Меню Рубрики

Установка заготовок на шлифовальных станках

5.3. Установка и крепление заготовок на шлифовальном станке

При круглом наружном шлифовании заготовок используют несколько способов установки и крепления: в центрах, на оправках, в патронах различных конструкций и в специальных приспособлениях.

Установка заготовок в центрах

Установка заготовки 2 в центрах показана на рис. 5.1. Задний центр 3 и передний 6 невращающиеся. Ось шлифовального круга I при обработке цилиндрической поверхности заготовки параллельна оси центров станка. Центр 6 установлен в шпинделе 5 передней бабки станка.

Рис. 5.1. Установка заготовки в неподвижных центрах круглошлифовального станка

Вращение от электродвигателя через шкив 7 клиноременной передачи передается заготовке 2 с помощью поводкового диска 4Ь пальца 8 и хомутика 9. Заготовки имеют на торцах специальные центровые отверстия, форма которых показана на рис. 5.2. Конические поверхности этих отверстий при установке з;и отовки совпадают с коническими поверхностями центров передней и идней бабок станка. Угол при вершине конуса центрового отверс i ия обычно равен 60° (рис. 5.2, а) и должен совпадать с углами центров станка, чтобы обеспечить плотное прилегание этих поверхностей друг к другу. Иногда центровые отверстия имеют кроме основного и предохранительный конус с углом 120° (рис. 5.2, б), что позволяет предохранить основную посадочную коническую поверхность центрового отверстия от повреждений случайными забоинами на торцовой поверхности детали.

Рис 5.2. Центровые отверстия: а — без предохранительною конуса, 6 — с предохранительным конусом, в — с предохранительной вы точкой, г — с криволинейной образующей, д — со сферической поверхносило центра

При повышенных требованиях к точности обработки вместо конической фаски применяют цилиндрическую предохранительную выточку (рис. 5.2, в), которая надежно предохраняет коническую посадочную поверхность отверстия от возможных забоин на торце заготовки вследствие случайных ударов.

Применяя центровые отверстия с прямолинейной образующей несущей поверхности, трудно обеспечить точное сопряжение конусов центрового отверстия заготовки с центрами станка, что ведет к снижению точности обработки. Поэтому в некоторых случаях применяют центровые отверстия с выпуклой дугообразной образующей несущего конуса (рис. 5.2, г). Преимущества центровых отверстий такой формы или сферических (рис. 5.2, д) в их нечувствительности к угловым погрешностям, лучшее удержание смазки, снижение погрешностей установки и повышение точности обработки. Заготовки, имеющие отверстия или выточки на торце диаметром бблее 15 мм, обрабатывают в грибковых («тупых») центрах.

Если заготовка перед шлифованием подвергается термической обработке, то центровые отверстия перед установкой заготовки на станок должны очищаться от окалины, загрязнений путем шлифования или притирки. Для уменьшения трения между заготовкой и центрами станка необходимо вводить в центровые отверстия густую смазку или пользоваться центрами со специальными смазочными канавками. Если эффективность консистентной или жидкой смазки оказывается недостаточной, то следует применять специальные смазки для тяжелых условий работы. Можно также использовать белила, разведенные в индустриальном масле, или смесь, состоящую из 5% графита, 5% серы, 25% мела (тщательно размельченных и просеянных) и 65% солидола. Для повышения износостойкости центров их рабочие поверхности выполняют из твердого сплава или эти поверхности покрывают антифрикционными материалами.

Размеры центра задней бабки выбираются таким образом, чтобы он не препятствовал свободному выходу круга из контакта с заготовкой в момент реверсирования продольного перемещения стола: длина выступающей части центра из пиноли должна быть на 10—12 мм больше высоты шлифовального круга. Если диаметр центра окажется больше диаметра шлифуемой заготовки, то следует использовать срезанный центр, у которого боковая часть тела центра предварительно сошлифована в форме лыски. Для обеспечения более высокой точности обработки центры круглошлифовальных станков делают неподвижными. Однако тяжелые детали и детали с отверстиями, имеющие узкие центровочные фаски, приходится обрабатывать на вращающихся центрах.

Установка заготовок на оправках

Если заготовка имеет отверстие, то она может базироваться при обработке на оправке (рис. 5.3). Конструкции оправок разнообразны. По способу крепления оправки подразделяют на центровые (рис. 5.3, а, в, ё) и консольные (рис. 5.3, г, д); по способу установки —на жесткие (рис. 5.3, а, д, е) и разжимные (рис. 5.3, б, в, г).

