Меню Рубрики

Установки для газоводяного тушения

Установки для газоводяного тушения

Особую пожарную опасность представляют предприятия нефтепродуктообеспечения. Пожары нефти и нефтепродуктов в резервуарах являются сложными и крупными, ликвидируются с большим трудом и наносят огромный ущерб. Проведенный анализ статистических данных аварий и пожаров на предприятиях данной специализации показал, что наиболее опасной является ситуация, которая имеет место при полном разрушении резервуаров, так как образовавшийся поток нефтепродуктов (волна прорыва) разрушает обвалование и выходит за его пределы, что приводит к катастрофическим последствиям
[4; 5; 7; 8]. Площадь разлива нефтепродуктов в этом случае может достигать нескольких сотен тысяч квадратных метров [3]. Такие происшествия приводят к масштабным финансовым потерям, загрязнению окружающей среды и к угрозе человеческой жизни.

Согласно статистическим данным, большинство аварий и пожаров при хранении, транспортировке, заправке, сливе и перекачке нефтепродуктов являются следствием ряда последовательных, взаимно связанных ошибочных действий людей, нарушения правил техники пожарной безопасности в процессе производства и недостатков в конструкции технологического оборудования. При этом лишь небольшое число аварий и пожаров зависит от случайности. В частности, до 67% аварий и пожаров, происшедших в различное время на предприятиях химической и нефтехимической промышленности в РФ и за пределами ее территории, было вызвано неисправностью используемого технологического оборудования, контрольно-измерительных приборов и систем автоматического управления. В то же время до 17% аварий и пожаров обусловлено отсутствием систем их предотвращения и противопожарной защиты. Исходя из выше сказанного, можно заключить, что до 84% взрывов и пожаров можно было предотвратить или не допустить [2].

Настоящее исследование проводится с целью модернизации автомобиля газо-водяного тушения (АГВТ) для последующего его применения как для предприятий гражданской авиации, так и для объектов добычи, транспортировки, переработки и хранения нефтепродуктов, расположенных на территории РФ.

Методы исследования, применяемые в настоящей работе, основаны на принципах анализа и синтеза патентно-информационных и литературных источников, опытно-конструкторских и научно-исследовательских разработок, связанных с автомобилями газо-водяного тушения.

Затруднения при тушении нефтепродуктов, газонефтяных фонтанов и воздушных судов в основном связаны с неопределенностью площади горения и наличием высоты пламени. Непосредственно для газонефтяных фонтанов пожарная нагрузка не поддается исчислению, так как под землей нефти может быть большое количество [1]. Ущерб от такого пожара считается очень просто, достаточно знать дебет (отдачу скважины) и умножить его на стоимость нефти, и получим то количество денег, которое сгорает в течение секунды.

В результате анализа существующих методов (рис. 1) [6] и средств тушения нефтепродуктов установлено, что самым действенным, наиболее приемлемым и экономически выгодным методом является тушение газо-водяной струей, так как основным фактором при тушении нефтепродуктов является срыв пламени. В то же время наиболее эффективным подходом к решению обозначенной проблемы является использование струи отработавших газов с мелкодиспергированной водой, направленной в очаг возгорания, для создания которой используются специализированные автомобили.

Рис. 1. Существующие средства и методы тушения нефтепродуктов.

Автомобили газового тушения, применяемые в РФ, подразделяются на автомобили газо-водяного и углекислотного тушения. Автомобили углекислотного тушения предназначены для тушения пожаров приборов электрооборудования, находящегося под напряжением, очагов горения в труднодоступных местах. Данные автомобили промышленностью России не выпускаются, а изготовляются в пожарных отрядах для использования в крупных городах. Автомобили газо-водяного тушения применяются для тушения нефтяных и газовых фонтанов, разлившихся нефтепродуктов, для охлаждения оборудования и металлоконструкций. Огнетушащим средством на автомобилях газо-водяного тушения является газо-водяная струя, состоящая из смеси отработавшего газа турбореактивного двигателя и распыленной до мелкодисперсного состояния воды (диаметр капель менее 0,1 мм). Источником отработавших газов служит установленный стационарно на автомобиле отработавший летный моторесурс и капитально отремонтированный турбореактивный двигатель (ТРД). Мелкодисперсная вода в струю отработавшего газа ТРД подается из лафетных стволов, закрепленных на ТРД, и образовавшаяся газо-водяная смесь направляется в очаг горения. Огнетушащий эффект газо-водяной струи заключается в срыве пламени за счет скорости выхлопных газов, понижении температуры в зоне горения и разбавлении горючих паров и газов [9], а распыленные капли воды, испаряясь, связывают кислород воздуха и не дают огню разгореться вновь. Для достижения необходимого давления и водоотдачи АГВТ обвязывают с одной или двумя пожарной насосной станцией.

