подъемного вентилятора в F-35B или большого топливного бака, который расположен в том же месте в вариантах F-35A и F-35C. Для F-35B это будет означать удаление возможности вертикального взлёта и посадки (режим STOVL), для F-35A и F-35C соответствующее снижение дальности полёта.

Предполагается использовать приводной вал двигателя F-35B, который обычно приводит в действие подъемный вентилятор, для привода генератора мощностью свыше 500 кВт (в режиме STOVL приводной вал выдает до 20 МВт мощности вала на подъемник-вентилятор). Такой генератор будет занимать часть внутреннего объема подъемного вентилятора, оставшееся пространство будет использовано для размещения систем генерации лазера, оптики и т.д.

По другой версии лазерное оружие и генератор будут конформно размещены внутри корпуса среди существующих агрегатов, с выводом излучения по волоконно-оптическому каналу в переднюю часть самолёта.

Ещё одним вариантом является возможность размещения лазерного оружия в подвесном контейнере, аналогичном создающемуся в рамках программы HEL, в случае, если лазер приемлемых характеристик удастся создать в заданных габаритах.

Читайте также:  Установка двух видеокарт в режиме sli

Так или иначе, в ходе проведения работ могут быть реализованы как рассмотренные выше, так и абсолютно иные варианты реализации интеграции лазерного вооружения на самолёт F-35.

В США существует несколько «дорожных карт» по развитию лазерного оружия. Несмотря на ранее сделанные заявления ВВС США о получении прототипов к 2020-2021 году, более реальными сроками появления перспективного лазерного оружия на авиационных носителях можно считать 2025-2030 годы. К этому времени можно ожидать появление на вооружении боевых самолётов типа «истребитель» лазерного оружия мощностью порядка 100 кВт, к 2040 году мощность может возрасти до 300-500 кВт.

Наличие одновременно нескольких программ лазерного оружия в ВВС США указывает на их высокую заинтересованность в этом типе вооружений, и снижает риски для ВВС при неудаче одного или нескольких проектов.

К каким последствиям приведёт появление на борту боевых самолётов тактической авиации лазерного оружия? С учётом возможностей современных радиолокационных и оптических средств наведения это, в первую очередь, позволит обеспечить самооборону истребителя от подлетающих ракет противника. При наличии на борту лазера мощностью 100-300 кВт, предположительно могут быть уничтожены 2-4 подлетающие ракеты воздух-воздух или земля-воздух. В сочетании с ракетным вооружением типа CUDA, шансы самолёта, оснащённого лазерным оружием, выжить на поле боя, многократно повысятся.

Максимальный ущерб лазерным оружием может быть нанесён ракетам с тепловым м оптическим наведением, поскольку их работоспособность напрямую зависит от функционирования чувствительной матрицы. Применение оптических фильтров, на определённую длину волны, не поможет, так как противником наверняка будут применяться лазеры разных типов, от всех фильтрацию не реализовать. Кроме того, поглощение фильтром энергии лазера мощностью порядка 100 кВт скорее всего вызовет его разрушение.

Ракеты с радиолокационной головкой самонаведения будут поражаться, но на меньшей дальности. Неизвестно, как отреагирует радиопрозрачный обтекатель на мощное лазерное излучение, возможно он окажется уязвим к такому воздействию.

В этом случае, единственный шанс противника, чей самолёт не оснащён лазерным вооружением, «завалить» оппонента таким количеством ракет воздух-воздух, какое не смогут совместно перехватить лазерное оружие и противоракеты типа CUDA.

Появления мощных лазеров на самолётах «обнулит» все существующие переносные зенитно-ракетные комплексы (ПЗРК) с тепловым наведением типа «Игла» или «Стингер», существенно уменьшит возможности ЗРК с ракетами с оптическим или тепловым наведением, потребует увеличения количества ракет в залпе. Скорее всего лазером могут быть поражены и ракеты земля-воздух ЗРК дальнего радиуса действия, т.е. их расход при стрельбе по самолёту, оснащённому лазерным оружием, также возрастёт.

Применение противолазерной защиты на ракетах воздух-воздух и ракетах земля-воздух сделает их тяжелее и габаритнее, что скажется на их дальности и маневренных характеристиках. Не стоит уповать на зеркальное покрытие, от него не будет практически никакого толка, потребуются совершенно иные решения.