Рис. 5.3. Оправки; а — жесткая с прессовой посадкой, 6, в — разжимные: 1, 5 — гайки, 2 — цанга, 3 — конус, 4 — заготовка, б — штифт; г — разжимная со скользящей посадкой и закреплением гайкой: 1 — оправка, 2 — шарики, 3 — сепаратор, 4 — втулка, 5 — винт; д, с — жесткие для одной и нескольких заготовок

Читайте также:  Установка птф на 2131

Заготовки, имеющие точные базовые отверстия с допуском 0,015—0,03 мм и менее, устанавливают на жесткие оправки с небольшой конусностью (0,01—0,015 мм на 100 мм длины) или по прессовой посадке (рис. 5.3, а). При менее точных базовых отверстиях (с допуском более 0,03 мм) применяют разжимные оправки (рис. 5.3, б, в, г). Если заготовка базируется одновременно по торцу и отверстию, то применяют оправки со скользящей посадкой (зазор 0,01—0,02 мм), на которые устанавливают одну (рис. 5,3, д, в) или несколько (рис. 5.3, е) заготовок, закрепляемых гайкой.

При обработке тонкостенных заготовок применение жестких оправок может вызвать искажение формы заготовок, в этих случаях применяют разжимные оправки. У цанговых оправок (рис. 5.3, в) цанга 2 с продольными прорезями, перемещаясь с помощью гайки 5 по конусу 3, упруго разжимается и закрепляет заг отовку 4. Штифт 6 удерживает ее от поворота, а гайка 1 предназначена для снятия заготовки.

На рис. 5.3, г показана консольная шариковая оправка для коротких заготовок. В сепараторе 3 имеется шесть отверстий с шариками 2 диаметром 6—10 мм, находящимися в контакте с конусом корпуса оправки 1. Осевое перемещение сепаратора в оправке производится винтом 5 через скользящую втулку 4, к которой прикреплен сепаратор. При перемещении и раздвижении шариков заготовка центрируется и одновременно поджимается к осевому упору. Для точного центрирования необходимо, чтобы шарики не отличались по диаметру больше, чем на 2 мкм, а установочный и центрирующий конусы были соосны. На шариковых оправках можно зажимать заготовки с разницей в диаметре до 5 мкм.

К разжимных относятся оправки с гидравлическим или гидропластовым зажимом (рис. 5.4). Эти оправки легче приспособить к неточностям формы отверстия, в результате чего точнее центрируется заготовка. На таких оправках зажимают заготовки вследствие деформирования тонкостенного цилиндра, находящегося под равномерным давлением изнутри. Для создания давления используется жидкость или пластмасса. Оправки подразделяются на два типа: А и Б. Тип А для диаметров 20—40 мм, тип Б — свыше 40 мм. На корпус напрессована втулка 2 и центрирующая втулка 4, которая стопорится винтом 6. Пространство между корпусом и втулкой заливается гидропластом 5. Усилие зажима передается плунжером 3 через винт 1.

Рис. 5.4. Оправки с гидропластовым зажимом

В оправках типа А есть отверстие для выхода воздуха, которое перекрывается прокладкой 8 и винтом 7. Точность центрирования заготовки на оправке с гидропластом зависит от точности изготовления корпуса и втулки. Корпус изготовляют из стали 20Х с последующей цементацией и закалкой до твердости HRCэ 35—40. Шероховатость центровых отверстий оправки Ra = 0,16—0,32 мкм. Биение контрольных поясков и посадочного диаметра 2 мкм. Корпус оправки может служить и поводком, который заменяет хомутик.

Для передачи крутящего момента от планшайбы станка к оправкам с заготовками применяют различные поводки, хомутики и патроны (рис. 5.5). Применение патронов с самозажимающимися кулачками значительно сокращает время на закрепление заготовок и позволяет использовать их в автоматизированных станках. При закреплении заготовки с оправкой в центрах (рис. 5.5, г, положение II) зажимные кулачки 3 перемещаются в радиальном направлении по прорези и поворачиваются вокруг оси 4, сжимая при этом пружины 5 и 2. Головка 1 патрона также занимает равновесное положение, так как она может перемещаться по торцовой поверхности патрона в пределах зазоров между отверстиями и болтами 7. В свободном состоянии (рис. 5.5, г, положение I) равновесное состояние головки 1 обеспечивается плоскими пружинами 6.

Рис. 5.5. Хомутики, поводки и патроны: а — винтовой хомутик, б — самозажимной хомутик, в — торцовый поводок, г — поводковый патрон с самозажимающими кулачками

Закрепление заготовок в патронах

Если заготовка имеет отверстие, то она кроме оправки может базироваться в патроне.

