Меню Рубрики

Установка заземления зданий и сооружений

Заземление здания

Подписка на рассылку

Заземление зданий должно осуществляться в соответствии нормам ПУЭ, а именно главы 1.7. Также важными регулирующими документами являются ПТЭЭП и технический циркуляр «О заземляющих электродах и проводниках».

Лучше всего монтировать контур заземление зданий из специальных заводских комплектующих с хорошими антикоррозийными свойствами. Но если речь идет о сравнительно небольшом частном доме, контур заземление зданий можно сделать и самостоятельно, например по самой распространенной схеме «треугольник».

Рисунок 1. Контур заземления типа «треугольник»

В целом заземлители всегда монтируются в ряд или образуют определенную геометрическую фигуру — в зависимости от характеристик используемой для монтажа площади.

В каждом отдельном случае должен выполняться расчет заземления зданий, который помогает определить, какого сечения должен быть заземляющий проводник и каким именно будет контур заземления. Например, когда осуществляется заземление зданий и сооружений с минимальным количеством электрооборудования, требуемое сопротивление заземления может быть достигнуто и за счет единичного модульного глубинного заземлителя, благодаря чему объемы работ (в том числе и земляных) существенно уменьшаются. Ну а заземление зданий, характеризующихся большим энергопотреблением, должно выполняться через контур, в котором три и больше заземлителей.

Схема заземления здания в большинстве случаев сложностью не отличается. Она предполагает наличие забитого в землю контура заземления, от которого протянут проводник (например, провод ПВ или ПуГВ) к вводно-учетному (для частных особняков) или этажному (для квартирных и прочих многоэтажек) электрощиту и заводится на заземляющую шину. А уже от нее осуществляется заземление квартир или отдельных электроприборов. В целом схема заземления здания получается довольно простой, эффективной и удобной в реализации.

Рисунок 2. Упрощенная схема заземления и молниезащиты

Стоит отметить, что заземление зданий и сооружений часто сопряжено с проблемой невозможности размещения контура заземления на прилегающей территории. В таком случае контур можно забивать прямо в подвале заземляемого здания.

Нужно знать, что заземление зданий является важным для обеспечения их электробезопасности мероприятием, поэтому, не обладая должными знаниями и навыками, выполнять данную работу самостоятельно строго не рекомендуется.

источник

ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ

Наличие защитного заземления – обязательное условие ввода в эксплуатацию жилых зданий и подключения промышленных электроустановок, отсутствие соединения с землей чревато поражением людей током и возгоранием оборудования.

Устройство контура и способ его заложения выбирается заранее с учетом ожидаемой нагрузки, требований безопасности и параметров грунта. Основным ориентиром служат нормы ПУЭ (гл.1.7) и ПТЭЭ, экономия на материалах и отклонения от правил монтажа недопустимы.

ТРЕБОВАНИЯ К ЗАЩИТНОМУ ЗАЗЕМЛЕНИЮ

Заземляющее устройство представляет собой совокупность проводников, соединяющих потенциально опасные металлические элементы внутри дома с землей или ее эквивалентами.

Целью его заложения является защита людей от поражения током при пробое изоляции фазного провода и других аварийных ситуациях. Наличие защитного заземления устраняет угрозу замыкания фазы на трубах или корпусах приборов, большие токи уходят через него на участки с меньшим сопротивлением.

Достичь полного поглощения землей опасных электротоков невозможно, но сопротивление защитного контура делается минимально возможным.

Значение верхнего предела зависит от подключаемой нагрузки и типа сети, а именно:

  • в частных домах, запитанных от сети в 220/380 В это значение поддерживается в пределах 30 Ом;
  • электроустановки с глухим заземлением нейтрали и напряжением до 1000 В подключаются к заземляющим устройствам с сопротивлением не более 4 Ом, выше 1000 и большими токами замыкания – 0,5;
  • при подключении к заземлению молниеприемников или присоединении дома к газопроводу сопротивление линии не должно превышать 10 Ом.

Точные требования к этой величине прописаны в ПУЭ (1.7.90), ее корректировка при отклонении удельного электрического сопротивления грунта от нормы обязательна.

