Меню Рубрики

Установка заготовок правило 6 точек

Правило шести точек

ОСНОВЫ ТЕОРИИ БАЗИРОВАНИЯ ДЕТАЛЕЙ

При эксплуатации машин и механизмов необходимо обеспечивать определенное положение их элементов (детали и узлы).

При изготовлении деталей на станках они так же должны быть определенным образом сориентированы в пространстве относительно элементов станка или положения режущего инструмента. Поэтому для обеспечения точности обработки и сборки используют определенные правила в соответствии с теорией базирования.

2.1.Элементы базирования: опорная точка, комплект баз, закрепление, установка. Правило «шести точек».

В соответствии с ГОСТ21495- под базированием понимают — придание заготовке или изделию требуемого положения относительно выбранной системы координат.

Базами называют поверхности линии или точки используемые при базировании.

При механической обработке на станках базированием принято считать придание заготовки или детали требуемого положения относительно элементов станка, которые определяют траекторию движения подачи используемого инструмента.

При установке деталей на станках необходима не только правильная ориентация, но и закрепление — для обеспечения условия неподвижности.

Известно, что для полного исключения подвижности твердого тела в пространстве необходимо лишить его шести степеней свободы: трех поступательных перемещений вдоль осей координат и трех вращений вокруг указанных осей.

Поэтому многие задачи связанные с расчетом точности при базировании и установке возможно решать теоретически посредством наложения «связей».

Под связями подразумеваются ограничения позиционного (геометрического) или кинематического характера, накладываемые на движение точек рассматриваемого тела (заготовки или детали).

В технологии машиностроения позиционные связи предполагаются двухсторонними, т. е. лишающими тело возможности перемещения в обе стороны в направлении действия связи.

Эти связи не зависят от времени и поэтому их считают стационарными и позиционными.

При установке заготовки на опорные точки приспособлений каждая из них реализует только одну одностороннюю связь.

Под опорной точкой подразумевается идеальная точка контакта поверхностей заготовки и приспособления, лишающая заготовку одной степени свободы, делая невозможным ее перемещение в направлении перпендикулярном опорной поверхности.

Для полного базирования деталей (заготовок) приспособлений на металлорежущих станках необходимо и достаточно создать в нем 6 опорных точек расположенных определенным образом относительно базовых поверхностей заготовок или деталей.

В зависимости от числа опорных точек, с которыми база находится в контакте различают:

установочную базу A, находящуюся в контакте с тремя опорными точками и лишающую тело трех степеней свободы (точки а1, а2, а3);

направляющую базу B, находящуюся в контакте с двумя опорными точками и лишающую тело двух степеней свободы (точки в1, в2);

опорную базу C, имеющую контакт с одной опорной точкой и лишающую тело одной степени свободы.

Рисунок 2.1 Схема расположения призматической заготовки в пространстве.

Каждая из названных баз определяет положение заготовки относительно одной из плоскостей системы координат в направлении перпендикулярном этой базе, т.е. в направлении одной из координатных осей.

Очевидно, что для полного ориентирования заготовки в приспособлении необходим комплект из трех баз.

В практике во многих случаях нет необходимости в полном ориентировании с использованием всего комплекта из трех баз («неполная схема базирования»).

Например, при обработке плоскости ориентирование заготовки на станке в направлении горизонтальных осей координат для получения требуемого размера а не имеет значения, поэтому боковые поверхности заготовки теряют значение баз (боковые поверхности используются только для закрепления и в процессе базирования не участвуют).

Рисунок 2.2 Пример неполной схемы базирования призматической заготовки. а – выдерживаемый размер

Для получения у заготовки двух размеров, например, a и в возникает необходимость ее ориентирования с помощью установочной базы –A и с помощью направляющей базы — B.

Рисунок 2.3 Пример неполной схемы базирования призматической заготовки. а, в – выдерживаемые размеры

В случае, когда требуется обеспечить выполнение трех размеров а , ви с, для ориентирования заготовки необходимо использование всего комплекта из трех баз, т. е. поверхностей A, B, C.