При установке заготовки в мембранных патронах (рис. 5.6) достигается высокая точность обработки поверхности. Базовую поверхность отверстия заготовки 6 устанавливают на кулачки 5, закрепленные на мембранном диске 4, соединенном с планшайбой 3 на шпинделе 2 шлифовального станка. Мембранный диск может изгибаться под воздействием штока 1, связанного с гидро-или пневмоцилиндром механизма зажима заготовки. При движении штока справа налево прогиб диска приводит к сближению кулачков к центру, что позволяет установить заготовку по отверстию. При возврате штока слева направо в исходное положение кулачки прочно зажимают заготовку по внутренней цилиндрической поверхности.

Читайте также:  Установка активатора в багажник солярис

При шлифовании заготовок, длина которых в 5—10 и более раз превышает диаметр, под действием силы резания возникает прогиб заготовки вследствие недостаточной ее жесткости. При этом снижается точность шлифования, могут возникнуть колебания и вибрации в технологической системе станок — приспособление — инструмент — деталь (СПИД). В таких случаях применяют один и несколько упорных люнетов — дополнительных опор для обрабатываемой заготовки.

В индивидуальном и серийном производствах используют регулируемые люнеты с одной или двумя колодками (рис. 5.7, а) для воспринятая радиальной (горизонтальной) и касательной (вертикальной) составляющих силы резания. В конструкции люнета положение вертикальной колодки 10, закрепленной на упорном рычаге 11, устанавливается регулировочным винтом 1, перемещающимся в корпусе люнета 3. Положение горизонтальной колодки 7, закрепленной на пиноли 6, регулируется винтом 4. По мере шлифования кругом 9 заготовки 8 необходимо регулировать положения колодок, так как диаметр шлифуемой поверхности уменьшается. Окончательное положение колодок зависит от диаметра обработанной детали. При наладке станка колодки устанавливаются по эталонной детали или по калибру с ограничительными кольцами 2 и 5, которые ограничивают осевое перемещение регулировочных винтов 1 и 4. Положения колодок предпочтительнее регулировать винтом 4, так как перемещение заготовки в горизонтальном направлении оказывает наибольшее влияние на точность обработки.

Для снижения времени на регулировку в массовом производстве используют люнеты с силовым замыканием контакта между колодкой и деталью («следящий» люнет) и с самотормозящим устройством (рис. 5.7, б). В конструкции люнета упорная колодка 1 прижимается к заготовке под действием клинового механизма со звеньями 3 и 5. Положение клина 3 регулируется штоком 4 гидроцилиндра и пружиной 2. Шток 4 предназначен для отвода клина 3 в исходное положение (перемещение слева направо). Под действием пружины 2 клин 3 при отведенном штоке стремится переместиться справа налево, перемещая при этом клин 5 и колодку I по направлению к заготовке. По мере шлифования припуска колодка I автоматически поджимается к заготовке, что обеспечивает непрерывность контакта.

Сила, возникающая между колодкой и заготовкой, уравновешивает полностью или частично силу резания и зависит от жесткости пружины 2 и угла скоса плоское гей в клиновом механизме. При малом угле конуса (менее 6°) механизм становится самотормозящимся, т. е. движение клина 5 в обратном направлении становится возможным только после отвода клина 3 в исходное положение. Подобные люнеты повышают производительность и точность обработки, сокращают время настройки и регулировки, позволяют шире использовать автоматические станки и устройства.

источник

Обработка заготовок на шлифовальных станках

Характеристика методов абразивной обработки;

Характеристика методов абразивной обработки

Шлифование – это процесс обработки заготовок резанием абразивными кругами.

Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. При вращательном движении круга в зоне его контакта с заготовкой часть зерен срезает материал.

С заготовки срезается большое число тонких стружек (до 100 млн. за 1 мин.). Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что резать не может, но производит работу трения по поверхности резания.

Шлифовальные круги работают успешно на очень больших скоростях – до 30 м/с и более. Процесс резания каждым зерном осуществляется почти мгновенно.

В зоне резания выделяется большое количество теплоты. Мелкие частицы обрабатываемого материала, сгорая, образуют пучок искр, либо оплавляются.

Абразивные зерна могут также оказывать на заготовку значительное силовое воздействия. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиги одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется.

Но этот эффект менее ощутим, чем при обработке металлическим инструментом.

Тепловое и силовое воздействие на обработанную поверхность приводит к структурным превращениям, изменениям физико-механических свойств поверхностных слоев обрабатываемого материала. Так образуется дефектный поверхностный слой детали. Для уменьшения тепловых эффектов материал шлифуют при обильной подаче СОЖ.

Шлифование широко распространено. С его помощью можно производить обработку деталей с высокой точностью. Обработке подвергают различные материалы, а для заготовок из закаленных сталей шлифование является одним из наиболее распространенных методов формообразования. В отдельных случаях шлифование по эффективности соперничает с фрезерованием и точением.

