Меню Рубрики

Установки для геофизических исследований скважин

Принцип и методы геофизических методов исследования скважин

Геофизические методы исследования скважин (ГИС) – это совокупность физических способов анализа, которые применяются для получения информации о техническом состоянии скважин и грунтовых пород, в которых они расположены.

Комплексная портативная лаборатория для геофизического исследования скважин

Проведение подобных процедур актуально как во время ремонтных работ, так и для определения различных параметров выработки и породы вокруг нее.

1 Какое назначение геофизических исследований скважин?

Весь комплекс методов условно делится на две категории:

  • Каротаж (геофизика бурения) – используется для изучения горных пород, которые расположены в радиусе 1-2 метра от шахт нефтяных скважин
  • Геофизика скважин – иногда это понятие отождествляется с каротажем, но геофизический анализ является более обширным способом исследования, так как кроме пространства непосредственно около скважины, он охватывает и межскважинное пространство.

Геофизические исследования и работы в скважинах необходимы для того, чтобы получить исчерпывающую информацию о том, обладает ли разрабатываемая территория достаточным количеством полезных ископаемых, и будет ли обустройство нефтяных скважин экономически выгодным.

Можно выделить следующие задачи ГИС:

  • Литологическое расчленение и корреляция разрезов;
  • Определения наличия ресурсов;
  • Выяснение параметров исследований, которые необходимы для анализа их запасов;
  • Изучение гидрогеологических и инженерно-геологических особенностей скважин;
  • Определения технического состояния нефтяных скважин;
  • Контроль за процессом разработки месторождений ресурсов;
  • Определения особенностей проведения взрывных работ.

Пример полученного результата при геофизическом исследовании скважины

2 Методы исследования скважин

Поскольку задачи, стоящие перед геофизическими методами изучения скважин, достаточно обширны, и для их решения необходим всесторонний анализ особенностей разрабатываемых горизонтов. ГИС включает в себя большое количество достаточно разноплановых способов исследования. Все они, в зависимости от характера анализа, объединяются в несколько групп:

  • Электрические методы
  • Ядерно-геофизический метод
  • Газовый каротаж
  • Термокаротаж
  • Кавернометрия
  • Акустический каротаж

Всего существует свыше 50 методов ГИС. В этом материале мы будем знакомиться с основными методами, которые в условиях отечественной нефтедобывающей промышленности используются чаще всего.
к меню ↑

2.1 Электрические методы

Данная категория включает в себя способы исследования, которые базируются на измерении электрического поля пластов грунта, которое может возникать естественным путем, либо создаваться искусственно. Электрический каротаж является базовым способ анализа литологических показателей грунта, в котором находится шахта скважины, для контроля за её техническим состоянием, определения наличия нефтяных и рудных ресурсов и выяснения их параметров.

Электрический каротаж основывается на технологии определения различий электрических характеристик разных горных пород. Для анализа данных показателей необходимо выявить их поляризационную способность и величину электрического сопротивления.

Самые важные инструменты электрического каротажа:

Аппаратура для проведения геофизического исследования скважин

  • Замеры свойств естественного электрического поля;
  • Замеры свойств искусственного поля;
  • Анализ ЭМК (искусственное переменное эл-магнитное поле);

Для электро-ГИС используются специальные измерительные зонды, которые опускаются в шахту скважины и производят замеры электрического поля.

В зависимости от технологических особенностей применяемых зондов выделяют: электрически нефокусированный каротаж, и фокусированный каротаж.

ГИС нефокусированный каротаж также называют способом исследования кажущегося сопротивления. Для его осуществления используются специальные зонды с тремя электродами, при этом, один дополнительный электрон заземляется на верху, возле устья нефтяных скважин. Основной задачей такого анализа является поиск совпадений между стандартизированными параметрами грунта скважины и величиной тока, которую они излучают, и определенными в процессе исследованиями показателями.