В случае перехода воздушного боя в ближний маневренный, самолёт с лазерным оружием на борту будет иметь неоспоримое преимущество. На близком расстоянии система наведения лазерного луча сможет прицельно наводить луч на уязвимые точки самолёта противника – пилота, оптическую и радиолокационную станции, элементы управления, вооружение на внешней подвеске. Во многом это нивелирует необходимость сверхманевренности, поскольку как не вертись, всё равно подставишь то одну, то другую сторону, а смещение лазерного луча будет обладать заведомо большей угловой скоростью.

Значительно повлияет на ситуацию в воздухе оснащение стратегических бомбардировщиков (бомбардировщиков-ракетоносцев) оборонительным лазерным оружием. В прежние времена неотъемлемой частью стратегического бомбардировщика являлась скорострельная авиационная пушка в хвостовой части самолёта. В дальнейшем от неё отказались в пользу установки продвинутых систем радиоэлектронной борьбы. Однако, даже малозаметный или сверхзвуковой бомбардировщик, в случае обнаружения истребителями противника, с высокой вероятностью будет сбит. Единственным эффективным решением сейчас является запуск ракетного оружия за пределами зоны действия ПВО и авиации противника.

Появление в составе оборонительного вооружения бомбардировщика лазерного оружия может в корне изменить ситуацию. Если на истребителе может быть установлен один лазер 100-300 кВт, то на бомбардировщик таких комплексов можно установить в количестве 2-4 единицы. Это позволит осуществлять самооборону одновременно от 4 до 16 ракет противника, атакующих с разных направлений. Необходимо учитывать тот факт, что разработчиками активно прорабатывается возможность совместного применения лазерного оружия с нескольких излучателей, по одной цели. Соответственно, скоординированная работа лазерного оружия, суммарной мощностью 400 кВт – 1,2 МВт, позволит бомбардировщику уничтожать атакующие истребители с расстояния 50-100 км.

Рост мощности и эффективности лазеров к 2040-2050 годам может вернуть к жизни идею тяжёлого самолёта, по типу прорабатываемого в советском проекте А-60 и американской программе ABL. В качестве средства противоракетной обороны от баллистических ракет он вряд ли будет эффективен, но на него могут быть возложены не менее важные задачи.

При установке на борту своего рода «лазерной батареи», включающей 5-10 лазеров мощностью по 500 кВт – 1 МВт, совокупная мощность лазерного излучения, которую носитель может сконцентрировать на цели, составит 5-10 МВт. Это позволит эффективно бороться с практически любыми воздушными целями на расстоянии 200-500 км. В первую очередь в перечень целей попадут самолёты ДРЛО, РЭБ, самолёты заправщики, а затем пилотируемые и беспилотные самолёты тактической авиации.

В режиме раздельного использования лазеров, может быть перехвачено большое количество таких целей, как крылатые ракеты, ракеты воздух-воздух или ракеты земля-воздух.

К чему может привести насыщение воздушного поля боя боевыми лазерами, и как это повлияет на облик боевой авиации?

Необходимость наличия теплозащиты, защитных шторок для сенсоров, увеличение массогабаритных характеристик применяемого вооружения, может привести к увеличению размеров тактической авиации, снижению маневренных характеристик самолётов и их вооружения. Лёгкие пилотируемый боевые самолёты исчезнут как класс.

В конечном итоге может получиться что-то вроде «летающих крепостей» Второй мировой войны, укутанных теплозащитой, вооружённых лазерным оружием вместо пулемётов и высокоскоростными защищёнными ракетами вместо авиабомб.

На пути реализации лазерного оружия существует множество препятствий, но активные вложения в этом направлении позволяют предполагать, что положительные результаты будут достигнуты. На пути длиной почти 50 лет, с момента начала первых работ по авиационному лазерному оружию, и до наших дней, технологические возможности существенно возросли. Появились новые материалы, приводы, источники питания, на несколько порядков возросли вычислительные мощности, расширилась теоретическая база.

Остаётся надеется, что перспективное лазерное оружие будет не только у США и их союзников, но и своевременно поступит на вооружение ВВС Российской Федерации.

