Меню Рубрики

Установки для электрохимической защиты

Система электрохимической защиты трубопроводов тепловых сетей

А.И. Хейфец, начальник службы электрохимической защиты,
ОАО «Теплосеть Санкт-Петербурга», г. Санкт-Петербург

Защита трубопроводов тепловых сетей от коррозии является очень важной задачей, от решения которой во многом зависит надежность работы всей системы централизованного теплоснабжения. В г. Санкт-Петербург превалируют тепловые сети подземной прокладки, которые эксплуатируются в коррозионно-опасных условиях, обусловленных как густой сетью подземных коммуникаций большой протяженности и развитым электрифицированным транспортом, так и насыщенностью почв и грунтов влагой и химическими реагентами. Существует два основных способа защиты металлов от коррозии: пассивный — это нанесение на их поверхность изоляционных покрытий и активный — это использование средств электрохимической защиты.

Металлические сооружения, эксплуатируемые в различных средах (в атмосфере, воде, почве), подвергаются разрушающему воздействию этой среды. Разрушение металла вследствие его взаимодействия с внешней средой называется коррозией. Сутью коррозионного процесса является удаление атомов из металлической решетки, которое может происходить двумя путями, поэтому и различают коррозию просто химическую и электрохимическую.

Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Процесс проходит без участия свободных электронов и не сопровождается появлением электрического тока. Примером может служить образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом.

Коррозия является электрохимической, если при выходе из металлической решетки положительно заряженный ион металла, т.е. катион, вступает в связь не с окислителем, а с другими компонентами коррозионной среды, окислителю же передаются электроны, освобождающиеся при образовании катиона. При электрохимической коррозии удаление атомов из металлической решетки осуществляется в результате не одного, как при химической коррозии, а двух независимых, но сопряженных между собой электрохимических процессов: анодного (переход «захваченных» катионов металла в раствор) и катодного (связывание окислителем освободившихся электронов). Окислителями служат ионы водорода, которые есть везде, где присутствует вода, и молекулы кислорода. Электрохимическая коррозия сопровождается появлением электрического тока.

Трубопроводы тепловых сетей являются протяженными объектами и различные их участки оказываются не в равных условиях с точки зрения развития коррозионных процессов. Почвы и грунты по-разному впитывают в себя атмосферные осадки, талые воды, обладают различной воздухопроницаемостью. Удельное электрическое сопротивление грунтов тоже разное; именно его значение (чем ниже, тем опаснее) характеризует коррозионную агрессивность среды. В результате вдоль поверхности трубопроводов образуются участки, где преимущественно осуществляются либо анодные, либо катодные реакции. Электрическая проводимость металла очень высока, электроны практически мгновенно перераспределяются от мест протекания анодной реакции к местам, где протекает катодная (рис. 1). По сути, возникают подобия гальванических элементов, батареек, в которых роль электролита играет грунт, а внешней цепью является подземное металлическое сооружение. Анодные зоны — это положительный электрод («+»), а катодные зоны — это отрицательный электрод («-»). При протекании электрического тока в анодных зонах непрерывно происходит выход атомов из металлической решетки во внешнюю среду, т.е. растворение металла.

Особую опасность для трубопроводов тепловых сетей представляют блуждающие токи, которые возникают вследствие утечки из транспортных электрических цепей части тока в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду возникает анодное растворение металла. Такие зоны особенно часто наблюдаются в районах наземного электрического транспорта. Коррозию под действием блуждающих токов иногда называют электрической коррозией. Такие токи могут достигать величины в несколько ампер. Для представления: ток силой в 1 А, в соответствии с первым законом Фарадея, вызывает в течение года растворение железа в количестве 9,1 кг. Если ток сосредоточен на участке 1 м 2 , то это соответствует уменьшению толщины стенки трубы на 1,17 мм в год, т.е. за 6 лет она уменьшилась бы на 7 мм.

Принцип действия электрохимической защиты (ЭХЗ) наружной поверхности металла от коррозии основан на том, что, сдвигая потенциал металла пропусканием внешнего электрического тока, можно изменить скорость его коррозии. Зависимость между потенциалом и скоростью коррозии нелинейная и неоднозначная.

ЭХЗ, основанная на наложении катодного тока, носит название катодной защиты. В производственных условиях она реализуется в двух вариантах.

1. В первом варианте необходимый сдвиг потенциала обеспечивается подключением защищаемой конструкции к внешнему источнику напряжения в качестве катода, а в качестве анода используются вспомогательные электроды (рис. 2).