Рисунок 2.4 Пример полной схемы базирования. а, в, с – выдерживаемые размеры

При обработке цилиндрических заготовок для их базирования во многих случаях тоже нет необходимости в использовании комплекта всех трех баз.

Так при установке валов в центрах (для обтачивания на токарных станках или наружного шлифования) они базируются по конусам центровых отверстий и лишаются пяти степеней свободы.

Рисунок 2.5 Схема базирования: «короткий конус» (центра).

Таким образом, в зависимости от технологической задачи, решаемой при обработке заготовки, при ее базировании в приспособлении или на станке могут быть использованы одна или все три базы, содержащие три, четыре, пять или шесть опорных точек.

главная базирующая поверхность — это поверхность при установке на которую деталь имеет наибольшую устойчивость. Она содержит 3 (или более) опорные точки, является наиболее протяженной в сравнении с другими поверхностями;

свободная (несопрягаемая) поверхность — не участвует ни в обработке, при сборке не контактирует с другими поверхностями;

Читайте также:  Правила установки телефонных аппаратов

исполнительная поверхность — которая в данный момент может обрабатываться.

Дата добавления: 2014-01-04 ; Просмотров: 4123 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Правило шести точек

Правило шести точек. В пространстве свободное тело имеет шесть степеней свободы перемещения: три поступательных движения в направлении осей X—Y—Z и три вращательных движения вокруг тех же осей. При установке детали в приспособление ставится задача лишить ее всех шести степеней свободы. Это можно сделать путем прижатия детали к шести неподвижным опорам, расположенным в трех координатных плоскостях. Каждая координата лишает тело одной степени свободы. Например, в случае призматической детали (рис. 1.8) задание трех координат, связывающих нижнюю часть детали XOZ с координатной плоскостью XOZ, определяет расстояния трех точек этой плоскости детали, лишая одновременно деталь трех степеней свободы: возможности перемещаться в направлении оси Yи вращаться вокруг осей, параллельных осям X и Z. В общем случае координатная система любой детали может занимать любое положение. Две координаты, определяющие положение детали, одновременно лишают ее возможности перемещаться в направлении оси Xи вращаться вокруг оси, параллельной оси У, т.е. лишают тело еще двух степеней свободы. Шестая координата определяет положение детали относительно координатной плоскости XOY, лишая ее последней оставшейся степени свободы.

Рис. 1.8. Схема определения положения призматической детали относительно трех координатных осей:

Положение цилиндрической детали относительно трех выбранных координатных плоскостей определяется также шестью координатами (рис. 1.9, а). Поскольку цилиндрическая поверхность образована вращением образующей прямой относительно оси, в качестве одной из осей координатной системы удобно взять ее ось, представляющую собой линию пересечения двух координатных плоскостей детали: YOZ и XOZ. Поэтому две координаты 1 и 2, связывающие точки цилиндрической детали с координатной плоскостью XOZ и расположенные на оси детали, лишают валик двух степеней свободы: возможности перемещаться параллельно оси Yи вращаться вокруг оси, параллельной оси X. Две координаты 3 и 4, связывающие точки, лежащие на плоскости YOZc координатной плоскостью YOZ, лишают валик двух степеней свободы: возможности перемещения в направлении оси X и вращения вокруг оси Y. Координата 5, соединяющая точку, расположенную на плоскости XOYв точке ее пересечения с осью детали, лишает валик пятой степени свободы — возможности перемещаться в направлении оси Z. Координата 6 связывает точку, лежащую на плоскости XOZ, с координатной плоскостью XOZ и лишает валик последней степени свободы — возможности вращения вокруг собственной оси, параллельной координатной оси Z.

С уменьшением длины валика и превращением его в диск расположение координат, лишающих его шести степеней свободы, несколько меняется (см. рис. 1.9, б).