На увлажненных или солесодержащих почвах эффективность защитного контура будет максимальной, на сухих, каменистых или вечномерзлых участках – наоборот. Вторым фактором влияния на величину сопротивления является конфигурация и площадь самого заземлителя, при серьезных требованиях к безопасности число или длину электродов увеличивают.

Стандартная схема заземляющего устройства состоит из внутреннего и внешнего контура, соединяемого в единую систему. Внешняя часть закладывается на безопасном от дома, но не чрезмерном расстоянии, оптимальный диапазон варьируется от 1 до 10 м от входа. Она в обязательном порядке углубляется в землю, ниже уровня промерзания грунта.

Конфигурация внешнего контура заземления чаще всего имеет геометрическую форму треугольника, полосы, квадрата. Электроды изготавливаются из стали, обычного железа или меди и располагаются горизонтально и вертикально.

Горизонтальные элементы (включая соединительные полосы) имеют сечение от 50 мм 2 и выше и закладываются в траншеи глубинной в 50-70 см. Вертикальные заземлители размещаются с интервалом от 1,5 м, углубляются без наклона на 2,5-3 м вниз и выступают из дна траншеи на 10-20 см.

К монтажу наружного защитного заземления приступают после составления и проверки схемы, при использовании черных металлов все соединения выполняются исключительно сварным способом.

Нахлест и заход горизонтальных и вертикальных электродов друг на друга обязателен, места сварки защищают от коррозии с помощью битума или специальных лаков. Вид сварки роли не играет, но надежность и непрерывность контактов обеспечивается всегда.

СПОСОБЫ УСТРОЙСТВА НАРУЖНОГО КОНТУРА

В зависимости от конфигурации и типа заземлителя выделяют два основных способа монтажа защитного заземления: традиционный и глубинный. В первом случае в землю закладывается самодельная сварная конструкция из нескольких (чаще всего – трех) вертикальных элементов с ровным и одинаковым сечением.

Монтаж такого устройства заземления осуществляется с помощью:

  • вибрационных молотов, используемых при забивке трубного, углового или профилированного проката;
  • ручных инструментов (кувалды или зажимов);
  • сверлильных устройств с зажимами, оптимальными при необходимости ввинчивания круглых стержней.
Читайте также:  Установка keyless entry system на лада гранта

К преимуществам традиционного способа обустройства защитного заземления относят сравнительно низкую смету, простоту монтажа и возможность самостоятельного выполнения работ. Минусы связаны с близостью к нулевому уровню и заложением сварных конструкций в землю, способ считается недостаточно надежным и безопасным.

Отдельные требования выдвигаются к месту расположения электродов, чем меньше на этом участке будут находиться люди, тем лучше. Оптимальной признана северная (теневая) сторона, как более сырая.

Глубинный способ монтажа предполагает закладку вертикальных электродов (модулей) на глубину до 15-30 м. Сварные соединения отсутствуют, элементы длиной около 1,5 м соединяются резьбовыми муфтами с токопроводящей смазкой и углубляются с помощью вибрационных молотов с энергией удара до 20-25 Дж.

Конфигурация заземлителя зависит от параметров участка и типа объекта, для жилых домов одного стержня более чем достаточно.

К преимуществам этого способа относят заводское качество модулей, отсутствие трудоемких земляных работ и возможность устройства защитного заземления в подвалах или внутри периметра дома.

Монтаж проводится при любых погодных условиях (при желании и наличии оборудования – своими силами), единственным минусом считается дороговизна самого устройства. В ходе выполнения работ штыри берегут от загибания, резьбовые соединения периодически подкручиваются.

Потребность в альтернативных вариантах и дополнительных мерах возникает при устройстве заземления на скалистых, выщелоченных или сухих участках. При невозможности снижения удельного сопротивления почв или закладки вертикальных стержней длиной более 1 мм разумной альтернативой признано электролитическое заземление.

Суть данного способа заключается в размещении рядом с объектом L-образного перфорированного заземлителя, заполненного смесью минеральных солей.

Присоединение к остальным элементам происходит по стандартной схеме, ориентировочный срок службы системы составляет 50 лет. Соли обновляются раз в 10 лет, к минусам способа относят дороговизну и отрицательное влияние минералов на фундаментные конструкции. Но на участках с вечной мерзлотой этот способ считается более выгодным, чем закладка стержней до глубины незамерзающих водоемов или монтаж сложных конструкций.

