Меню Рубрики

Установки безвоздушного распыления огнезащиты

Установки безвоздушного распыления огнезащиты

Агрегат штукатурный Т-103

Описание товара: Агрегат штукатурный Т-103

Дальность подачи по верт. м

Дальность подачи по гор. м

Предназначен для циклического приготовления.транспортирования и нанесения на обрабатываемую поверхность отделочных и штукатурных растворов, огнезащитных составов из готовых композиционных сухих смесей.
Масса кг. 270

Установка для нанесения малярных составов СО-169

Назначение : для транспортирования и нанесения на обрабатываемую поверхность методом безвоздушного распыления различных растворов. Это могут быть малярные, огнезащитные, дезинфицирующие, масляные, клеевые и другие составы с содержанием кислот, щелочей не более 20 процентов (исключая азотную кислоту), подвижностью не более 50 с. Может использоваться для подачи методом воздушного распыления водных огнезащитных составов, а так же масляных и клеевых шпатлевок , что обеспечивается универсальной удочкой. При этом необходимо заменить сопло (из комплекта сменных частей и подключить к удочке воздух (через имеющийся ниппель).

Технические характеристики

Производительность, при нанесении малярных составов , не менее, м 3 /час

Максимальное рабочее давление , мПа

Потребляемая мощность кВт, не более

Габаритные размеры, мм (длина/ширина/высота)

Агрегат штукатурный СО-154А

Штукатурный агрегат циклического действия СО-154А предназначен для приготовления из сухой растворной смеси кладочной, штукатурной или облицовочной растворной смеси (известковой, цементной, цементно-известковой, известково-гипсовой) подвижностью не ниже Пк 12 по ГОСТ 28013 (не ниже 8 см), крупностью частиц до 2,5 мм , ее транспортирования по рукавам и нанесения на подготовленную поверхность на объектах , обеспеченных электроэнергией ,водой, сжатым воздухом кроме эксплуатации во взрывоопасных зонах по ПУЭ. Агрегат может использоваться для приготовления из полуфабрикатов, процеживания, транспортирования по рукавам и нанесения водных грунтовочных, огнезащитных и окрасочных составов, а также масляных и клеевых шпаклевок. Все компоненты растворной смеси или составов в требуемых пропорциях загружаются в верхний бункер агрегата, где осуществляется приготовление растворной смеси или составов. Затем готовая смесь сливается в нижний бункер, откуда транспортируется по растворопроводу или рукаву к рабочему месту. Конструкция агрегата позволяет применять как готовые сухие смеси, так и приготавливать их непосредственно в агрегате из компонентов. Форсунка может наносить растворную смесь без подачи воздуха механическим способом и пневматическим распылением. При нанесении на подготовленную поверхность растворной смеси пневматическим распылением к форсунке должен подаваться сжатый воздух давлением до 0,6 мПа и расходом до 0,5 м 3 /мин. Устройство форсунки обеспечивает, при соблюдении технологии, высокое качество обрабатываемой поверхности и малые потери растворной смеси. Для работы агрегата не требуется наличие водопроводной сети, так как вода заливается в агрегат мерной емкостью. Небольшие габариты и масса агрегата СО-154А, позволяют легко через дверные и оконные проемы перемещать агрегат по этажам и устанавливать в непосредственной близости от рабочего места .

Производительность, м 3 /час

Максимальная дальность подачи раствора, м:

Рукав растворопровода DxL, мм х м

Воздушный рукав DxL, мм х м

Габаритные размеры (длина/ширина/высота), м, не более

источник

Безвоздушное распыление. Основы метода

При окрашивании изделий методом безвоздушного распыления, в отличие от пневматического, распыл ЛКМ происходит без непосредственного участия сжатого воздуха (он используется только в качестве привода насоса, создающего давление на ЛКМ).

Метод безвоздушного распыления основан на принципе дробления ЛКМ на мелкие капли благодаря высокой скорости его истечения из сопла, которая, в свою очередь, обеспечивается подачей ЛКМ под большим давлением. Гидравлическое давление создается насосом высокого давления, где в качестве привода, как правило, применяется сжатый воздух, но в ряде случаев используют насосы с бензиновым или эклектическим приводом. На рис. 1 изображена принципиальная схема устройства насоса высокого давления с пневматическим приводом.