После того как электрические свойства породы скважины изучены, используются методы математического и физического моделирования, которые позволяют прогнозировать характеристики будущей нефтедобывающей скважины.

Электрический ГИС фокусированными зондами также называется боковым каротажем. Такие зонды обладают направленной фокусировкой посылаемого тока, что позволяет получать более точные показатели замеров (без влияния на них свойств используемой промывочной жидкости, и осадков на стенах нефтяной скважины).

Диаграммы, полученные вследствие бокового каротажа, дают возможность определить градус наклона пласта, азимут угла падения, выявить литологические свойства породы, и определить свойства пластов-коллекторов.
к меню ↑

2.2 Ядерно-геофизические методы ГИС

Из всего разнообразия геофизического анализа скважин, именно ядерные методы исследования считаются наиболее перспективным направлением. Они дают возможность выполнять исследования в ситуациях, когда большинство других методов невозможно использовать.

Мобильная лаборатория для проведения ГИС

С помощью ядерного ГИС можно выявить следующие свойства породы:

  • Плотность;
  • Пористость;
  • Зольность углей;
  • Содержание водорода в грунте;
Читайте также:  Установка распредвала по меткам 2123

Ядерный каротаж нефтяных скважин делится на следующие способы анализа:

Гамма-каротаж. Данный способ используется для замера природного гамма излучения породы. Зонд, использующийся для получения показателей, оборудован детектором для снятия величины гамма-изучения. После того как он опущен на достаточную глубину внутрь скважины, зонд начинает ловить волны гама-квантов, которые преобразовываются в электрический импульс и передаются по кабелю на считывающее оборудование.

Главной особенностью такого способа является возможность выполнения анализа в закрытых стволах нефтяных скважин (внутри обсадной трубы), где невозможно использовать электрический каротаж. ГК является оптимальным способом выяснения глинистости грунта.

Гамма-гамма каротаж. ГГК применяется для анализа искусственной радиоактивности породы. Перед использованием специального каротажного зонда, скважину предварительно облучают гамма-волнами, после чего происходит регистрация ответных волн. Такой способ дает возможность зарегистрировать те виды излучения, которые не проявились бы без придания породе искусственной радиоактивности.

Нейтронный каротаж. Способ нейтронного каротажа также базируется на искусственном облучении грунта. Облучение выполняется нейтронными волнами, которые не существуют в природе в естественном виде.

Используемый зонд состоит не только из детектора для снятия показателей, но и из источника нейтронного излучения.

Оборудование для проведения ГИС

Ответная реакция породы на облучение может иметь два варианта: производство гамма-волн, либо первичного нейтронного потока. На основе данных показателей создаются диаграммы, с помощью которых можно составить картину о том, каким ресурсами обладает исследуемый горизонт, так как для разных видов полезных ископаемых характерны разные виды ответного излучения.
к меню ↑

2.3 Метод Газового каротажа

Данный метод ГИС позволяет выявить количество газов углеводорода, которыми насыщается глинистый раствор в процессе бурения скважин, вследствие чего определяются наиболее перспективные газоносные горизонты.

Для проведения газового каротажа используется специальное оборудование – газоанализаторы. Если в процессе бурения скважины производился отбор керна (горной породы), то газовый каротаж может быть проведен в лабораторных условиях посредством его анализа.

На точность газового каротажа очень влияют внешние факторы, такие как вид глинистого раствора и скорость его циркуляции, скорость бурения скважины, и остановки во время бурения.

Для точного ГК определять количество тяжелых углеводородов необходимо отдельно от остальных газов, так как именно тяжелые газы являются основной характеристикой нефтеносного горизонта.
к меню ↑

2.4 Метод Термокаротажа

Термокаротаж используется для определения технического состояния уже функционирующих нефтяных скважин. Для замера показателей используется специальный скважинный термометр, который опускается внутрь обсадной колонны.

С помощью термокаротажа можно выяснить целостность обсадной колонны, так как температура на поврежденных участках будет отличаться от общей температуры скважины, литологические особенности породы, определить песчаные и карбонатные пласты.