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

источник

Лазерное оружие на боевых самолётах. Можно ли ему противостоять?

Появление новых технологий неизменно изменяет облик оружия и тактики ведения боевых действий. Нередко появление нового типа оружия полностью «закрывает» оружие предыдущего поколения. Огнестрельное оружие полностью вытеснило луки и стрелы, а создание танков привело к исчезновению кавалерии.

Не меньшие изменения могут происходить в рамках одного типа вооружений, по мере изменения его характеристик. Например, на примере пилотируемой авиации можно увидеть, как изменялись конструкции самолётов и их вооружения, и в соответствии с этим менялась тактика воздушной войны. Перестрелки пилотов из личного оружия пилотов первых деревянных бипланов сменились ожесточёнными маневренными воздушными боями Второй мировой войны. В войне во Вьетнаме началось применение управляемых ракет воздух-воздух (В-В), и в настоящий момент дальний воздушный бой с применением управляемого ракетного оружия считается основным способом боестолкновения в воздухе.

Читайте также:  Установка лыжных креплений центр

Оружие на новых физический принципах

Одним из важнейших направлений развития вооружений в XXI веке можно считать создание оружия на новых физических принципах (НФП). Несмотря скептицизм, с которым многие воспринимают оружие на НФП, его появление может радикальным образом изменить облик вооружённых сил недалёкого будущего. Говоря об оружии на НФП, в первую очередь подразумевают лазерное оружие (ЛО) и кинетическое оружие с электрическим/электромагнитным разгоном снаряда.

Ведущие державы мира вкладывают огромные средства в развитие лазерного и кинетического оружия. Лидерами по количеству реализуемых проектов являются такие страны, как США, Германия, Израиль, КНР, Турция. Политико-географический разброс проводимых разработок не позволяет предполагать о «заговоре», с целью увода противника (России) в заведомо тупиковое направление развития вооружений. Для проведения работ, в частности, по созданию лазерных вооружений, задействованы крупнейшие оборонные концерны: американские Lockheed Martin, Northrop Grumman, Boeing, General Atomic и General Dynamics, немецкие Rheinmetall AG и MBDA, и многие другие.

Когда говорят о лазерном оружии, то часто вспоминают негативный опыт, полученный в XX веке в рамках советских и американских программ создания боевых лазеров. Здесь надо учитывать ключевое отличие – лазеры того периода, способные обеспечить мощность, достаточную для поражения целей, были или химическими, или газодинамическими, что обуславливало их значительные размеры, наличие горючих и токсичных компонент, неудобство эксплуатации и низкий КПД. Непринятие на вооружение боевых образцов по результатам тех испытаний многими было воспринято как окончательный крах идеи лазерного оружия.

В XXI веке акцент сместился на создание волоконных и твердотельных лазеров, получивших широкое распространение в промышленности. Одновременно значительно продвинулись технологии наведения и сопровождения цели, реализованы новые оптические схемы и пакетное совмещение лучей нескольких лазерных блоков в единый луч с использованием дифракционных решёток. Всё это сделало появление лазерного оружие близкой реальностью.

В настоящий момент можно считать, что поступление серийного лазерного оружия в вооружённые силы ведущих стран мира уже началось. В начале 2019 года компания Rheinmetall AG сообщила об успешном завершении испытаний боевого лазера мощностью 100 кВт, который может быть интегрирован в систему противовоздушной обороны MANTIS вооружённых сил бундесвера. Армия США заключила контракт с компаниями Northrop Grumman и Raytheon на создание лазерного оружия мощностью 50 кВт для оснащения боевых машин Stryker, переоборудуемых для миссии ПВО малой дальности (М-SHORAD). Но наибольший сюрприз преподнесли турки, применив наземный лазерный комплекс для поражения боевого беспилотного летательного аппарата (БПЛА) в ходе реальных боевых действий в Ливии.

В настоящий момент большая часть лазерного оружия разрабатывается для применения с наземных и морских платформ, что вполне объяснимо меньшими требованиями, накладываемыми на разработчиков лазерного оружия в части массогабаритных характеристик и энергопотребления. Тем не менее, можно предположить, что наибольшее влияние лазерное оружие окажет на облик и тактику применения боевой авиации.