Рис. 1.9. Схема определения положения тел вращения относительно трех координатных плоскостей:

Таким образом, если в рассмотренных схемах (см. рис. 1.8 и 1.9) выбранные координатные оси X, Y и Z рассматривать принадлежащими одной из деталей, к которой присоединяется другая, и привести в соприкосновение с ними соответствующие поверхности присоединяемой детали, то шесть координат, определявших положение детали, превращаются в шесть опорных точек 1—6 (рис. 1.10).

Рис. 1.10. Схема превращения координат в шесть опорных точек

источник

Способы установки деталей. Правило шести точек

Установка детали для обработки может быть осуществлена различными способами.

1. Установка детали непосредственно на столе станка (или в универсальном приспособлении) с выверкой ее положения относительно стола станка и инструмента. Этот способ требует много времени, и его применяют в единичном и мелкого размера производится от поверхности А-А, которая в данном случае является серийном производстве, когда экономически нецелесообразно изготовлять специальные приспособления вследствие малой производственной программы.

2. Установка детали на столе станка по разметке. Разметкой называется нанесение на заготовку осей и линий, определяющих положение обрабатываемых поверхностей. При разметке заготовку предварительно покрывают меловой краской; после того как она высохнет, заготовку помещают на разметочную плиту, в призме или на угольнике, и наносят линии на поверхности при помощи штангенрейсмуса, циркуля, угольника, штангенциркуля с острыми губками и других инструментов. Для того чтобы линии были видны в случае удаления краски, вдоль линий наносят керном точки через некоторые промежутки. Разметка имеет целью обозначить на заготовке такое положение обрабатываемых поверхностей, чтобы припуски для всех поверхностей были достаточными.

Разметка требует значительной затраты времени высококвалифицированного специалиста-разметчика, от индивидуальных качеств которого зависит точность разметки. Установка по разметке не обеспечивает высокой точности обработки. Такой способ установки применяется при обработке крупных отливок сложной формы и крупных поковок в единичном и мелкосерийном производстве (главным образом в тяжелом машиностроении).

3. Установка детали в специальном приспособлении. Этот способ установки обеспечивает придание и закрепление определенного положения детали для обработки (причем деталь ориентируется относительно режущего инструмента) с достаточно высокой точностью и с малой затратой времени.

Читайте также:  Правила установки сэндвич панелей

При обработке деталей с применением специальных приспособлений отпадает необходимость разметки заготовок и выверки их положения на станке; таким образом, исключается дорогая и трудоемкая операция, к тому же вносящая погрешности в размеры, зависящие от индивидуальных качеств разметчика.

Установка и закрепление деталей на станках при помощи специальных приспособлений осуществляются значительно легче и быстрее, чем установка и крепление непосредственно на станках. Рациональная конструкция приспособления обеспечивает минимальные затраты времени на установку и на вполне надежное закрепление детали. Применение специального приспособления обеспечивает высокую и наиболее стабильную точность обработки для всех деталей, изготовляемых с его помощью; благодаря этому в наибольшей степени обеспечивается взаимозаменяемость деталей. Помимо того, применение приспособлений позволяет вести обработку при более высоких режимах резания, значительно сокращает вспомогательное время, в том числе и на измерение деталей в процессе обработки, допускает совмещение основного и вспомогательного времени, обеспечивает возможность автоматизации и механизации процесса механической обработки.

Для получения надлежащей точности размеров детали, обрабатываемой при помощи приспособления, необходимо, чтобы само приспособление было изготовлено весьма точно и чтобы из-за неточности отдельных элементов приспособления не происходило нарастания погрешностей при обработке. В связи с этим при определении допусков на размеры приспособлений необходимо назначать такие предельные отклонения, чтобы они были в два раза меньше предельных отклонений обрабатываемой детали. Необходимая точность обработки детали в этом случае будет обеспечена.

Вопрос о целесообразности использования приспособления при обработке детали возникает обычно в единичном и мелкосерийном производстве, так как изготовление приспособления, тем более сложного, для обработки небольшого количества деталей большей частью неэкономично.

