Меню Рубрики

Установки для культивирование бактерии в лаборатории

МИКРОБИОЛОГИЧЕСКИЕ ЛАБОРАТОРИИ И ИХ ОБОРУДОВАНИЕ

Введение

Все микробиологические, биохимические и моле-кулярно-биологические исследования микроорганизмов про­водят в специальных лабораториях, структура и оборудование которых зависят от объектов исследования (бактерий, вирусов, грибов, простейших), а также от их целевой направленности (научные исследования, диагностика заболеваний). Изучение иммунного ответа и серодиагностика заболеваний человека и животных осуществляют в иммунологических и серологичес­ких (serum — сыворотка крови) лабораториях.

Бактериологические, вирусологические, микологические и серологические (иммунологические) лаборатории входят в со­став санитарно-эпидемиологических станций (СЭС), диагнос­тических центров и крупных больниц. В лабораториях СЭС выполняют бактериологические, вирусологические и серологи­ческие анализы материалов, полученных от больных и контак­тировавших с ними лиц, обследуют бактерионосителей и про­водят санитарно-микробиологические исследования воды, воз­духа, почвы, пищевых продуктов и т.д.

В бактериологических и серологических лабораториях боль­ниц и диагностических центров проводят исследования с целью диагностики кишечных, гнойных, респираторных и дру­гих инфекционных заболеваний, осуществляют микробиологи­ческий контроль за стерилизацией и дезинфекцией.

Диагностику особо опасных инфекций (чума, туляремия, сибирская язва и др.) проводят в специальных режимных ла­бораториях, организация и порядок деятельности которых строго регламентированы.

В вирусологических лабораториях диагностируют заболева­ния, вызванные вирусами (грипп, гепатит, полиомиелит и др.), некоторыми бактериями — хламидиями (орнитоз и др.) и риккетсиями (сыпной тиф, Ку-лихорадка и др.). При организации и оборудовании вирусологических лабораторий учитывают спе­цифику работы с вирусами, культурами клеток и куриными эмбрионами, требующую строжайшей асептики.

В микологических лабораториях проводят диагностику за­болеваний, вызываемых патогенными грибами, возбудителями микозов.

Лаборатории обычно размещаются в нескольких помещени­ях, площадь которых определяется объемом работ и целевым назначением.

В каждой лаборатории предусмотрены:

а) боксы для работы с отдельными группами возбудителей;

б) помещения для серологических исследований;

в) помещения для мойки и стерилизации посуды, приготов­
ления питательных сред;

г) виварий с боксами для здоровых и подопытных живот­
ных;

д) регистратура для приема и выдачи анализов.

Наряду с этими помещениями в вирусологических лабора­ториях имеются боксы для специальной обработки исследуе­мого материала и работы с культурами клеток.

Оборудование микробиологических лабораторий

Лаборатории снабжены рядом обязательных приборов и аппаратов.

1. Приборы для микроскопии: биологический иммерсион­ный микроскоп с дополнительными приспособлениями (ос­ветитель, фазово-контрастное устройство, темнопольный кон­денсор и др.), люминесцентный микроскоп.

2. Термостаты и холодильники.

3. Приборы для приготовления питательных сред, растворов и т.д.: аппарат для получения дистиллированной воды (дистил­лятор), технические и аналитические весы, рН-метры, аппара­тура для фильтрования, водяные бани, центрифуги.

4. Набор инструментов для манипуляций с микробами: бак­териологические петли, шпатели, иглы, пинцеты и др.

5. Лабораторная посуда: пробирки, колбы, чашки Петри, матрацы, флаконы, ампулы, пастеровские и градуированные пипетки и др., аппарат для изготовления ватно-марлевых про­бок.

Крупные диагностические комплексы имеют автоматичес­кие анализаторы и компьютеризированную систему оценки полученной информации.

В лаборатории выделено место для окраски микроскопичес­ких препаратов, где находятся растворы специальных красите­лей, спирт, кислоты, фильтровальная бумага и др. Каждое рабочее место снабжено газовой горелкой или спиртовкой и емкостью с дезинфицирующим раствором. Для повседневной работы лаборатория должна располагать необходимыми пита­тельными средами, химическими реактивами, диагностически­ми препаратами и другими материалами.

В крупных лабораториях имеются термостатные комнаты для массового выращивания микроорганизмов, постановки се­рологических реакций. Для выращивания, хранения культур, стерилизации лабораторной посуды и других целей используют следующую аппаратуру.