Читайте также:  Установка извещателя охранного в смете

Для рационального тушения пожаров автомобили газо-водяного тушения должны удовлетворять ряду требований:

1) базовое шасси должно быть высокой проходимости, так как автомобили данного вида используются в условиях бездорожья;

2) турбореактивный двигатель должен иметь большую тягу с достаточно большим количеством отработавших газов;

3) направление огнетушащей струи должно регулироваться в вертикальной или горизонтальной плоскостях;

4) конструкция автомобиля данного вида должна содержать устройства, обеспечивающие его устойчивость при работе ТРД [6].

Технические характеристики автомобилей газо-водяного тушения, применяемых в РФ, представлены в таблице 1.

Технические характеристики автомобилей газо-водяного тушения

источник

Автомобили газоводяного тушения

В перечне пожарных автомобилей целевого применения автомобили газоводяного тушения (АГВТ) занимают особое положение. Это обусловлено как областью их применения, так и спецификой механизма тушения пожара.

Основу АГВТ составляют турбореактивные двигатели (ТРД). Высокая скорость их отработавших газов (рис. 9.29) обусловливает гидродинамический срыв пламени. Особенно эффективным он оказался при тушении горящих нефтяных и газовых фонтанов. Для улучшения механизма тушения в струю отработавших газов вводят воду. Это хотя и снижает их скорость и температуру (рис. 9.30), но обеспечивает охлаждение фронта пламени горящего фонтана.

vт, м/с
S, м
1
2
Рис. 9.29. График изменения скорости отработавшего газа: 1 – без воды; 2 – при подаче воды с расходом 60 л/с
2
1
S, м
t, o C
Рис. 9.30. Графики изменения температуры отработавшего газа: 1 – без воды; 2 – при подаче воды с расходом 60 л/с

Впервые АГВТ был применен в нашей стране в 1967 г., когда успешно был потушен пожар нефтяного фонтана с дебитом 6000 т/сут. С тех пор тушение горящих газовых (нефтяных) фонтанов осуществляется в основном АГВТ.

Для рационального тушения пожаров АГВТ должны удовлетворять ряду требований:

базовое шасси для них должно быть высокой проходимости, так как они используются в условиях бездорожья;

ТРД должны иметь большую тягу с достаточно большим количеством отработавших газов;

направление огнетушащей струи (отработавшие газы и введенная в них вода) должно регулироваться в вертикальной или горизонтальной плоскости;

в конструкции АГВТ должны предусматриваться устройства, обеспечивающие его устойчивость при работе ТРД.

АГВТ состоит из базового шасси 1 (рис. 9.31), турбореактивного двигателя 6, подъемно-поворотного устройства для него 7, лафетных стволов 5, цистерны 4 с топливом для ТРД, тепловой защиты 3 и бака 10 для воды, обеспечивающей защиту от теплового излучения.

Управление направлением газоводяной струи турбореактивного двигателя 6 осуществляется гидроприводами, включенными в гидравлическую систему (рис. 9.32). В нее входят гидромотор 8 поворота двигателя, гидроцилиндры 9 его подъема, гидроцилиндры 10 блокировки рессор и гидромотор насосного агрегата 11, питающего систему орошения.

3
2
4
5
6
7
8
3
9
10
1

1 – шасси; 2 – кабина; 3 – система орошения; 4 – цистерна для топлива; 5 – лафетный ствол; 6 – ТРД; 7 – подъемно-поворотное устройство; 8 – гидроцилиндр подъема;
9 – механизм блокировки рессор; 10 – бак для воды

9
10
8
7
6
5
4
3
2
1
18
Т
Р
17
16
15
14
13
12
11

Рис. 9.32. Гидравлическая схема привода:

1 – бак; 2 – насос; 3 – коробка отбора мощности; 4 – насос от двигателя; 5 – блок обратных клапанов; 6 – манометр; 7 – блок клапанов; 8 – гидромотор поворота двигателя;
9 – гидроцилиндры подъема двигателя; 10 – блокировка рессор; 11 – насосный агрегат системы орошения; 12 – бак для воды; 13 – гидрораспределители; 14 – предохранитель; 15 – щуп; 16 – фильтр; 17 – ручной насос; 18 – дренажная линия

Гидравлическая жидкость из бака 1 может подаваться насосами 2, 4 или 17 в напорную линию Р. От нее через соответствующие клапаны 7 или гидрораспределители 13 она поступает в исполнительные механизмы. При их выключении гидравлическая жидкость поступает к гидрораспределителю 13, а затем по трубопроводу Т через фильтр 16 в бак 1. По дренажному трубопроводу 18 жидкость сливается в бак 1 от гидронасоса 2 и гидромоторов 8 и 11.