Абразивные инструменты

Абразивные инструменты делят по следующим параметрам:

1. По геометрической форме и размерам.

Читайте также:  Установка кнопок на коляску

2. По роду и сорту абразивного материала.

3. По зернистости или размерам абразивных зерен.

4. По связке или виду связующего вещества.

6. По структуре или строению круга.

Форма поперечных сечений шлифовальных кругов и их размеры регламентированы ГОСТ, который предусматривает 22 профиля и несколько сотен типоразмеров.

Зерна абразивных инструментов представляют собой искусственные или естественные минералы и кристаллы. Из естественных минералов применяют алмаз, кварц, корунд, наждак, кремень, гранат.

К искусственным минералам относятся:

1. Электрокорунд нормальный (Э).

4. Карбид кремния зеленый (КЗ).

5. Карбид кремния черный (КЧ).

8. Электрокорунд хромистый (ЭХ).

9. Электрокорунд титанистый (ЭТ).

Абразивные материалы отличаются высокой твердостью. Для определения твердости наиболее распространен метод царапания острием одного тела по поверхности другого. Твердость определяют по минералогической шкале.

Зерна абразивного материала разделяют по крупности на группы и номера. Основной характеристикой номера зернистости является количество и крупность основной фракции. Номер зернистости связан с размерами зерна основной фракции (в мкм). При изготовлении инструмента зерна скрепляют друг с другом цементирующим веществом – связками. Наиболее широко применяют инструменты, изготовленные на керамической, бакелитовой или вулканитовой связках.

Керамическую связку делают из глины, полевого шпата, кварца и других веществ путем их тонкого измельчения и смешивания в определенных пропорциях.

Бакелитовая связка состоит в основном из искусственной смолы – бакелита. Вулканитовая связка представляет собой искусственный каучук, подвергнутый вулканизации для превращения его в прочный и твердый эбонит.

Под твердостью абразивного инструмента понимают способность связки сопротивляться вырыванию абразивных зерен с рабочей поверхности инструмента под действием внешних сил.

По степени твердости инструменты делят на семь групп и 16 степеней твердости.

Структура абразивного инструмента характеризует его внутренне строение, т.е. соотношение между объемным содержанием абразивных зерен, связки и пор в единице объема инструмента.

Для шлифования заготовок из твердых сплавов и высокотвердых материалов успешно применяют алмазные круги. Алмазный круг состоит из корпуса и алмазоносного слоя. Корпус делают из алюминия, пластмасс или стали. Толщина алмазоносного слоя у большинства кругов составляет 1,5 – 3 мм.

На шлифовальных кругах наносят условные обозначения, называемые маркировкой. Маркировка необходима для правильного выбора инструмента при проведении конкретной работы. Условные обозначения располагают в определенной последовательности:

1. Абразивный материал и его марка.

Например, условные обозначения сокращенной маркировки 44А40С26К5 расшифровывают следующим образом:

5. Связка керамическая разновидности К5.

Используют также более полную маркировку кругов.

Обработка заготовок на шлифовальных станках

Детали современных машин представляют собой сочетание плоских и круговых цилиндрических, конических наружных и внутренних поверхностей. Другие поверхности встречаются редко. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 27.

Рис. 27. Основные схемы шлифования:

а – плоское; б – круглое; в – внутреннее.

Для всех технологических способов шлифовальной обработки главным движением резания Vк (в м/с) является вращение круга.

При плоском шлифовании возвратно-поступательное перемещение заготовки является продольной подачей Sпр (в м/мин) (рис. 27. а). Для обработки поверхности на всю ширину b заготовка или круг должны перемешаться с поперечной подачей Sп (в мм/дв. ход). Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически производится и подача Sв (в мм) на глубину резания, которая осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

При круглом шлифовании продольная подача происходит за счет возвратно-поступательного движения заготовки (рис. 27. б). Подача Sпр (в мм/об) соответствует осевому перемещению заготовки за один ее оборот. Вращение заготовки является круговой подачей Sкр(в м/мин)

где nзаг частота вращения заготовки, об/мин; Dзаг диаметр заготовки, мм.

Подачу Sп (в мм/дв.ход, мм/ход) на глубину резания для приведенной схемы обработки производят при крайних положениях заготовки.

Движения, осуществляемые при внутреннем шлифовании,показаны на рис. 27. в.

Некоторые трудности вызывает шлифование отверстий малого диаметра. Для обеспечения необходимой скорости резания шлифовальный круг имеет частоту вращения, доходящую до десятков и сотен тысяч в минуту. Шлифование на более низких скоростях не обеспечивает необходимого качества обработки и снижает стойкость кругов.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 11338 — | 7602 — или читать все.

источник

Добавить комментарий