1. Термостат. Аппарат, в котором поддерживается постоян­ная температура. Оптимальная температура для размножения большинства патогенных микроорганизмов 37 «С. Термостаты бывают воздушными и водяными.

2. Микроанаэростат. Аппарат для выращивания микроорга­низмов в анаэробных условиях.

3. С02 -инкубатор. Аппарат для создания постоянной тем­пературы и атмосферы определенного газового состава. Пред­назначен для культивирования микроорганизмов, требователь­ных к газовому составу атмосферы.

4. Холодильники. Используют в микробиологических лабора­ториях для хранения культур микроорганизмов, питательных сред, крови, вакцин, сывороток и прочих биологически актив­ных препаратов при температуре около 4 °С. Для хранения препаратов при температуре ниже О °С применяют низкотем­пературные холодильники, в которых поддерживается темпе­ратура —20 °С или —75 «С.

5. Центрифуги. Применяют для осаждения микроорганиз­мов, эритроцитов и других клеток, для разделения неоднород­ных жидкостей (эмульсии, суспензии). В лабораториях исполь­зуют центрифуги с различными режимами работы.

6. Сушилъно-стерилизационный шкаф (печь Пастера). Пред­назначен для суховоздушной стерилизации стеклянной лабо­раторной посуды и других жаростойких материалов.

7. Стерилизатор паровой (автоклав). Предназначен для сте­рилизации перегретым водяным паром (под давлением). В ми­кробиологических лабораториях используют автоклавы разных моделей (вертикальные, горизонтальные, стационарные, пере­носные).

БАКТЕРИОЛОГИЧЕСКИЕ, ВИРУСОЛОГИЧЕСКИЕ, МИКОЛОГИЧЕСКИЕ, ИММУНОЛОГИЧЕСКИЕ ЛАБОРАТОРИИ И ИХ ОБОРУДОВАНИЕ. УСТРОЙСТВО СОВРЕМЕННЫХ МИКРОСКОПОВ. МЕТОДЫ МИКРОСКОПИИ. МЕТОДЫ ИЗУЧЕНИЯ МОРФОЛОГИИ МИКРООРГАНИЗМОВ

1. Правила работы и организация микробиологических (бактериологических, вирусологических, микологи­ческих) лабораторий.

2. Основные приборы и оборудование микробиологичес­кой лаборатории.

3. Микроскопы и микроскопическая техника. Правила работы с иммерсионным микроскопом (объективами).

Демонстрация

1. Устройство и применение основных приборов и обо­рудования, используемого в микробиологических ла­бораториях: термостата, центрифуг, автоклава, су­шильного шкафа, инструментария и посуды.

2. Устройство биологического микроскопа. Различные ме­тоды микроскопии: темнопольная, фазово-контрастная, люминесцентная, электронная.

3. Препараты микробов (дрожжей и бактерий) при раз­личных методах микроскопии.

1. Микроскопировать и зарисовать препараты дрожже-подобных грибов рода Candida, используя различные виды микроскопии.

Методические указания

Правила работы в микробиологических лабораториях.

Работу в микробиологической лаборатории медицинского учреждения проводят с возбудителями инфекционных заболеваний — пато­генными микроорганизмами.

Поэтому для предохранения от заражения персонал обязан строго соблюдать правила внутрен­него распорядка:

1. Все сотрудники должны работать в медицинских халатах, шапочках и сменной обуви. Вход в лабораторию без халата категорически воспрещен. В необходимых слу­чаях работающие надевают на лицо маску из марли. Ра­бота с особо опасными микробами регламентируется спе­циальной инструкцией и проводится в режимных лабора­ториях.

2. В лаборатории запрещается курить и принимать пищу.

3. Рабочее место должно содержаться в образцовом порядке. Личные вещи сотрудников следует хранить в специально отведенном месте.

4. При случайном попадании инфицированного мате­риала на стол, пол и другие поверхности это место необ­ходимо тщательно обработать дезинфицирующим раство­ром.

5. Хранение, наблюдение за культурами микробов и их уничтожение должны производиться согласно специаль­ной инструкции. Культуры патогенных микробов реги­стрируют в специальном журнале.

6. По окончании работы руки следует тщательно вы­мыть, а при необходимости обработать дезинфицирующим раствором.