Лазерное оружие на боевых самолётах

Возможность эффективного использования лазерного оружия на боевых самолётах обусловлена следующими факторами:
— высокой проницаемостью атмосферы для лазерного излучения, увеличивающейся с ростом высоты полёта;
— потенциально уязвимых целей в виде ракет воздух-воздух, особенно с оптическими и тепловыми головками самонаведения;
— массогабаритными ограничениями, накладываемыми на противолазерную защиту самолётов и авиационных боеприпасов.

В настоящий момент наибольшую активность в вопросе оснащения боевой авиации лазерным оружием проявляют США. Одним из наиболее вероятных кандидатов на установку ЛО является самолёт пятого поколения F-35B. В процессе установки демонтируется подъёмный вентилятор, обеспечивающий F-35B возможность вертикального взлёта и посадки. Вместо него должен быть установлен комплекс, включающий электрогенератор с приводом от вала реактивного двигателя, система охлаждения и лазерное оружие с системой наведения и удержания луча. Предполагаемая мощность должна составить от 100 кВт на начальном этапе, с последующим поэтапным увеличением до 300 кВт и до 500 кВт. С учётом наметившегося прогресса в создании лазерного оружия, можно ожидать первых результатов после 2025 года и появления серийных образцов с лазером 300 кВт и более после 2030 года.

Другим разрабатываемым образцом является комплекс SHiELD компании Lockheed Martin для оснащения истребителей F-15 Eagle и F-16 Fighting Falcon. Наземные испытания комплекса SHiELD успешно прошли в начале 2019 года, воздушные тесты запланированы на 2021 год, поступление на вооружение планируется после 2025 года.

Помимо создания лазерного оружия, не менее важным является разработка компактных источников электропитания. В этом направлении работы также активно ведутся, например, в мае 2019 года британская компания Rolls-Royce продемонстрировала компактную гибридную энергоустановку для боевых лазеров.

Таким образом, можно с высокой вероятностью предположить, что в ближайшие десятилетия лазерное оружие займёт свою нишу в арсенале боевых самолётов. Какие задачи оно будет решать в этом качестве?

Применение лазерного оружия боевыми самолётами

Основной декларируемой задачей лазерного оружия на борту боевых самолётов должен стать перехват атакующих ракет противника типа воздух-воздух и землях-воздух (З-В). В настоящий момент подтверждена возможность перехвата неуправляемых миномётных мин и снарядов реактивных систем залпового огня лазерами мощностью от 30 кВт (оптимальным считается значение от 100 кВт) на дальности в несколько километров. Уже приняты на вооружение и активно эксплуатируются системы постановки лазерных и оптических помех, обеспечивающие временное ослепление чувствительных оптических головок переносных зенитно-ракетных комплексов (ПЗРК).

Таким образом, появление на борту самолётов лазерного оружия мощностью от 100 кВт и выше, позволит обеспечить защиту самолёта от ракет В-В и З-В с оптическими и тепловыми головками самонаведения, то есть ракет ПЗРК и ракет В-В малой дальности. Причём такие ракеты скорее всего будут поражаться на расстоянии до пяти километров или более в короткий промежуток времени. В настоящий момент наличие всеракурсных ракет В-В малой дальности считается одной из причин отсутствия необходимости в ведении маневренного ближнего боя, поскольку сочетание технологии «прозрачной брони» и продвинутых систем наведения позволяет наводить ракетное вооружение без существенного изменения положения самолёта в пространстве. Ограниченные массогабаритные характеристики ракет В-В и ракет ПЗРК сделают затруднительным установку на них эффективной противолазерной защиты.

Следующими кандидатурами на поражение лазерным оружием станут ракеты В-В и З-В большой и средней дальности, на которых применяются активные радиолокационные головки самонаведения (АРЛГСН). В первую очередь возникает вопрос создания радиопрозрачного защитного материала, обеспечивающего защиту полотна АРЛГСН. Помимо этого, отдельного изучения требуют процессы, которые будут происходить при облучении головного обтекателя лазерным излучением. Возможно, что образующиеся при этом продукты нагрева будут препятствовать прохождению радиолокационного излучения и срыву захвата цели. Если решение этой проблемы не будет найдено, то придётся возвращаться в радиокомандному наведения ракет В-В и З-В непосредственно самолётом или зенитно-ракетным комплексом (ЗРК). А это вновь вернёт нас к проблеме ограниченного количества каналов для одновременного наведения ракет и необходимости сохранять курс самолёта вплоть до поражения цели ракетами.