Процесс проведения геофизического исследования скважины

На сегодняшний день существует три наиболее распространенных способа термокаротажа:

  • Метод природного температурного поля;
  • Искусственного температурного поля;
  • Метод эффективности охлаждения.

Вся технология основывается на свойстве почвы проводить тепло, этот показатель (коэф. теплопроводности) отличается друг от друга у разных типов грунта.
У термокаротажа имеется один существенный недостаток, который несколько ограничивает возможности его применения для нефтяных скважин: из-за заполнения скважины жидкостью, тепловые свойства отличающихся пород грунта усредняются, что вносит трудности в определение разных видов грунта.
к меню ↑

2.5 Метод Кавернометрии

Данный способ геофизического исследования скважин базируется на измерении поперечного диаметра скважины, что позволяет определить её объем при цементировании, либо создании обсадной колонны, и выполнять мониторинг дефектов стенок нефтяных скважин, спровоцированных движением грунта.

В большинстве случаев поперечное сечение скважины редко обладает формой идеального круга, по этой причине за условный диаметр скважины берется размер площади сечения скважины плоскостью, которая перпендикулярна её оси.

Оборудования для выполнения таких исследований называются каверномерами. Такие устройства состоят из двух элементов: поверхностного оборудования для считывания данных, и опускаемого внутрь шахты прибора. Внутрискважинное устройство представляет собою конструкцию с четырьмя измерительными рычагами, которые размещены в двух перпендикулярных друг к другу плоскостях, и связаны с приводом переменного резистора.

Установка для проведения ГИС

Когда прибор двигается в середине скважины, рычаги соприкасаются с её стенками и меняют своё положение, в зависимости от этого на резистор подаются сигналы разной мощности, которые отслеживаются наружными устройствами.
к меню ↑

2.6 Метод акустического каротажа

Акустический каротаж анализирует время, которое требуется звуковому импульсу (упругим колебаниям), для прохождения грунта в околоскважинном пространстве. Поскольку каждая порода обладает своей плотностью, и, вследствие этого, разным сопротивлением, данный способ позволяет определить характеристики слоев грунта, в которых расположены нефтяные скважины.

Читайте также:  Установка и настройка apache archlinux

Акустический каротаж используется для получения информации о техническом состоянии скважины, и в поиске месторождений ресурсов.

Оборудование для АК использует два диапазона частот: ультразвуковой (20-250 кГц) и звуковой (0.5-15 кГц). Для проведения исследований необходимо два устройства – измерительная аппаратура, и глубинный датчик, который укомплектован излучателем ультразвуковых волн, и приемником, имеющие свойство преобразовывать механическую энергию волн на частоте 20-50 кГц в электрический импульс.
к меню ↑

источник

Состав и назначение оборудования для комплексных геофизических исследований скважин

Для проведения геофизических исследований скважин используется как общая аппаратура и оборудование, применяемые в большинстве методов ГИС (автоматические каротажные станции (АКС) или аппаратура геофизических исследований скважин (АГИС), спускоподъемное оборудование), так и специальные скважинные приборы, разные в разных методах (глубинные или каротажные зонды). АКС (АГИС) смонтированы на автомашинах хорошей проходимости.

К общему оборудованию (рис. 7.1) каротажной станции относятся:

  1. источники питания (батарея аккумуляторов);
  2. приборы для регистрации разности потенциалов и силы тока;
  3. лебедка, работающая от двигателя автомобиля и предназначенная для спуска и подъема каротажного кабеля в скважину (при каротаже глубоких скважин — более 3 км — лебедка устанавливается на отдельном автомобиле-подъемнике);
  4. блок-баланс, располагающийся вблизи скважины и предназначенный для направления кабеля в скважину и синхронной передачи глубины расположения индикатора поля на лентопротяжный механизм регистратора;
  5. одножильный, трехжильный или многожильный кабель в хорошей изоляции.
Рис. 7.1. Схема выполнения ГИС: АКС — автоматическая каротажная станция, К — каротажный кабель, 1 — источник питания, 2 — приборы для регистрации разности потенциалов и силы тока, 3 — лебедка, 4 — коллектор лебедки, 5 — блок-баланс, 6 — глубинный каротажный зонд, 7 — глины, 8 — пески, 9 — известняки, 10 — изверженные породы