Микроскопы и методы микроскопии

а — общий вид микроскопа «Биолам»; б — микроскоп МБР-1: 1 — основание микроскопа; 2 — предметный столик; 3 — винты для перемещения предмет­ного столика; 4 — клеммы, прижимающие препарат; 5 — конденсор; 6 — кронштейн конденсора; 7 — винт, укрепляющий конденсор в гильзе; 8 — рукоятка перемещения конденсора; 9 — рукоятка ирисовой диафрагмы кон­денсора; 10 — зеркало; 11 — тубусодержатель; 12 — рукоятка макрометричес-кого винта; 13 — рукоятка микрометрического винта; 14 — револьвер объек­тивов; 15 — объективы; 16 — наклонный тубус; 17 — винт для крепления ту­буса; 18 — окуляр.

Для микробиологических исследований используют не­сколько типов микроскопов (биологический, люминесцентный, электронный) и специальные методы микроскопии (фа-зово-контрастный, темнопольный).

В микробиологической практике применяют микроскопы отечественных марок: МБР-1, МБИ-2, МБИ-3, МБИ-6, «Био­лам» Р-1 и др. (рис. 1.1). Они предназначены для изучения формы, структуры, размеров и других признаков различных микробов, величина которых не менее 0,2—0,3 мкм.

Читайте также:  Установка потолочных плинтусов с светодиодной подсветкой

Иммерсионная микроскопия

Применяется для увеличения разрешающей способности метода световой микроскопии. Раз­решающая способность системы светооптической микроско­пии определяется длиной волны видимого света и числовой апертурой системы. Числовая апертура показывает величину угла максимального конуса света, попадающего в объектив, и зависит от оптических свойств (преломляющей способности) среды между объектом и линзой объектива. Погружение объ­ектива в среду (минеральное масло, вода), имеющую высокий коэффициент преломления, близкий к таковому стекла, пре­пятствует рассеянию света от объекта.

Рис. 1.2. Ход лучей в иммерсионной системе, п — показатель преломления.

Рис. 1.3. Ход лучей в темнопольных конденсорах, а — параболоид-конденсор; б — кардиоид-конденсор; 1 — объектив; 2 — иммерсионное масло; 3 — препарат; 4 — зеркальная поверхность; 5 — диа­фрагма.

Таким образом достигается увеличение числовой апертуры и соответственно разре­шающей способности. Для иммерсионной микроскопии при­меняют специальные иммерсионные объективы, снабженные меткой (МИ — масляная иммерсия, ВИ — водная иммерсия). Предельная разрешающая способность иммерсионного микро­скопа не превышает 0,2 мкм. Ход лучей в иммерсионной системе показан на рис. 1.2.

Общее увеличение микроскопа определяется произведением увеличения объектива на увеличение окуляра. Например, уве­личение микроскопа с иммерсионным объективом 90 и окуля­ром 10 составляет: 90 x 10 = 900.

Микроскопия в проходящем свете (светлопольная микроско­пия) используется для изучения окрашенных объектов в фик­сированных препаратах.

Темнопольная микроскопия. Применяется для прижизненно­го изучения микробов в нативных неокрашенных препаратах. Микроскопия в темном поле зрения основана на явлении дифракции света при боковом освещении частиц, взвешенных в жидкости (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоид-конденсора, которые заменяют обычный конденсор в биологическом микроскопе (рис. 1.3). При этом способе освещения в объектив попадают только лучи, отраженные от поверхности объекта. В результате на темном фоне (неосвещенном поле зрения) видны ярко светя­щиеся частицы. Препарат в этом случае имеет вид, показанный на рис. 1.4, б (на вклейке).

Фазово-контрастная микроскопия. Предназначена для изуче­ния нативных препаратов. Фазово-контрастное приспособле­ние дает возможность увидеть в микроскоп прозрачные объек­ты. Свет проходит через различные биологические структуры с разной скоростью, которая зависит от оптической плотности объекта. В результате возникает изменение фазы световой волны, не воспринимаемое глазом. Фазовое устройство, вклю­чающее особые конденсор и объектив, обеспечивает преобра­зование изменений фазы световой волны в видимые изменения амплитуды. Таким образом достигается усиление различия в оптической плотности объектов. Они приобретают высокую контрастность, которая может быть позитивной или негатив­ной. Позитивным фазовым контрастом называют темное изо­бражение объекта в светлом поле зрения, негативным — свет­лое изображение объекта на темном фоне (см. рис. 1.4; на вклейке).