Читайте также:  Установка касперский для exchange

С ростом мощности лазерного излучения может осуществляться поражение не только элементов системы самонаведения, но и других конструктивных элементов ракет В-В и З-В, что потребует их оснащения противолазерной защитой. Применение противолазерной защиты увеличит габариты и массу, существенно снизит характеристики по дальности, скорости и маневренности ракет В-В и З-В. Помимо ухудшения тактико-технических характеристик (ТТХ), затрудняющих поражение цели, ракеты с противолазерной защитой будут более уязвимы для высокоманевренных противоракет типа CUDA, которым защита от лазерного излучения не потребуется.

Таким образом, появление на боевых самолётах лазерного оружия в какой-то степени является игрой в одни ворота. Для защиты ракет В-В и З-В от поражения лазером потребуется их оснащение противолазерной защитой, увеличение скорости полёта до гиперзвуковой для минимизации времени нахождения в зоне излучения лазера и, возможно, отказ от головок самонаведения. При этом боекомплект более крупногабаритных и массивных ракет В-В и З-В уменьшится, а сами они будут более подвержены перехвату малогабаритными высокоманевренными противоракетами типа CUDA.

Ограниченность боекомплекта самолётов пятого поколения, которая особенно проявится из-за роста размеров и массы ракет В-В, в сочетании с высокой вероятностью перехвата лазером или противоракетой, может привести к тому, что противоборствующие боевые самолёты с лазерным оружием на борту выйдут на дальность ближнего боя, вооружение для которого ещё более уязвимо для лазерного оружия.

Лазерное оружие и ближний воздушный бой (БВБ)

Допустим, что два боевых самолёта, расстреляв свой запас управляемых ракет В-В, вышли на дальность 10-15 км относительно друг друга. В этом случае лазерное оружие мощностью 300-500 кВт может осуществлять воздействие непосредственно на самолёт противника. Современные системы наведения на такой дальности вполне способны осуществлять точечное прицеливание лазерного луча на уязвимые элементы самолёта противника – кабину пилота, средства разведки, двигатели, приводы органов управления. При этом бортовое радиоэлектронное оборудование, исходя из оптической и радиолокационной сигнатуры конкретного летательного аппарата, может самостоятельно осуществлять выбор уязвимых точек и наведение на них лазерного луча.

Учитывая высокую скорость реакции, которую может обеспечить лазерное оружие, в результате боестолкновения с использованием ЛО на малой дальности скорее всего будут повреждены или уничтожены оба самолёта традиционной конструкции, в первую очередь погибнут оба пилота.

Одним из решений может стать разработка компактных высокоскоростных боеприпасов малой дальности с радиокомандным наведением, способных преодолеть защиту, обеспечиваемую лазерным оружием за счёт высокой скорости полёта и плотности залпа. Подобно тому, как для поражения одного современного танка, оснащённого комплексом активной защиты (КАЗ), требуется несколько противотанковых управляемых ракет (ПТУР), для поражения одного самолёта противника с лазерным вооружением может потребоваться одновременный залп определённого количества малогабаритных ракет ближнего боя.

Конец эпохи «невидимок»

Говоря о боевой авиации будущего нельзя не упомянуть о перспективной радиооптической фазированной антенной решетке (РОФАР), которая должна стать основой средств разведки боевой авиации. Пока неизвестны подробности о всех возможностях этой технологии, но потенциально появление РОФАР поставит крест на всех существующих технологиях снижения заметности. В случае, если с РОФАР возникнут сложности, то на перспективных самолётах будут использоваться продвинутые модели радиолокационных станций с активными фазированными антенными решётками (РЛС с АФАР), которые в сочетании с интенсивным применением технологий радиоэлектронной борьбы также способны существенно снизить эффективность технологии «stealth».