Читайте также:  Установка window media player

В качестве гидравлической жидкости применяют масло ВМГ3, МГЕ и другие масла. Давление в системе 16 МПа.

Подача воды в поток отработавших газов осуществляется лафетными стволами. Они укрепляются на корпусе ТРД так, что водяные струи входят в газовый поток на 1 – 2 м от сопла ТРД.

На АГВТ устанавливают лафетные стволы с диаметром насадка 36 мм и расходами 20 л/с. Вода к ним подается от ПНС, насосно-рукавных автомобилей или пожарных автоцистерн.

Некоторые параметры технических характеристик АГВТ приведены в табл.9.7.

Показатели Размер-ность АГВТ-100(131) АГВТ-150(43114)
Тип шасси Колесная формула Мощность двигателя Удельная мощность Максимальная скорость Тип ТРД Количество лафетных стволов Расход воды Вместимость топливных баков Производительность по газоводяной смеси Углы поворота ТРД: вверх вниз вправо и влево — — кВт кВт/т км/ч шт. л/с л кг/с град ЗИЛ-131 6×6 10,5 ВК-1А КамАЗ-43114 6×6 12,6 ВК-1

Продолжительность маневров ТРД достаточно мала. Так, для ТРД АГВТ-150 время поворота в любую сторону до максимального значения равно 8 с, вверх – 13, а вниз – 4 с.

При тушении пожаров АГВТ устанавливают на небольших расстояниях от горящего факела. Поэтому на них предусматривается защита от тепловых потоков до 25 кВт/м 2 для обеспечения безопасной работы.

Для защиты АГВТ от теплового потока пожара устанавливают оросители щелевого типа. Щелевые насадки ориентированы на орошение кабины боевого расчета, цистерны с горючим для ТРД и бака с горючим для АГВТ и колес. Для защиты от теплового излучения горящего факела рекомендуется применять съемные экраны из асбестоткании других материалов. Ими возможно защищать колеса автомобиля, бензобаки, кабину.

Система запуска и управления ТРД дистанционная. Пульт управления выносной. Управление возможно на расстоянии до 50 м. На АГВТ предусматривается управление при помощи лоринготелефонной аппаратуры.

Одним из параметров, характеризующих совершенство ТРД, является тяга. Она находится в пределах 10 – 50 кН; и под действием тяги ТРД возникает опрокидывающая сила. Поэтому становится важным обеспечение устойчивости АГВТ против опрокидывания.

Опрокидывающая сила Ро, Н, равна (рис. 9.33)

где Т – тяга, Н; R – реактивная сила водяной струи, Н.

Реактивная сила водяной струи, Н, определяется по формуле

, (9.12)

где ω – площадь насадка лафетного ствола, м 2 ; р – давление у насадка, Па; n – количество лафетных стволов.

В вертикальной плоскости опрокидывающая сила в поперечном направлении равна

.

В горизонтальной плоскости ее величину определим по формуле

.

Опрокидывание произойдет в случае Rв = 0, тогда можно записать

, (9.13)

где Му – момент удерживающий, Н∙м; Мо – момент опрокидывающий, Н∙м.

a
a
Ро¢
Рс
a
Ро
Ро¢
Ро¢¢
g
А
В
а
b
а
h
Rа
Rв

Рис. 9.33. Силы, действующие на АГВТ

Сила веса определяется по формуле

(9.14)

где m – масса автомобиля, кг; g – земное ускорение, м/с 2 .

. (9.15)

Зная величины Му и Мо, определяют запас устойчивости:

. (9.16)

Запас устойчивости для грузоподъемных стреловых машин принимается равным 1,4. При работе ТРД сила тяги может резко изменяться, например, при резком изменении частоты вращения двигателя, поэтому запас устойчивости принимается Ку ≥ 2. Для повышения устойчивости АГВТ применяют блокировку рессор.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10588 — | 7786 — или читать все.