Читайте также:  Установка водосчетчиков на что обратить внимание

Источником служит регулируемый выпрямитель, который преобразует напряжение промышленной частоты в постоянное, а анодные заземлители объединяются в контур, состав и расположение электродов которого определяются расчетом. В процессе эксплуатации масса электродов контура анодного заземления монотонно уменьшается.

Катодная поляризация неизолированной металлической конструкции до величины минимального защитного потенциала требует значительных токов, поэтому обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. При катодной защите необходимо контролировать и величину максимального потенциала, т.к. его слишком большое значение может привести к отслаиванию изоляционного покрытия от стенки трубопровода. Нормативными документами (Типовая инструкция по защите трубопроводов тепловых сетей от наружной коррозии РД 153-34.0-20.518-2003) установлено, что минимальный защитный потенциал для тепловых сетей равен 1,1 В, а максимальный 2,5 В в отрицательную сторону по отношению к неполяризующемуся медносульфатному электроду сравнения. Такие значения должны быть обеспечены на всем протяжении защищаемого участка, и это достигается тем вернее, чем лучше металл изолирован от земли.

2. Вторым вариантом катодной защиты является гальваническая (или протекторная) защита (рис. 3). Принцип ее действия основан на том, что разные металлы характеризуются различными значениями стандартных электродных потенциалов. Катодная поляризация защищаемой конструкции достигается за счет ее контакта с более электроотрицательным металлом. Последний выступает в роли анода, и его электрохимическое растворение обеспечивает протекание катодного тока через защищаемый металл. Сам же анод, выполненный из магния, цинка, алюминия и их сплавов, постепенно разрушается. Достоинством протекторной защиты является то, что для нее не требуется внешний источник напряжения, но этот вид защиты может использоваться только на сравнительно небольших по протяженности участках трубопроводов (до 60 м), а также на стальных футлярах.

3. Для защиты трубопроводов тепловых сетей от наружной коррозии под действием блуждающих токов применяют электродренаж (дренаж) — соединение металлическим проводником участка, с которого стекают эти токи, с рельсом трамвайных или железнодорожных путей. При большом расстоянии до рельса, когда такой дренаж трудно реализовать, используют дополнительный чугунный анод, который закапывают в землю и соединяют с защищаемым участком.

В местах, где электролитическое действие блуждающих токов складывается с токами гальванических пар, может произойти резкое увеличение скорости коррозионных процессов. В таких случаях применяются установки усиленного дренажа (рис. 4), которые позволяют не только отводить блуждающие токи от трубопроводов, но и обеспечить на них необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным — не к анодному заземлению, а к рельсам электрифицированного транспорта.

4. Сильное коррозионное воздействие на трубопроводы тепловых сетей могут оказывать установки ЭХЗ владельцев смежных подземных коммуникаций, например газопроводов (рис. 5а). Если трубопроводы оказались в зоне действия катодного тока «чужой» установки, то разрушения в местах выхода этого тока из стальной трубы в грунт будут такими же, как и под действием блуждающих токов. Для защиты необходимо соединить трубопроводы тепловых сетей с отрицательным полюсом источника напряжения (рис. 5б).

Сдвигать потенциал металла для защиты его от коррозии можно не только в сторону отрицательных, но и положительных значений. При этом некоторые металлы переходят в пассивное состояние, а ток растворения металла падает в десятки раз. Такая защита называется анодной, ее преимущество в том, что для поддержания пассивного состояния металла требуются малые токи. Однако, если в электролите есть ионы хлора и серы, коррозия металла может резко возрасти и выйти из строя само анодно-поляризованное оборудование. Анодная защита для тепловых сетей не применяется.

ЭХЗ в ОАО «Теплосеть Санкт-Петербурга» эксплуатируется и развивается как система, т.е. совокупность взаимосвязанных составляющих: стационарных технических средств, инструментального контроля и информационной базы данных.

В соответствии с графиками специалисты службы ЭХЗ в плановом порядке проводят по установленной методике коррозионные измерения на всех участках магистральных и распределительных сетей в местах доступа к подземным трубопроводам (тепловые камеры). После обработки результатов измерений определяются анодные и катодные зоны на трубопроводах, зоны защиты, участки опасного воздействия блуждающих токов. Кроме того, коррозионные измерения проводятся при плановых шурфовках и при устранении дефектов на тепловых сетях, где они дополняются результатом химического анализа грунта. Результаты измерений систематизируются и архивируются, они являются ценной информацией как для правильной организации эксплуатации тепломеханического оборудования, так и для планирования строительства дополнительных средств ЭХЗ.