Рисунок 3.5 — Схема базирования детали (правило шести точек)

В единичном и мелкосерийном производстве применяются преимущественно нормализованные приспособления; возможно также ис­пользование специализированных приспособлений, при этих видах производства они применяются редко, только в тех случаях, когда без них не представляется возможным выполнить требования технических условий на обработку деталей, так как затраты на изготовление приспособлений не окупаются выгодами, которые они дают. Чем больше выпуск деталей, тем экономически выгоднее применять специальные приспособления, т.к. затраты на их изготовление раскладываются на большее количество деталей.

В крупносерийном и массовом производстве применение приспособлений является обязательным, и в экономическом отношении оно всегда выгодно. При повторяемости одних и тех же деталей, обрабатываемых в больших количествах, специальные приспособления дают технико-экономический эффект, который со значительной выгодой окупает затраты на них.

При этих видах производства в каждом отдельном случае решается лишь вопрос о конструкции приспособления и о том, на какое количество одновременно обрабатываемых деталей следует конструировать приспособление.

В специальных приспособлениях предусматриваются установочные поверхности для базирования деталей.

Как известно из механики, твердое тело в пространстве имеет шесть степеней свободы: три возможных перемещения (I, II, III, рис. 3.5) вдоль трех произвольно выбранных взаимно перпендикулярных осей координат X, Y и Z и три возможных вращательных движения относительно тех же осей (IV, V, VI). Лишить деталь (тело) каждой из шести степеней свободы можно, прижав деталь к соответственно расположенной неподвижной точке приспособления (или стола станка), называемой одноточечной опорой.

Каждая неподвижная одноточечная опора лишает деталь одной степени свободы, т.е. возможности перемещения тела по направлению нормали к поверхности чела в точке опоры. Для того, чтобы лишить деталь всех шести степеней свободы, она должна базироваться па шести неподвижных точках. Правило шести точек заключается в том, что каждое тело (деталь) должно базироваться на шести неподвижных точках, при этом тело лишается всех шести степеней свободы.

Эти шесть точек должны быть расположены в трех взаимно пер­пендикулярных плоскостях: три опорные точки (1, 2 и 3) в плоскости XOZ две точки (4 и 5) в плоскости YOZ и одна точка (6) в плоскости ХОY.

Три координаты (1, 2, 3) определяют положение детали относительно плоскости YOZ:

а) лишают деталь возможности перемещаться в направлении оси Y;

б) лишают деталь возможности вращаться вокруг осей Х и Z. Таким образом, три координаты (1, 2, 3) лишают деталь трех степеней свободы.

Две координаты (4, 5) определяют положение детали относительно плоскости YOZ:

а) лишают деталь возможности перемещаться в направлении оси X;

б) лишают деталь возможности вращаться вокруг оси Y.

Следовательно, две координаты (4, 5) лишают деталь еще двух степеней свободы.

Одна координата (6) определяет положение детали относительно плоскости ХОY, лишая деталь возможности перемещаться в направлении оси Z, т.е. одна координата (6) лишает деталь еще одной — последней — степени свободы.

Читайте также:  Православный крест правила установки

Следовательно, для определения положения детали в пространстве необходимо и достаточно иметь шесть опорных точек: 1, 2 и 3 определяют опорную плоскость; 4 и 5 определяют направляющую плоскость; 6 — упорную плоскость.

При большем числе неподвижных опор деталь опирается не на все опоры, а если все же она будет искусственно прижата (притянута) ко всем неподвижным опорам, то она будет деформирована действием зажимов.

Для надежного закрепления при обработке деталь должна быть прижата одновременно ко всем шести опорным точкам.

При базировании цилиндрической детали на призме (рис, 3.6) она лишается четырех степеней свободы четырьмя неподвижными одноточечными опорами (1. 2, 3 и 4) и остальных двух степеней свободы — от перемещения детали вдоль призмы и вращения детали вокруг своей оси — лишается одноточечными опорами (5 и 6), для чего в точке 5 необходимо поставить упор, а в точке 6 — шпонку.