1- Распределитель сжатого воздуха пневмопривода

2- Рабочий цилиндр пневмопривода

3- Реверсивный поршень пневмопривода

4- Плунжер насоса высокого давления

5- Верхний сальник плунжера

6- Нижний сальник плунжера

7- Нажимной винт верхнего сальника

8- Корпус насоса высокого давления

9- Резервуар для растворителя для очистки плунжера 10- Возвратный клапан на линии всасывания ЛКМ 11- Возвратный клапан на линии нагнетания ЛКМ 12- Штуцер выхода ЛКМ

Читайте также:  Установка детского сиденья на унитаз

13- Головка корпуса насоса высокого давления

Рис. 1 Принципиальное устройство насоса высокого давления с пневмоприводом

Одной из основных характеристик насосов высокого давления с пневмоприводом является соотношение достигаемого гидравлического давления на выходе к давлению воздуха на входе. Существуют насосы с соотношением от 20:1 до 70:1, из них сейчас наиболее рас- пространены 45:1 и 60:1.

В большинстве случаев для безвоздушного распыления ЛКМ используется давление на материал 100-250 атм. при вязкости ЛКМ по вискозиметру ВЗ-246-4 до 100с. и выше.

На выходе из сопла распылительной головки, когда давление на материал превысит силы когезии жидкого ЛКМ, начинается его дробление на отдельные мелкие капли, которые с большой скоростью выбрасываются на окрашиваемое изделие. Дисперсность аэрозоля выходящего из распылительной головки зависит от ее конфигурации, размеров отверстия сопла, режимов истечения и свойств ЛКМ.

На рис. 2 изображена схема наиболее типичной распылительной головки для безвоздушного распыления.

Рис. 2 Распылительная головка безвоздушного распыления

В металлическом корпусе распылительной головки монтируется сопло, представляющее собой цилиндрическую насадку из метало- или минералокерамического сплава карбида вольфрама или другого износостойкого материала. С внутренней стороны к торцевой стенке сопла подходит конический или цилиндрический канал, заканчивающийся полусферой радиусом 0,25-0,5 мм. С наружной стороны торцевая стенка рассечена клиновидной щелью на глубину h, благодаря чему выходное отверстие приобретает форму эллипса.

Угол клиновидной щели a, радиус внутренней полусферы и глубина врезания щели в полусферу h определяют размеры и форму выходного отверстия, а, следовательно, расход ЛКМ и ширину факела. Варьированием этих величин получают сопла, обеспечивающие оптимальные параметры распыления при различной ширине факела и расходе ЛКМ. Подбором распыляющих головок с различной конфигурацией сопел достигают наиболее эффективных для конкретных условий форм (углов распыла) красочного факела.

Для получения мелкодисперсного факела с менее насыщенной зоной разброса ЛКМ по периферии перед соплом иногда встраивают дроссель-ускоритель, представляющий собой вставку их искусственного корунда (металлокерамики) с отверстием, сносным выходному отверстию сопла. Дроссель подбирают в соответствии с сечением выходного отверстия сопла. При этом образующееся пространство между соплом и ускорителем образует расширительную камеру. Дросселя-ускорителя увеличивает скорость движения ЛКМ перед выходом из сопла и способствует постепенному уменьшению интенсивности факела по его краям. Дросселирование ЛКМ перед соплом снижает его подачу на 16-25% при уменьшении ширины получаемого факела на 12-20%.

Для подачи ЛКМ под высоким давлением от насоса к краскораспылителю применяют специальные шланги представляющие собой гибкие трубки, стойкие к действию ЛКМ и различных растворителей с наружной оплеткой из нержавеющей проволоки или синтетической нити с токопроводящими жилами для отвода статического электричества.

У некоторых типов шлангов высокого давления поверх бронированной оплетки предусмотрена наружная оболочка из резины или пластмассы. Шланги, рассчитанные на очень большое давление (до 300 атм. и выше), имеют две бронированные оплетки и защитные оболочки.

В концы шлангов высокого давления заделывают ниппели, имеющие на конце накидные гайки, что позволяет надежно и герметично соединять шланги между собой и присоединять их к патрубкам насоса и краскораспылителя.

Оборудование для безвоздушного распыления функционирует при высоком давлении на жидкий ЛКМ в шланге (100-300 атм.), оно всегда должно эксплуатироваться в точном соответствии с нормами технического руководства и мерами предосторожности предписываемыми заводом изготовителем.

Выпускаются передвижные и стационарные установки безвоздушного распыления различной производительности (от 0,4 до 20 л/мин. по ЛКМ) с ручным и автоматическим управлением.

По сравнению с пневматическим распылением, безвоздушное распыление имеет целый ряд преимуществ:

— меньше потери ЛКМ на туманообразование

— меньше расход растворителей в связи с возможностью нанесения более вязких материалов

— требуется менее мощная вентиляция

— уменьшается трудоемкость окрасочных работ за счет возможности нанесения более толстых слоев покрытия за один проход краскораспылителя

— улучшаются защитные свойства получаемых покрытий вследствие их хорошей сплошности и плотности, лучшего заполнения микронеровностей поверхности изделия.