Исходя из вышеизложенного можно предположить, что в случае появления на вооружении ВВС противника самолётов с лазерным оружием эффективным решением станет применение самолётов с большим числом вооружений на внешней подвеске. Фактическим произойдёт определённый «откат» к поколению 4+/4++ и актуальными моделями могут стать глубоко модернизированные Су-35С, Eurofighter Typhoon или F-15X. Например, Су-35С может нести вооружение на двенадцати точках подвески, Eurofighter Typhoon обладает тринадцатью точками подвески, модернизированный F-15X может нести до двадцати ракет В-В.

Ненамного меньшими возможностями обладает новейший российский многофункциональный истребитель Су-57. На внешних и внутренних подвесках Су-57 суммарно может находиться до двенадцати ракет В-В. Вполне вероятно, что для российских истребителей могут быть разработаны узлы подвески, обеспечивающие, по аналогии с истребителем F-15X, размещение нескольких боеприпасов на одном узле, что позволит увеличить боекомплект истребителей С-35С и Су-57 до 18-22 ракет В-В.

Вооружение

Сближение с самолётом, оснащённым лазерным оружием, может быть крайне опасно из-за высочайшей скорости реакции ЛО. В том случае, если это произошло, необходимо максимально повысить вероятность поражения противника в минимальный срок. В качестве одного из возможных решений могут быть рассмотрены скорострельные автоматические авиационные пушки калибра порядка 30 мм с управляемыми снарядами.

Наличие управляемых снарядов позволит атаковать самолёт противника с большего расстояния, чем это возможно при применении неуправляемых боеприпасов. При этом перехват снарядов калибра 30-40 мм лазером может быть затруднён из-за их малых габаритов и большого количества боеприпасов в очереди (15-30 снарядов).

Как уже говорилось ранее, лазерное оружие в первую очередь представляет угрозу для ракет с оптическими и тепловыми ГСН, а возможно, что и для ракет с АРЛГСН. Это повлияет на характер вооружения, применяемого боевыми самолётами для противодействия самолётам противника с ЛО. Основным вооружением, предназначенным для поражения самолётов с ЛО должны стать телеуправляемые ракеты В-В с защитой от лазерного излучения. В этом случае особое значение будут иметь возможности РЛС по одновременному наведению нескольких ракет В-В на цель.

Не менее важным моментом является оснащение ракет В-В и З-В прямоточными воздушно-реактивными двигателями (ПВРД). Это позволит не только обеспечить ракете энергетику, необходимую для маневрирования на максимальной дальности, но и позволит уменьшить время воздействия ЛО за счёт высокой скорости ракеты на конечном участке полёта. Помимо этого, высокоскоростные ракеты В-В будут более сложной мишенью для противоракет типа CUDA.

Ну и наконец часть боекомплекта истребителя должны составлять малогабаритные противоракеты, размещаемые по несколько единиц на одной точке подвески, способные осуществлять перехват ракет В-В и З-В противника.

Выводы

1. Появление лазерного оружия на боевых самолётах, особенно в сочетании с малогабаритными противоракетами, потребует увеличения возимого боекомплекта ракет В-В для боевых самолётов. Поскольку ёмкость внутренних отсеков самолётов пятого поколения ограничена, потребуется размещение ракет на внешней подвеске, что крайне отрицательно скажется на малозаметности. Это может означать определённый «ренессанс» самолётов поколения 4+/4++.

2. Лазерное оружие будет представлять исключительную опасность в ближнем бою, поэтому в случае неудачной атаки с большой и средней дальности пилоты по возможности будут избегать ближнего боя с самолётами, оснащёнными ЛО.

3. Возможность противостояния боевого самолёта поколения 4+/4++/5 с большим числом ракет В-В и малозаметного самолёта поколения 5 с лазерным оружием на борту определяется производительностью ЛО и противоракет по перехвату ракет В-В. Начиная с определённого момента тактика применения массированных пусков ракет В-В по самолётам, оснащённым ЛО и противоракетами, может стать неработоспособной, что потребует переосмысления концепции многофункциональных боевых самолётов, которую мы рассмотрим в следующем материале.

Заметили ош Ы бку Выделите текст и нажмите Ctrl+Enter

источник

Добавить комментарий