источник

Установка для газоводяного тушения пожаров на газовых, нефтяных и газонефтяных скважинах

Изобретение относится к противопожарной технике и может быть использовано для тушения пожаров на газовых, нефтяных и газоняфтяных скважинах. На перемещаемой платформе 1 установлен турбореактивный двигатель 2 с форсажной камерой, имеющей возможность поворота относительно осей, обеспечиваемый механизмами привода 3 и 4. Установка снабжена экранирующим элементом, образованным сферическими щитками 5 и 6, обращенными выпуклой поверхностью в сторону зоны горения. Причем щиток 5 закреплен на сопле турбореактивного двигателя, а щиток 6 на платформе 1. Щиток 6 в центральной части выполнен с отверстием диаметром, позволяющим поворот сопла со щитком 5 на соответствующие углы, обеспечивая тем самым подачу огнегасящего потока под заданным углом. 1 ил.

Читайте также:  Установка карданного вала на соболь

Изобретение относится к противопожарной технике и может быть использовано для тушения пожаров на газовых, нефтяных и газонефтяных скважинах.

Известно устройство для обеспечения безопасности ведения работ в условиях горящего фонтана, содержащее транспортную базу, несущую платформу, поворотную платформу, регулирующие элементы для поперечного перемещения платформы, углового поворота и наклона ее. Для защиты от теплового излучения устройство имеет отводящую трубу с приспособлением в виде отражательного зонта [1] Известен способ тушения пожаров с помощью смеси продуктов сгорания, подаваемых в зону горения. В способе используют газотурбинный двигатель с отработанным моторесурсом, который устанавливают на подвижной платформе и поток его выхлопных газов направляют в зону пожара [2] Известна также установка газоводяного тушения пожаров на газовых, нефтяных и газонефтяных скважинах, содержащая поворотную платформу и установленный на ней турбореактивный двигатель с соплом и распылители воды [3] Недостатком этой установки является то, что сама газоводяная струя эжектирует в зону горения кислород окружающего воздуха.

Целью изобретения является повышение эффективности тушения пожара за счет ликвидации эжекции в зону горения, а также защита двигателя от теплового излучения.

Достигается это за счет того, что экранирующее устройство установки выполнено в виде двух скользящих один относительно другого сферических щитков, обращенных выпуклой поверхностью в сторону зоны горения, причем внутренний щиток закреплен на сопле ТРД, а наружный щиток закреплен на платформе и имеет центральное отверстие, диаметр которого обеспечивает постоянное его перекрытие внутренним щитком.

На чертеже изображена предлагаемая установка (общий вид).

На перемещаемой платформе 1 установлен турбореактивный двигатель 2 с форсажной камерой (ТРДФ) 3, имеющий возможность поворота относительно вертикальной оси, обеспечиваемый механизмом привода 4. Установка снабжена экранирующим устройством, образованным сферическими щитками 5 и 6, обращенными выпуклой поверхностью в сторону зоны горения. Внутренний щиток 6 закреплен на платформе 1. Щиток 6 выполнен с центральным отверстием Д, позволяющим поворот сопла со щитком 5 относительно поперечной горизонтальной оси на углы, обеспечивая тем самым подачу огнегасящего потока под заданным углом. Диаметр центрального отверстия обеспечивает постоянное его перекрытие внутренним щитком 5.

Установка работает следующим образом.

При тушении пожара установку с запущенным ТРДФ выводят на заданную позицию, фиксируют относительно земли и осуществляют тушение пожара, ориентируя сопло двигателя механизмами привода так, чтобы газоводяная выхлопная струя направлялась в очаг пожара.

Наличие сферических щитков, обращенных выпуклой поверхностью в сторону зоны горения, установленных указанным образом, устраняет эжекцию окружающей среды, содержащей кислород, в зону горения, повышая тем самым эффективность тушения пожара. Кроме того, экранирующее устройство, образованное щитками 5 и 6, защищает сам турбореактивный двигатель от лучевого воздействия факела пожара.

Для обеспечения максимальной эффективности тушения пожара целесообразно использовать несколько установок, размещая их по кольцу вокруг очага пожара, чтобы свести к минимуму эжекцию воздуха, содержащего кислород.

УСТАНОВКА ДЛЯ ГАЗОВОДЯНОГО ТУШЕНИЯ ПОЖАРОВ НА ГАЗОВЫХ, НЕФТЯНЫХ И ГАЗОНЕФТЯНЫХ СКВАЖИНАХ, содержащая перемещаемую платформу, установленный на ней турбореактивный двигатель с соплом и экранирующий элемент, отличающаяся тем, что экранирующий элемент выполнен в виде двух скользящих относительно друг друга наружного и внутреннего сферических щитков, обращенных своей выпуклой поверхностью в сторону горения, причем внутренний щиток размещен на сопле турбореактивного двигателя, а наружный на платформе и имеет центральное отверстие, диаметр которого выбирают из условия постоянного его перекрытия внутренним щитком.

источник