При обработке деталей с плоскими поверхностями, особенно черными или предварительно грубо обработанными, базирующие поверхности приспособления заменяют опорными штифтами, так как поверхности обрабатываемой детали и поверхности приспособления (или станка) вследствие погрешностей их изготовления будут при установке соприкасаться не всеми точками, а только некоторыми.

1,2,3,4,5,6- одноточечные опоры

Рисунок 3.6 — Базирование цилиндрической детали на призме

Три опорных штифта заменяют опорную плоскость, два — направляющую плоскость и один штифт — упорную плоскость; шесть точек в виде штифтов определяют положение детали, устанавливаемой на плоские поверхности.

Иногда деталь устанавливается для обработки одновременно по двум поверхностям — двум плоским или двум цилиндрическим или по одной плоской и одной цилиндрической. При этом две плоские поверхности могут быть взаимно параллельными или перпендикулярными. При установке по двум поверхностям вместо полных поверхностей применяются опорные штифты, которые могут быть неподвижными или регулируемыми.

Применение опорных штифтов вместо плоских поверхностей имеет ряд преимуществ, к числу которых относятся следующие:

— опорная поверхность штифта ввиду ее малых размеров не засоряется стружкой,

— точность обработки опорной (установочной) поверхности штифта достигается легче, чем точность обработки плоской поверхности;

— правильность и точность установки детали обеспечивается легче, чем при установке на плоскую поверхность;

— в случае износа штифты легко заменить.

Следует отметить, что при использовании в качестве установочной базы точно обработанной поверхности вместо опорных штифтов применяют скаленные опорные пластины, которые устраняют возможность получения вмятин.

Нижеследующие примеры иллюстрируют различные случаи установки детали по двум поверхностям (рис. 3.7).

На рис 3.7.а показана установка детали по двум параллельным плоскостям. Деталь 5 устанавливают на одну (из двух параллельных) плоскость (А), а другая плоскость (Б) подпирается самоустанавливающимся штифтом 1 с пружиной 2. Положение фиксируется винтом 3 через вкладыш 4. Стрелками показано направление сил зажатия.

Рисунок 3.7 — Схемы установки деталей по различным поверхностям

На рис. 3.7.б изображена установка детали 1 по двум взаимно пер­пендикулярным плоскостям. Одна поверхность детали опирается на плоскую поверхность 2, а другая — на поверхность 3.

Установка детали па плоскость и цилиндрическую поверхности показана на рис. 3.7.в.

На рис. 3.7.г изображена установка детали на цилиндрическую поверхность — палец 1 и плоскую поверхность 2, причем деталь подклинивается клином 3.

Если деталь не подклинить, то она вследствие погрешности обработки не будет плотно прилегать к поверхности 1, или не наденется на палец.

При установке детали на срезанный палец 1, как показано на рис. 3.7.д, деталь опирается на поверхность 2 без помощи клина.

Если деталь 1 имеет два отверстия и должна быть установлена па два пальца 2 и 3, то один из них (2) должен быть срезанным (рис. 3.7, е), иначе точно установить деталь не представится возможным вследствие неизбежной неточности обработки; при этом для облегчения установки один палец должен быть короче другого.

Цилиндрические детали (валики, втулки и т.п.) при сверлении и (фрезеровании) базируются обычно своими наружными цилиндрическими поверхностями на опорные призмы, которые изготовляют преимущественно с углом α = 90° (см. рис. 3.6), хотя иногда встречаются призмы с углом 60 и 120°.

Ступенчатые цилиндрические детали нельзя устанавливать на две неподвижные призмы, т.к. неточность размеров диаметров, получаемое при обработке, будет изменять положение оси детали по высоте; при такой установке затруднительно также достигнуть точного положения оси детали в горизонтальной плоскости.

Потому при установке ступенчатой цилиндрической детали (валика) рис. 3.7.ж следует применять одну призму неподвижную (1) (и более длинную), а другую — регулируемую (2).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9252 — | 7836 — или читать все.

источник

Добавить комментарий

Adblock
detector