Изолированные друг от друга жилы кабеля с одной стороны подключаются к кольцам коллектора лебедки, а с другой — к глубинному каротажному зонду, то есть к устройству для измерения тех или иных параметров поля в скважине и трансформации их в электрические импульсы. В методах электрического каротажа зонд состоит из одного, двух, трех и более свинцовых электродов, укрепленных на кабеле. Такие зонды используются в скважинах, заполненных буровой жидкостью или водой. При работах в сухих скважинах применяются скользящие электроды, каждый из которых состоит из металлической щетки, укрепленной в обойме из изолятора на плоской металлической пружине. Пружины такого «фонарного» зонда прижимают электроды к стенкам скважины. Аналогично устроены микрозонды, в которых точечные электроды располагаются на планке из изолятора на расстоянии нескольких сантиметров друг от друга. Планка укреплена на плоской пружине «фонаря», которая прижимает электроды к стенкам скважины.

В глубинном зонде ядерных методов помещаются счетчики гамма- или нейтронного излучения и предварительные усилители сигналов на их выходе. Для искусственных методов там же располагаются источники и экраны, препятствующие прямому облучению счетчика.

В гамма-методах экраны свинцовые, в нейтронных методах они парафиновые (см. рис. 7.2).

Рис. 7.2. Схема устройства глубинного прибора для искусственного ядерного каротажа: 1 — источник гамма-лучей или нейтронов; 2 — условные пути движений гамма-лучей или нейтронов; 3 — экран; 4 — счетчик; 5 — блок питания; 6 — предварительный усилитель; 7 — кабель; 8 — усилитель; 9 — регистратор; 10 — глина; 11 — известняки; 12 — пески

В глубинном зонде сейсмоакустических методов смонтирован источник упругих волн и два сейсмоприемника, изолированные резиновым экраном от источника.

В глубинном зонде для терморазведки установлен электрический термометр. Скважинные магнитные и гравиметрические наблюдения выполняются специальными приборами, трансформирующими наблюдаемые параметры в электрические сигналы. В глубинных приборах, кроме датчиков поля, размещаются электронные усилители электрических сигналов и блоки питания. Корпуса их герметичны, термостойки, баростойки.

В наземной автоматической каротажной станции смонтированы электронные усилители и регистраторы. Аналоговую регистрацию проводят на рулонной (редко фото-) бумаге или магнитной ленте. Современные АГИС являются цифровыми. В них сигналы кодируются в двоичном коде и записываются на магнитную ленту. Это обеспечивает возможность машинной обработки информации как с помощью больших ЭВМ, так и компьютеров, входящих в комплект станции. Имеются устройства для представления материалов в аналоговой форме.

Читайте также:  Установка аудиосистем для скутеров

Раньше существовали одноканальные станции. Сейчас изготовляются многоканальные компьютеризированные телеизмерительные системы, позволяющие регистрировать информацию от нескольких датчиков. Станции АГИС изготовляются для разных целей: изучения нефтегазовых, рудных и инженерно-геологических и гидрогеологических скважин.

ГИС неглубоких скважин (до 200 м) можно проводить с помощью полуавтоматических регистраторов. В них измеряемый милливольтметром сигнал компенсируется эталонной разностью потенциалов, пропорциональной отклонению карандаша от нулевой линии. Запись сигнала ведется на диаграммной бумаге.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8813 — | 8347 — или читать все.

источник

Вопрос 1. Основные методы геофизических исследований скважин

Геофизические методы исследования разрезов скважины основаны на изучении горных пород по их физическим свойствам.