К недостаткам метода безвоздушного распыления следует отнести:

— трудность применения и большие потери ЛКМ при окрашивании изделий особо сложной конфигурации и малых габаритов

Читайте также:  Установка twrp на samsung i9500

— сложность применения традиционного безвоздушного распыления для нанесения ЛКМ с грубыми, легковыпадающими осадками (для нанесения таких ЛКМ, например содержащих цинковый порошок, следует применять специальные установки безвоздушного рас- пыления, конструкция которых предусматривает обеспечение постоянной циркуляции ЛКМ в аппарате).

— относительно низкий класс получаемого покрытия с точки зрения его декоративного вида.

В настоящее время, наибольшее распространение получили несколько разновидностей методов безвоздушного распыления:

На рис. 3 изображена схема традиционного безвоздушного распыления.

1- Насос высокого давления с пневмоприводом

2- Фильтр ЛКМ высокого давления

3- Шланг высокого давления

(подачи сжатого воздуха) 5- Краскораспылитель

Рис. 3 Схема традиционного безвоздушного распыления

Насосом высокого давления ЛКМ из заборной емкости через возвратный клапан всасывания подается на фильтр, откуда по специальному шлангу высокого давления поступает в головку краскораспылителя.

Модификацией традиционного безвоздушного распыления можно считать метод, обеспечивающий постоянную циркуляцию ЛКМ в установке. Схема безвоздушного распыления с постоянной циркуляцией материала изображена на рис. 4.

1- Насос высокого давления с пневмоприводом

2- Фильтр ЛКМ высокого давления

3- Шланг высокого давления

(подачи сжатого воздуха) 5- Краскораспылитель

Рис. 4 Схема безвоздушного распыления с постоянной циркуляцией материала

Этим методом можно наносить любые предназначенные для безвоздушного распыления ЛКМ, но особенно он эффективен для цинксодержащих протекторных грунтовок, противообрастающих ЛКМ и иных материалов, содержащих быстрооседающие компоненты, а также для межоперационных грунтовок с высокой скоростью высыхания.

При методе безвоздушного распыления с постоянной циркуляцией материала, ЛКМ прокачивается насосом через всю установку и сливается обратно в заборную емкость, где материал, в свою очередь, также постоянно перемешивается мешалкой. Циркуляция материала происходит постоянно, даже тогда, когда краскораспылителем не работают.

Для нанесения ЛКМ очень высокой вязкостью распространение получил метод горячего распыления или метод безвоздушного распыления с подогревом материала, схема которого изображена на рис. 5.

1- Насос высокого давления с пневмоприводом

2- Фильтр ЛКМ высокого давления

3- Шланг высокого давления

(подачи сжатого воздуха) 5- Краскораспылитель

Рис. 5 Схема безвоздушного распыления с подогревом материала

ЛКМ подается насосом через нагреватель змеевика, температура которого регулируется термостатом, и поступает к распылителю. Для поддержки постоянной температуры ЛКМ специальный клапан обеспечивает циркуляцию материала через нагреватель, при этом, отличие от метода с постоянной циркуляцией материала, ЛКМ из нагревателя не возвращается в заборную емкость, а клапан открывает доступ материалу из заборной емкости только по мере его расходования через краскораспылитель. Тем самым ЛКМ в заборной емкости остается холодным.

Подогрев ЛКМ снижает его вязкость и позволяет работать при относительно низком давлении пневмопривода. Кроме этого, достигается ускорение высыхания ЛКМ на изделии, снижается процент подтеков, увеличивается производительность окраски и толщина наносимого материала за один проход распылителя.

Метод безвоздушного распыления с подогревом может быть применен и для ЛКМ с относительно низким сухим остатком, т.к. входящий в состав материала растворитель не испаряется, поскольку разогрев осуществляется в замкнутой системе.

При интенсивном применении двухупаковочных материалов с короткой жизнеспособностью и при окрашивании на конвейерных линиях эффективен метод безвоздушного распыления с раздельной подачей компонентов.

На рис. 6 изображена принципиальная схема стационарной конвейерной установки безвоздушного распыления с раздельной подачей компонентов.

4- Насос для подачи растворителя 5- Система настройки дозирования 6- Распределительная система

7- Предохранительный клапан

10- Фильтр высокого давления

12- Заборная емкость, компонент А 13- Заборная емкость, компонент В 14- Заборная емкость, растворитель 15- Влагоотделитель

Рис. 6 Схема безвоздушного распыления с раздельной подачей компонентов

При подготовке установки перед работой предварительно настраивается заданное соотношение (пропорция) подачи основы материала и отвердителя. Их смешение происходит непосредственно перед нанесением. После работы сразу же необходимо осуществить промывку системы соответствующим растворителем.