Читайте также:  Установка передних амортизаторов 2107

Более подробные и тщательные коррозионные обследования зон залегания теплотрасс проводятся силами специализированной подрядной организации. Эти обследования проводятся на коррозионно-опасных участках обычно после реконструкции (перекладки) тепловых сетей, т.к. применение современных типов изоляции, конструкций и технологий обеспечивает лучшую, чем ранее, гальваническую развязку металла от бетона и от земли. Это означает, в том числе, и возможное изменение границ анодных и катодных зон, участков воздействия блуждающих токов. Результаты обследований представляются в виде отчетов, содержащих сведения об изменениях значений электродных потенциалов на разных участках поверхности трубопроводов при различных режимах работы (рис. 6) не только своих, но и принадлежащих сторонним организациям средств ЭХЗ. Методами математического моделирования (рис. 7) рассчитываются тип, количество и места расположения необходимых дополнительных средств ЭХЗ для дальнейшего проектирования.

В настоящее время ОАО «Теплосеть Санкт- Петербурга» принадлежат 432 установки ЭХЗ, из них: установок катодной защиты — 204 шт. (в том числе установок катодной защиты, относящихся к категории совместной защиты от наружной коррозии трубопроводов тепловых сетей и проложенных рядом газопроводов, — 20 шт.); установок усиленного дренажа — 8 шт.; установок протекторной защиты — 220 шт. Техническим обслуживанием установок катодной совместной защиты занимается ОАО «Антикор».

В соответствии с требованиями нормативных документов (Защита от коррозии. Проектирование электрохимической защиты подземных сооружений. СТО Газпром 2-3.5-047-2006) установки ЭХЗ не должны оказывать негативного влияния на соседние коммуникации. ОАО «Антикор», занимающееся в Санкт-Петербурге электрохимической защитой газопроводов, при реконструкции и новом строительстве своих установок своевременно уведомляет ОАО «Теплосеть Санкт-Петербурга» о технической возможности подключения участков тепловых сетей к ЭХЗ газопроводов, если это предусмотрено проектом.

В процессе эксплуатации всех, кроме дренажных, установок ЭХЗ непрерывно теряется масса их заземленных электродов, т.к. это составляет физическую сущность электрохимической защиты. Неизбежно наступает момент «смерти» контура анодного заземления или протектора. Обеспечить заданный период эксплуатации между капитальными ремонтами установок ЭХЗ можно и нужно правильным расчетом

необходимого числа и места расположения элементов, выбором качественных материалов, строгим соблюдением технологии монтажа. Возможны случаи отказа электродов из-за локальных точечных повреждений. С 2010 г. при реконструкции и новом строительстве нами применяются ферросилидовые анодные заземлители ЭлЖК-1500 с защитой контактного узла вместо прежних ЭГТ-1450. В течение ряда последних лет в установках ЭХЗ применяются только автоматические преобразователи типа УКЗТА и ПКЗ-АР (рис. 8), позволяющие непрерывно поддерживать заданные значения анодного тока или защитного потенциала на трубопроводе.

Особое значение приобрела практика оснащения установок ЭХЗ телеметрическими регистраторами (рис. 9). Эти устройства, изготовленные в виде встраиваемых блоков, непрерывно дистанционно передают информацию о значениях меняющихся во времени электрических величин на выделенный компьютер (рис. 10). Создаются архивы, позволяющие анализировать работу установок ЭХЗ. Кроме того, в системе телеметрии реализована функция сигнализации о несанкционированном доступе посторонних лиц к установкам.

Стоит отметить, что перед началом строительно-монтажных работ подрядчик извещает о дате начала работ заказчика, проектную организацию, организацию, осуществляющую технический надзор за строительством, и организацию, на обслуживание которой будут передаваться строящиеся защитные установки.

Электрохимической защитой тепловых сетей от наружной коррозии на нашем предприятии занимаются с 1960 г., т.е. более 50 лет. В разные годы специалисты по ЭХЗ входили в состав различных производственных подразделений, а после образования в 2010 г. ОАО «Теплосеть Санкт-Петербурга» была создана отдельная служба ЭХЗ. На сегодняшний день в ее составе 13 чел., которые решают технические и организационные задачи.

К техническим задачам относятся: ежедневные объезды двух бригад электромонтеров по заданным маршрутам установок ЭХЗ с проведением технического обслуживания. Одновременно при этом контролируется, не ведутся ли сторонними организациями без правильного оформления земляные работы в зоне наших установок.

Техническое обслуживание установок ЭХЗ включает:

■ осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

■ проверку исправности предохранителей (если они имеются);

■ очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

■ измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

Читайте также:  Установка противоскользящие покрытие для ступеней

■ измерение потенциала трубопровода в точке подключения установки;

■ производство записи в журнале установки о результатах выполненной работы;

■ измерения потенциалов в постоянно закрепленных измерительных пунктах.

Периодически проводится текущий ремонт и контроль эффективности оборудования ЭХЗ. Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

■ измерение сопротивления изоляции питающих кабелей;

■ ремонт выпрямительного блока;

Контроль эффективности работы установки ЭХЗ заключается в измерении защитных потенциалов в измерительных пунктах по всей зоне защиты данной установки ЭХЗ. Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год, а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:

■ прокладкой новых подземных сооружений;

■ в связи с проведением ремонтных работ на тепловых сетях;

■ установкой ЭХЗ на смежных подземных коммуникациях.

Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

К организационным задачам относится, прежде всего, получение разрешения на электроснабжение станций ЭХЗ от сетей ОАО «Ленэнерго». Это многоходовый алгоритм, сопровождаемый оформлением большого количества документации. Кроме электроснабжения, служба ЭХЗ занимается подготовкой адресных программ нового строительства и ремонта, проверкой и согласованием проектов, подготовкой технических заданий.

Установки ЭХЗ от наружной коррозии металлоконструкций используются уже 100 лет. Физико-химический принцип их работы остается неизменным, но для увеличения ресурса их работы, снижения капитальных и эксплуатационных затрат необходимо искать и находить новые технические решения. Перспективным представляется использование протяженных электродов для анодного заземления. Эластомерные электроды укладываются горизонтально в траншею вдоль трубопроводов тепловой сети на глубине

1,5 м и разделяются на несколько участков для повышения ремонтопригодности. Стоимость таких установок меньше, чем при использовании традиционных контуров анодного заземления. В 2011 г. уже построены две установки с горизонтальными электродами.

Оснащение установок ЭХЗ блоками телеметрии будет продолжаться, и в перспективе информация о работе всех установок будет дистанционно передаваться и архивироваться.

В 2011 г. был выполнен проект автоматизированного учета электроэнергии для 59 установок ЭХЗ, а его реализация намечена на 2012 г

Уже начата работа по занесению базы данных об установках ЭХЗ в единую информационно-аналитическую систему ОАО «Теплосеть Санкт- Петербурга». В перспективе это позволит быстрее и достовернее определять приоритеты при составлении программы реконструкции участков тепловых сетей, правильно организовывать земляные работы при устранении дефектов.

Рекомендации для теплоснабжающих предприятий по организации ЭХЗ

Основное назначение ЭХЗ тепловых сетей — это обеспечение эксплуатации трубопроводов без возникновения повреждений в течение всего нормативного срока (25 лет). Для достижения этой цели необходимо относиться к ЭХЗ именно как к системе, не пренебрегая ни одной из ее составляющих, указанных в данной статье. Полезными могут оказаться несколько общих соображений.

1. В коррозионно-опасных зонах нужно вводить в эксплуатацию ЭХЗ как можно быстрее после строительства или реконструкции участка тепловых сетей, т.е. защищать металл «с нуля».

2. На участке трубопроводов, электрически плохо изолированных от земли (разрушение тепловой изоляции, контакт металла с бетонными конструкциями и т.п.), установка ЭХЗ будет мало эффективна, т.к. созданный ею защитный ток не распределится на сотни метров вдоль труб, а стечет в землю в месте «закоротки».

3. При выявленной низкой эффективности существующей установки ЭХЗ (малая разница в значении потенциала металла при включенной и отключенной установке) нужно провести ее реконструкцию с изменением расположения контура анодного заземления (КАЗ) по отношению к защищаемым трубопроводам.

4. При реконструкции и новом строительстве установок ЭХЗ целесообразно использовать самые лучшие марки электродов для КАЗ, т.к. отказ контура — это выход из строя всей установки, а для восстановления КАЗ придется проводить дорогостоящие земляные работы.

5. Координация деятельности в части ЭХЗ с другими владельцами подземных коммуникаций позволит принять меры для защиты трубопроводов тепловых сетей от вредного влияния «чужих» установок ЭХЗ, а также в ряде случаев организовать совместную защиту.

Опыт эксплуатации тепловых сетей ОАО «Теплосеть Санкт-Петербурга» убедительно доказывает, что ЭХЗ была и остается важной составляющей в комплексе мер по повышению надежности теплоснабжения Санкт-Петербурга.

источник