К геофизическим методам исследования скважин относят:

  • различные методы каротажа, проводимые для исследования с целью определения характера пройденных скважиной пластов;
  • методы контроля тектонического состояния скважины.

В настоящее время насчитывается более 30 методов геофизического исследования скважин, из них более 25 методов каротажа, при осуществлении которых применяют около 50 зондов, т.е. установок, служащих для измерения кажущегося сопротивления и содержащих несколько электродов, различающихся как размерами, так и назначением.

К наиболее распространенным методам относятся:

  • электрический каротаж,
  • гамма-каротаж (ГК),
  • нейтронный гамма-каротаж (НГК),
  • гамма-гамма-каротаж (ГГК).

Электрический каротаж— способ измерения кажущегося удельного сопротивления (КС) пород и потенциала самопроизвольного возникающего электрического поля (ПС) вдоль ствола скважины и получение кривых, показывающих изменение этих двух величин.

Гамма-каротаж— основан на различной степени естественной радиоактивности горных пород, которые содержат наибольшее количество радиоактивных элементов в рассеянном состоянии. Так радиоактивность пород отличается по силе излучения, т.о. по ее значению можно судить о характере исследуемых пород.

Гамма-каротаж, нейтронный гамма-каротаж и гамма-гамма-каротаж можно применять в незакрепленной скважине обсадной колонной, так и в закрепленной скважине, т.к. гамма лучи проникают сквозь металл. Поэтому эти методы особенно ценны при исследовании скважин, в том числе и тех, в которых электрокаротаж не был использован.

Геофизические методы исследования широко применяют для контроля тектонического состояния скважин и решения ряда других задач, возникающих при бурении, эксплуатации и капитальном ремонте скважин.

Также наряду с этими ГИС при ремонте скважин проводятся следующие исследования: АКЦ, СГДТ, РГД и др.

· Контроль за РИР при наращивании цемент­ного кольца за эксплуатационной колонной, кондук­тором, креплении слабосцементированных пород в призабойной зоне пласта осуществляют акустическим или гамма-гамма-цементомером по методике сравни­тельных измерений до, и после проведения изоляци­онных работ. Для контроля качества цементирования используется серийно выпускаемая аппаратура типа АКЦ. В сложных геолого-технических условиях обса­женных скважин получению достоверной информа­ции будет способствовать использование аппаратуры широкополосного акустического каротажа АКШ .

· Для контроля глубины спуска в скважину оборудования (НКТ, гидроперфоратора, различных пакерирующих устройств), интервала и толщины от­ложения парафина, положения статического и дина­мического уровней жидкостей в колонне, состояния искусственного забоя обязательным является иссле­дование одним из стационарных нейтронных методов (НГК, ННК) или методом рассеянного гамма-излу­чения (ГГК).

· Геофизические исследования при ремонте на­гнетательных скважин в интервале объекта разработ­ки проводят для оценки

· герметичности заколонного пространства,

· контроля за качеством отключения от­дельных пластов.

Эти задачи решают замером высоко­чувствительным термометром и гидродинамическим расходомером, закачкой радиоактивных изотопов. Факт поступления воды в пласты, расположенные за пре­делами интервала перфорации, может быть установ­лен по дополнительным исследованиям ИНМ при минерализации пластовой воды более 50 г/л.

· Результаты ремонтных работ с целью увели­чения и восстановления производительности и при­емистости, выравнивания профиля приемистости, до­полнительной перфорацииоценивают по сопоставле­нию замеров высокочувствительным термометром и гидродинамическим расходомером, которые необхо­димо проводить до и после завершения ремонтных работ.

· Для определения интервалов перфорации и кон­троля за состоянием колонны применяют

· акустический телевизор CAT,

· индукционный дефектоскоп ДСИ,

· аппаратуру контроля перфорации АКП,

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8797 — | 7619 — или читать все.

источник