Дозирующая система, как правило, имеет ручную настройку, но может быть и электронной.

Дополнительно, линии подачи основы и отвердителя могут оснащаться термостатами для предварительного подогрева компонентов системы. В частности, такие установки применяют для конвейерного окрашивания эпоксидным материалом промысловых труб для сырой и товарной нефти.

Читайте также:  Установка бортового компьютера самому

Передвижные установки безвоздушного распыления с раздельной подачей компонентов применяемые в полевых условиях окраски по принципу работы не отличаются от стационарных, но имеют более простую конструкцию. В частности они могут не иметь специальной линии для промывки системы растворителем, а трубопровод смешения основы и отвердителя может быть короче и для удобства работы вмонтирован непосредственно в корпус краскораспылителя.

Метод комбинированного распыления (в зарубежной терминологии airmix или aircoat), изображенный на рис. 7, как видно из его названия, сочетает в себе принцип безвоздушной подачи ЛКМ и пневматическое формирование окрасочного факела.

1- Насос высокого давления с пневмоприводом

2- Фильтр ЛКМ высокого давления

3- Шланг высокого давления

(подачи сжатого воздуха) 5- Краскораспылитель

Рис. 7 Схема комбинированного распыления

Отличительной особенностью краскораспылителей для комбинированного нанесения ЛКМ является наличие распылительной головки специальной конструкции.

На рис. 8 изображены схемы наиболее типичных распылительных головок для комбинированного распыления.

Рис. 8 Распылительные головки комбинированного распыления

с прямой подачей воздуха в факел ЛКМ (А), с отраженной подачей воздуха (Б),

с прямой и отраженной подачей воздуха (В)

Распылительные головки могут быть с прямой подачей воздуха в факел, с отраженной и совмещенной (как прямой, так и отраженной подачей воздуха). При работе в факел подается ограниченное (очень небольшое – до 4-5 м3/ч) количество сжатого воздуха с возможностью его регулирования. Благодаря дополнительно подаваемому воздуху, можно устанавливать очень мягкий факел, а рабочее давление на ЛКМ снизить с обычного для традиционного безвоздушного распыления 120-160 атм. до 3-7 атм.

Потоком, подаваемого на головку воздуха, также можно в пределах 5-100 изменять угол распыла факела, что удобно при поочередной окраске узких и широких поверхностей, т.к. не требуется замена сопла. Это метод наиболее эффективен для тонкой отделки сложных деталей.

Комбинированное распыление – это, пожалуй единственная разновидность безвоздушного распыления, где ЛКМ, пусть даже частично, но контактирует со сжатым воздухом. Поэтому при нанесении комбинированным безвоздушным методом ЛКМ, которые очень чувствительны к влаге в сжатом воздухе также как и при пневматическом распылении следует обращать особое внимание на его очистку от влаги и масла.

Настройка установок безвоздушного распыления заключается в подборе давления ЛКМ, определяющего толщину получаемого покрытия и распылительного сопла, характеризующегося эквивалентным диаметром*) и углом его клиновидной щели.

В таблице 2 приведены основные параметры наиболее широко применяемых на практике сопел для установок безвоздушного распыления.

При выборе сопла обеспечивающем получение красочного факела различной формы (например, с широким или узким углом распыла) руководствуются теми же принципами, что и при подборе распылительных головок для пневматического распыления.

При выборе диаметра отверстия сопла в первую очередь ориентируются на вязкость ЛКМ и требуемую толщину наносимого слоя. Как правило, сопла с эквивалентным диаметром отверстия 0,23-0,33 мм (.009-.013«) подходят для покрытий с толщиной мокрой пленки приблизительно 50 мкм. Диаметр отверстия 0,33-0,48мм (.013-.019«) подходит для толщин мокрой пленки 100-200мкм и 0,48-0,79 мм (.019-.031«) – для 200 мкм и выше. Для очень вяз ких материалов, наносимых очень большой толщиной, могут применяться сопла с диаметром отверстия 1,02-1,52 мм. (.040-.050«).

Подбор размера отверстия сопла должен осуществляться при заданном фиксированном рабочем гидравлическом давлении ЛКМ, который зависит от мерки аппарата безвоздушного распыления, а также диаметра и длинны шланга высокого давления.

Очень удобно при настройке, когда аппарат безвоздушного распыления комплектуется манометром не только на выходном патрубке гидронасоса, а и в непосредственной близости от сопла краскораспылителя. В противном случае всегда следует учитывать потерю гидравлического давления ЛКМ в шланге.

В таблице 1 приведены приблизительные значения потерь давления ЛКМ на каждые 10 п.м. шланга при нанесении наиболее широко применяемых в настоящее время типов ЛКМ.

Угол щели сопла

Эквивалентный диаметр отверстия сопла,

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *