Меню Рубрики

Установки для контроля качества сплавов

Методы исследования и контроля качества металлов и сплавов

Для исследования строения (структуры) металлов и сплавов и их свойств используют макро- и микроанализ, рентгеновский, термический, дилатометрический и другие методы анализа.

Неразрушающий контроль качества металлов и сплавов выполняют с использованием магнитной, ультразвуковой и рентгеновской дефектоскопии, а также других методов кон­троля.

Макроскопический, анализ (макроанализ) представляет со­бой метод изучения строения металлов и сплавов (их струк­туры ) невооружённым глазом или при небольших увеличе­ниях (до 10 раз, например, с помощью лупы). Макроанализ позволяет выявить неметаллические включения, пористость, усадочную раковину, трещины, а также определить располо­жение волокон при прокатке, ковке, штамповке и т. д. 102

Для осуществления макроанализа готовят специальный об­разец—шлиф. После шлифования поверхность шлифа обезжи­ривают, промывают спиртом и подвергают травлению погру­жением шлифа в реактив. Реактивы обычно состоят из кислот и щелочей или их растворов, а также растворов солей, кото­рые по-разному растворяют или окрашивают отдельные составляющие сплава. Для различных металлов и сплавов выбирают разные реактивы. После травления, промывки в холод­ной и горячей воде и сушки шлифа рассматривают строение металла или сплава—структурные составляющие, наличие не­металлических включений или раковин и т. д. На основании этих наблюдений структуры делают качественную оценку ис­следуемого металла.

Микроскопический анализ (микроанализ) — метод изучения строения металлов и сплавов с помощью специального метал­лографического микроскопа при больших увеличениях (до 3000 раз). С помощью микроанализа определяют величину и форму кристаллов и структурные составляющие сплавов, выявляют особенности строения структуры, наличия в ней микродефектов ( трещин, раковин, и т.д.) или неметаллических включений и т.п.

Шлиф для микроанализа приготовляют так же, как и для макроанализа, но после шлифования дополнительно произво­дят полирование для получения зеркальной поверхности.

Наличие и характер неметаллических включений определяют по нетравленым шлифам, а для выявления количества и формы тех или иных структурных составляющих шлифы подвергают травлению в специальных реактивах. Наиболее распространённый реактив для выявления структуры углероди­стой стали 4 %-ный_ раствор азотной кислоты в этиловом спирте.После травления, промывки и сушки шлифа его рассматри­вают под микроскопом, работающим с помощью отраженного света. Благодаря различной ориентировке кристаллов металла степень их травимости реактивами также оказывается разной. Когда шлиф рассматривают под микроскопом, свет неодина­ково отражается от различных зерен. Благодаря примесям гра­ницы зерен металла травятся сильнее, чем основной металл, и

более рельефно выявляются.

При травлении шлифа, приготовленного из сплава, его мик­роструктура выявляется вследствие различной травимости структурных составляющих (фаз). В этом случае на микрошлифе образуется рельеф. Все это позволяет определять мик­роструктуру — форму и размеры зерен исследуемого металла или сплава.

Наряду с обычными оптическими микроскопами ши­роко применяют электронные микроскопы, в которых вместо световых используются электронные лучи. Эти лучи испускает раскаленная вольфрамовая спираль. Электронный микроскоп позволяет получить увеличение в 100000 раз и выше.

Рентгеновский анализ позволяет исследовать типы кристаллических решеток металлов и сплавов и определить их параметр. Для анализа используют ренгеновские лучи, получаемые в специальных рентгеновских трубках.

Определение структуры металлов и типа кристаллической решетки при помощи рентгеновских лучей основано на дифрак­ции (отражении) рентгеновских лучей рядами атомов кристал­лической решетки. Зная длину волны рентгеновских лучей можно определить расстояние между рядами атомов и распо­ложение их в пространстве. Установление атомной структуры металлов и сплавов весьма существенно для понимания физи­ческой природы явлений, происходящих при изменении состоя­ния металла в процессе его обработки.

Термический анализ применяют для определения критических точек при нагревании и охлаждении металлов и сплавов с последующим построением диаграмм состояния (см. рис. 4.8,4.9, 411).

Кривые нагревания и охлаждения металлов и сплавов по­зволяют определить температуры превращений и выбрать ра­циональный температурный интервал обработки металлов или сплавов.

Дилатометрический анализ основан на изменении объема металла или сплава, происходящем при нагревании или охлаждении. Его применяют для определения критических то­чек и коэффициентов теплового расширения металлических образцов.

При нагревании объем увеличивается плавно или скачко­образно; плавно он увеличивается при отсутствии фазовых превращений в металле и скачкообразно при их наличии. По результатам анализа, выполняемого на специальных приборах (дилатометрах), строят кривые (в координатах тем­пература—удлинение образца), по которым определяют температуру фазовых превращений.

Магнитную дефектоскопию применяют для контроля каче­ства готовых деталей, сварных швов и т. д. с целью выявления внутренних дефектов (закалочных и усталостных трещин, не­металлических включений, усадочных раковин и т. д.). На практике используют такие методы магнитной дефектоскопии, как магнитных суспензий, индукционный и др.

Испытание методом магнитных суспензий или сухого порошка состоит из намагничивания контролируемой детали (ток намагничивания до 2000.. .3000 А), покрытия ее ферромагнит­ным порошком (например, порошком железа), осмотра испы­туемой поверхности и размагничивания детали. У намагниченных деталей, имеющих внутренние дефекты (трещины, неметаллические включения или другие дефекты), образуется неоднородное магнитное поле вследствие того, что магнитныесиловые линии огибают место дефекта. При покрытии изделия магнитным порошком его частицы, располагаясь над дефектом, образуют резко очерченный рисунок, отражающий форму и величину дефекта металла. Для обнаружения дефектов мето­дом магнитных суспензий или сухого порошка в ферромагнит­ных сплавах применяют специальные аппараты—магнитные дефектоскопы.

Читайте также:  Установка webzeal для openbox

Этот метод контроля осуществляется быстро, надежно и применим для массового контроля качества продукции.

Ультразвуковую дефектоскопию применяют для контроля качества отливок, поковок и готовых деталей не только из ферромагнитных, но из любых металлов и сплавов и для вы­явления макро- и микродефектов, залегающих на значительной глубине (до 10 м). При проверке качества деталей с помощью ультразвуковых дефектоскопов различной конструкции приме­няют ультразвуковые упругие колебания с частотой 104. 107 Гц.

Ультразвуковой дефектоскоп состоит из генератора элек­трических колебаний, пьезоэлектрических щупов излучателей, усилителя электрических колебаний и индикатора (показы­вающего стрелочного прибора или осциллографа). В промыш­ленности применяют ультразвуковые дефектоскопы с непрерыв­ным излучением и импульсные.

В ультразвуковых дефектоскопах с непрерывным излуче­нием (типа УЗД-6) ультразвуковые волны, направленно рас­пространяясь в металле от щупа-излучателя, не проходят через встречающиеся в нем дефекты (внутренние трещины, усадоч­ные раковины или газовые пузыри, расслоения, неметал­лические включения и т. д.), создавая за дефектом область «звуковой тени», что отмечается на индикаторе усилителя. Ко входу усилителя подключен щуп-приемник, расположенный соосно на противоположной стороне изделия. Это позволяет выявить место и глубину залегания дефекта.

В импульсных ультразвуковых дефектоскопах (типа УЗД-7Н) ультразвуковая волна, распространяющаяся в иссле­дуемом материале, при встрече с препятствием в виде дефекта отражается от него. Отраженные волны принимаются, усиливаются и передаются на показывающий индикатор. Импульс­ные дефектоскопы могут работать с одним или с двумя щу­пами, прикладываемыми к изделию только с одной стороны. Это является одним из важных преимуществ импульсных дефектоскопов, позволяющих производить контроль изделия при доступе к нему только с одной стороны в отличие от теневых дефектоскопов.

При помощи ультразвуковой дефектоскопии, кроме опреде­ления макро- и микродефектов, в металлических телах изме­ряют глубину закаленного или цементованного слоя, опреде­ляют внутренние напряжения, модуль упругости, плотность ме­талла и т. д.

Рентгеноскопия (просвечивание) металлов и сплавов осно­вана на способности рентгеновских лучей проходить через оптически непрозрачные среды и предназначены для выявле­ния внутренних дефектов (пористости, трещин, газовых пузы­рей, шлаковых включений и др.). В местах дефектов рентге­новские лучи поглощаются меньше, чем в сплошном металле, и поэтому на фотопленке такие лучи образуют темные пятна, соответствующие форме дефекта. Рентгеноскопию, как и уль­тразвуковую дефектоскопию, в настоящее время широко при­меняют в промышленности для поточного контроля массовой продукции.

1. Какие существуют виды и порядок испытаний для определения проч­ностных характеристик и твердости металлов, их показатели и размер­ности?

2. Виды и порядок испытаний для определения характеристик пластич­ности, ударной вязкости и предела усталости металла.

3. Какие вы знаете виды разрушения металлов и их сущность?

4. Методы исследования и контроля качества металлов, их сущность и области применения.

Дата добавления: 2014-01-11 ; Просмотров: 4116 ; Нарушение авторских прав?

источник

Неразрушающий спектральный контроль состава металла изделий

Любое литейное и металлообрабатывающее производство не может обойтись без систем контроля своей продукции. Снижение качества поставляемых изделий стало большой проблемой для отечественных предприятий, которые теперь вынуждены закупать требуемые материалы за границей. Именно поэтому важным фактором на производстве является система контроля поставляемой продукции и контроль изделий.

Методы контроля изделий на производстве

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам. Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями. От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Однако очень часто возникает необходимость повысить оперативность контроля, а также иметь возможность автоматизировать контроль. В связи с этим были разработаны физико-химические и физические методы определения состава материалов. Среди этих методов одно из главных мест занимает спектральный анализ.

Преимущества метода

Благодаря высокой избирательности, оказывается возможным быстро и с высокой чувствительностью определить химический состав анализируемого материала. Исследовать состав металла по спектру можно без нарушения его пригодности к использованию, т.е. можно проводить неразрушающий контроль образцов. Несмотря на громадное число аналитических методик, предназначенных для исследования различных объектов, все они основаны на общей принципиальной схеме: каждому химическому элементу принадлежит свой спектр.

Благодаря индивидуальности спектров имеется возможность определить химический состав тела. Сравнительная простота и универсальность спектрального анализа сделали метод основным методом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический руд и минералов, особое место в этой области занимает неразрушающий контроль металлов.

Принцип метода

Для проведения исследования вещество необходимо испарить, так как свет, излучаемый веществом в газообразном состоянии, определяется химическим составом этого вещества, в отличие от света, излучаемого твердыми телами или жидкостями. Для испарения и возбуждения вещества используют высокотемпературное пламя, различного типа электрические разряды в газах: дуга, искра и т. д.

Читайте также:  Установка закладных при монтаже натяжных потолков

Высокая температура в разрядах (тысячи и десятки тысяч градусов) приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и очень редко – молекулярного. Излучение паров вещества складывается из излучения атомов всех элементов. Для исследования необходимо выделить излучение каждого элемента.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.

В металлургии и машиностроении спектральный анализ металлов стал в настоящее время основным методом неразрушающего контроля, перед которым ставятся следующие задачи:

  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;
  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;
  3. Контроль качества готовых изделий;
  4. Контроль правильности применения сплавов при монтаже готовых изделий;
  5. Проверка различного рода покрытий;
  6. Иногда необходимо определять распределение примесей и включений в металле.

Области применения

Методы атомного спектрального анализа, качественного и количественного, разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение. Атомные спектральные исследования используют для анализа самых разнообразных объектов. Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Область использования молекулярной спектроскопии в основном охватывает анализ органических веществ, хотя применима и для изучения неорганических соединений. Молекулярный анализ спектров внедряется, главным образом, в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Приборы наблюдения спектра

Это осуществляется с помощью оптических приборов – спектральных аппаратов. В этих приборах световые лучи с разными длинами волн отделяются пространственно друг от друга, позволяя проводить изучение спектра исследуемого вещества.

Для визуального наблюдения спектра используются приборы:

  • Спектроскопы – спектр наблюдается визуально;
  • Спектрографы – спектр фотографируется на фотопленку;
  • Монохроматоры – выделяется свет одной длины волны, и его интенсивность может быть зарегистрирована с помощью фотоэлемента

Можно выделить следующие стадии изучения спектров:

  1. Получение спектра анализируемой пробы;
  2. Определение длины волны спектральных линий или полос, после чего устанавливают их принадлежность к определенным элементам или соединениям, т. е. находят качественный состав пробы;
  3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам, что позволяет провести количественный спектральный анализ, т.е. найти их концентрацию в анализируемой пробе

источник

Методы контроля литья, плавки, качества отливок и стали.
Спектральные приборы для анализа металлов.

Детали и заготовки, выполненные литьевым методом – основа машиностроения. Качество литейной продукции определяет конкурентоспособность изготовленного оборудования, техники, машин и агрегатов. Однако существует процент брака, что влечет за собой возрастание цен на конечную продукцию и производственные издержки на непредвиденные ремонты готового оборудования.

Проблемы качества литья в литейном производстве

Рассмотрим частые виды дефектов в литейных отливках? Возьмем усадку. Что это такое? Свойство металлов и сплавов уменьшать объем при охлаждении во время затвердевания. Степень усадки зависит от химического состава стали – содержания кремния и углерода. Если в составе сплава концентрация этих элементов увеличена, то степень усадки становится меньше. Поскольку чем быстрее отводится тепло, тем сильнее усадка. Какие дефекты – следствие литейных ошибок:

  • усадочные раковины;
  • полости, которые спрятаны внутри отливки;
  • сплавы и недоливы от неслившихся, но затвердевших во время заполнения формы потоков металла;
  • перекос из-за неправильной центровки;
  • горячие трещины, коробление, которые возникают из-за кристаллизации или при затвердевании горячего металла;
  • трещины, вызванные превышением количества серы, микропримесей, газов;
  • дефекты структуры, поверхности, контура и габаритных размеров отливки;
  • несоответствие металла изделия заданному химическому составу.

Для того, чтобы обеспечить низкий процент брака продукции, выпускаемой в продажу, внедряйте менеджмент качества отливок и контроль сплавов.

Методы контроля и приборы в системе менеджмента качества литейного производства

При создании конкурентоспособной продукции используются приборы контроля литья и сплавов различного типа. Кратко рассмотрим задачи, направленные на оценку характеристик качества металла.

В литейной промышленности для выплавки чугуна или в сталеплавильном деле при создании легированных сталей выполняют анализ металлов на вязкость, состав основных оксидов и окисленность шлака на количество SiO2, FeO, MnO, CaO. Основность находят проверкой электропроводности. Чтобы точно представлять химический состав применяют анализ спектров металла. Объектами исследования выступают металлы и сплавы с основами (Fe, Al, Cu, Zn, Pb, Sn, Sb, Ni, Ti, Co, Mg). Вариант приборов для исследования качества стали и чугунов – спектрометры.

Окисленность металла определяют по цвету порошка пробы шлака; ударную вязкость – визимитром. Термоэлектрические пирометры и термопары погружения с датчиками, контактирующими с жидким металлом, контролируют температуру сплавов и металла.

Читайте также:  Установка и настройка iptv player ростелеком

После внешнего осмотра и выбора отливок для контроля, профилометром оценивают шероховатость заготовки, проверяя соответствует ли изделие предписанным требованиям и нормативами. Оценивают отклонения изделия от заявленных размеров, измеряют область дефектов.

Отливки, предназначенные для работы под давлением, такие как вентили, задвижки или корпуса насосов проверяют на герметичность. Для поиска скрытых дефектов заготовок применяют способы неразрушающего контроля. Иногда спектральные методы единственный возможный способ проверить изделие на пример дефектов, не разрушая целостности.

Контроль термообработки выполняют заданием термовременного режима операции. Для этого используются термопары с потенциометрами, которые графически демонстрируют процессы термической обработки. Результаты подтверждают проверкой механических свойств или металлографическим контролем микроструктуры.

Спектральные приборы для анализа литья

Современные спектральные приборы – это ряд достоинств, которые в корне отличаются от прежних дешевых стилоскопов, способных только на количественный анализ содержания примесей в металле путем визуальной оценки интенсивности линий спектра. Для количественного атомно-эмиссионного анализа чугунных отливок пользуются фотоэлектрическим спектральным анализом. Чаще всего для контроля литья анализируются примесные и легирующие элементы за исключением углерода. Однако разработан ряд приборов для точного определения количественного содержания углерода, фосфора и серы. Компания «Искролайн» представляет две модификации спектральных приборов для анализа качества металлов и контроля литья. К ним относятся:

  1. Рентгено-флуоресцентный спектрометр. Приборы этого типа выполняют количественный анализ содержания химических веществ в металлах. Действие основано на излучении рентгеновской трубки и возбуждении атомов вещества, предоставленного для исследования. Рентгенофлуоресцентный принцип работы применяется в конструкции портативных ручных анализаторов металлов РФА.
  2. Атомно-эмиссионный спектрометр. Работа построена на изучении спектров испускания свободных атомов и ионов в газовой среде с использованием плазмы как источника света, например, плазму электрической искры или дуги. Прибор анализирует состав металлов и сплавов, присутствие в них примесей. Представитель класса атомно-эмиссионных спектрометров – «Искролайн-300», работающий в спектральном диапазоне 174-930 нм.

Проверка количественного состава углерода в чугуне также может проводится с помощью дорогих и выполняемых в лабораториях инфракрасно-абсорбционного, кулонометрического или газообъемного методов.

Спектральные приборы, для оценки качества литья, обладают рядом достоинств:

  • стабилизированный источник разряда;
  • регулируемый электронным детектором спектр;
  • компьютерная обработка результатов с использованием современных программ;
  • изучение спектра в вакуумной-ультрафиолетовой и ультрафиолетовой области спектра;
  • точность показаний по требованиям ГОСТ с десятикратным запасом по нормативам;
  • нижний предел обнаружения химических элементов – 0,0001%.

Проблематика контроля литья и особенностей производства

Потребность в получении отливок премиум-качества с особенными свойствами поверхности постоянно растет. К ним относятся:

  • высокая плотность;
  • однородность материала;
  • отсутствие надрезов и повышенных местных напряжений, сконцентрированных в одном месте.

В этих случаях недостаточно выполнить проверку качества простым определением структуры материала и подтвердить свойства. Иногда необходимо знать эксплуатационные параметры:

  • коррозию под напряжением;
  • герметичность;
  • сопротивление знакопеременным нагрузкам.

Для подтверждения эксплуатационных способностей оценивают работоспособность изделий в условиях, приближенных к действительным. Для получения достоверного результата необходимы лабораторные условия, наличие:

  • испытательного стенда;
  • имитатора нагрузок;
  • идентичности рабочей среде условий эксплуатации;
  • соблюдения температурного режима.

Для подтверждения качества отливок премиум-сегмента необходимы статистические методы управления качеством, выявляющие дефекты текущего производства для их устранения.Способ повышения контроля качества – спектральные методы анализа. Оптические и рентгеновские спектрометры анализаторы качества служат для экспресс-анализа химического состава и определения марок металлов.

Оборудования серии «Искролайн» для литейного производства

Качественный и количественный анализ металлов спектральными приборами выполняют анализом спектра поглощения. Образы металлов обладают спектром, который представляет собой набор характеристических линий, по которым определяют элементы. Количественный анализ оценивается по интенсивности спектральных линий. Таким образом определяют процентное содержание химического элемента в исследуемом образце. В литейном производстве используются искровые анализаторы:

Данные приборы относятся к спектрометрам, основанным на атомно-эмиссионном спектральном анализе. Главные преимущества приборов Искролайн:

  • работа в расширенном спектральном диапазоне, что определяет количество химических элементов;
  • невысокие пределы обнаружения;
  • удобство и оперативность работы;
  • количественный анализ металлов и сплавов;
  • одновременное определение до 70 элементов со спектральными линиями в диапазоне 174 – 441 нм, включая углерод, фосфор и серу с разрешением спектральных линий 0,02 – 0,04 нм;
  • определение микропримесей и растворенных газов проводится не более минуты.

Образцы проб, например, алюминиевых сплавов отбираются из расплавов или конечных продуктов. Классический подход взятие пробы в литейном производстве – отбор пробы из ванны с расплавленным металлом с использованием тестовой ложки и помещением металла в специальную медную изложницу (Кокиль). Изготовленная из меди, изложница обеспечивает быстрое охлаждение и способствует получению гомогенных проб, которые являются хорошим способом избежать ошибочного результата, так как кристаллическая мелкозернистая структура гарантирует точность, воспроизводимость результата.

Кроме того, аналитические устройства лабораторного класса «Искролайн 300» и настольный спектрометр «Искролайн 100» включены в Государственный реестр средств измерения России, Белоруссии и Казахстана, что подтверждает уровень исполнения аналитического прибора и отлично годится в штатное оборудования для литейного производства.

источник