ПРАВИЛА И ПОРЯДОК МОНТАЖА

Работы выполняются в два этапа, чаще всего первым обустраивается внутренний контур. Внутри здания заземлению подлежат практически все металлические элементы, включая несущие каркасы, трубные коммуникации, вентиляционные каналы, корпуса распределительных устройств, трансформаторов и осветительных приборов.

Исключение делается для газовых, отопительных и подающих горячую воду труб, несущих тросов, свинцовых оболочек, железных дверей, съемных и подвижных деталей.

Металлические конструкции соединяются в единый внутренний контур с помощью проводников с нулевой фазой с жесткими требованиями к сечению и профилю. В частности, для этих целей используются стальные трубы с толщиной стенок от 2,5 мм, оцинкованная проволока с диаметром не менее 5,5 мм, уголки 3×10 мм и профиль с сечением от 25 мм 2 .

Места стыков проводников и поверхности металлических конструкций нуждаются в зачистке и выпрямлении, монтаж этих элементов в идеале осуществляется сварным способом.

Проводники укладываются строго по вертикали или горизонтали по отношению к строительным конструкциям, к общим правилам монтажа полос заземления относят:

  • обеспечение 10-50 см отступа от стен и 40-60 см – от пола (плотное примыкание допускается исключительно в сухих помещениях).
  • использование защитных кожухов или невозгораемых материалов при прокладке сквозь перекрытия и стены в помещениях повышенной влажностью или агрессивной средой;
  • фиксацию полос дюбелями с помощью строительного пистолета с шагом крепления не более 0,6-1 м;
  • обеспечение свободного доступа к магистралям для осмотра и обновления соединений.

Линию защищают от механических повреждений и коррозийных воздействий, монтаж в пол допускается лишь при проходе через двери и наличии соответствующих защитных кожухов. Розетки или электрические устройства подключаются к заземляющей магистрали напрямую (в том числе – с помощью болтов), исключительно параллельно.

С разводкой и устройством питающих линий разбираются заранее, правильный подход подразумевает использование трехжильного кабеля и специальных розеток с клеммой между гнездами.

При монтаже соединительной шины заземления используется проводник с сечением не ниже внешнего, отклонение от этого правила недопустимо. Шина выравнивает потенциалы подсоединяемых установок и обеспечивает вывод разных по мощности приборов на один общий защитный заземлитель.

Предусматривается как минимум два выхода от внутренней части на внешнюю, при прохождении соединения через стены наличие защитного кожуха, заполненного цементом или невозгораемыми материалами, обязательно.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

источник

Заземление зданий. Расчет системы заземления

Цвет провода заземления — желтый с салатовой полосой. Каждый, кто самостоятельно монтировал хоть раз проводку, задавался вопросом: «А зачем, собственно, он нужен?». Так ли важно усложнять конструкцию и нести лишние расходы? С какой целью делается заземление зданий? А если оно, заземление, действительно необходимо, то как смонтировать эту систему правильно, чтобы она выполняла свои функции?

Для чего нужно заземление зданий

Наши далекие предки сталкивались только с проявлениями атмосферного электричества. Но уже тогда люди знали, насколько опасными могут быть разряды молнии и называли их «гневом богов». Раскопки археологов показали, что уже в те далекие времена люди понимали некоторые принципы действия атмосферного электричества и пытались создавать примитивные системы защиты. Эти находки представляли собой длинные медные прутья, возвышающиеся над зданиями, противоположным концом погруженные в грунт.

Читайте также:  Установка minergate на centos

источник

Объединение заземления для молниезащиты с заземлением для электрических установок

Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространенными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.

Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?

Читайте также:  Установка блинов hyundai accent

Зачем нужно объединение контуров заземления?

При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдет ее сама». Вот почему электрическое объединение заземлений обязательно.

По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путем соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жесткие шины и т.п.).

Одно общее или отдельные заземляющие устройства?

К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространенный вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединенных металлической полосой, заглубленной не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.

Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или еще меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещенные на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.

Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.

Электрическое соединение заземлений

Схема с несколькими заземлениями, соединенными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.

Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.

Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.

Выводы

Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает ее. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надежное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.

источник

Добавить комментарий