Для фазово-контрастной микроскопии используют обыч­ный микроскоп и дополнительное фазово-контрастное устрой­ство КФ-1 или КФ-4 (рис. 1.5), а также специальные освети­тели.

Люминесцентная (или флюоресцентная) микроскопия. Осно­вана на явлении фотолюминесценции.

Люминесценция — свечение веществ, возникающее под воздействием внешнего излучения: светового, ультрафиолето­вого, ионизирующего и др. Фотолюминесценция — люмине­сценция объекта под влиянием света. Если освещать люминес-цирующий объект синим светом, то он испускает лучи крас­ного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта.

Рис. 1.5. Фазово-контрастное устройство, а — фазовые объективы; б — вспомогательный микроскоп; в — фазовый кон­денсор.

Длина волны излучаемого света (цвет люминесценции) зависит от физико-хими­ческой структуры люминесцирующего вещества.

Первичная люминесценция биологических объектов (собст­венная, или биолюминесценция) наблюдается без предвари­тельного окрашивания за счет наличия собственных люминес-цирующих веществ, вторичная (наведенная) — возникает в ре­зультате окрашивания препаратов специальными люминесци-рующими красителями — флюорохромами (акридиновый оран­жевый, ауромин, корифосфин и др.). Люминесцентная микро­скопия по сравнению с обычными методами обладает рядом преимуществ: возможностью исследовать живые микробы и обнаруживать их в исследуемом материале в небольших кон­центрациях вследствие высокой степени контрастности.

В лабораторной практике люминесцентную микроскопию широко применяют для выявления и изучения многих микро­бов.

Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способнос­ти светового микроскопа (0,2 мкм). Электронный микроскоп применяют для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других суб­микроскопических объектов. Световые лучи в таких микроско­пах заменяет поток электронов, имеющий при определенных ускорениях длину волны около 0,005 нм, т.е. почти в 100 000 раз меньше длины волны видимого света. Высокая разре­шающая способность электронного микроскопа, достигаю­щая 0,1-0,2 нм, позволяет получить общее полезное увеличе­ние до 1 000 000.

Наряду с приборами «просвечивающего» типа используют сканирующие электронные микроскопы, обеспечивающие рель­ефное изображение поверхности объекта. Разрешающая спо­собность этих приборов значительно ниже, чем у электронных микроскопов «просвечивающего» типа.

Правила работы с микроскопом

Работа с любым световым микроскопом включает установку правильного освещения по­ля зрения и препарата и его микроскопию различными объек­тивами. Освещение может быть естественным (дневным) или искусственным, для чего используют специальные источники света — осветители разных марок.

При микроскопии препаратов с иммерсионным объективом следует строго придерживаться определенного порядка:

1) на приготовленный на предметном стекле и окрашенный мазок нанести каплю иммерсионного масла и поместить его на предметный столик, укрепив зажимами;

2) повернуть револьвер до отметки иммерсионного объек­тива 90х или 10Ох;

3) осторожно опустить тубус микроскопа до погружения объектива в каплю масла;

4) установить ориентировочный фокус при помощи макрометрического винта;

5) провести окончательную фокусировку препарата микро­ метрическим винтом, вращая его в пределах только одного оборота. Нельзя допускать соприкосновения объектива с пре­
паратом, так как это может повлечь поломку покровного стек­ла или фронтальной линзы объектива (свободное расстояние иммерсионного объектива 0,1—1 мм).

По окончании работы микроскопа необходимо удалить мас­ло с иммерсионного объектива и перевести револьвер на малый объектив 8х.

Для темнопольной и фазово-контрастной микроскопии ис­пользуют нативные препараты («раздавленная» капля и др., см. тему 2.1); микроскопируют с объективом 40х или специальным иммерсионным объективом с ирис-диафрагмой, позволяющей регулировать численную апертуру от 1,25 до 0,85. Толщина предметных стекол не должна превышать 1 — 1,5 мм, покров­ных — 0,15—0,2 мм.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 11045 — | 8240 — или читать все.

источник

Культивирование бактерий: методы, принципы, этапы и условия

Микроорганизмы в окружающей нас природе находятся повсеместно: в почвах, водоемах, на поверхностях всевозможных предметов, ими населены люди и животные. Все это может служить источниками загрязнения микробами продуктов питания, лекарств, производственных линий. Культивирование бактерий необходимо для изучения их свойств, потребностей, особенностей. Это в свою очередь является важным этапом в разработке различных лекарственных препаратов, лабораторной диагностике заболеваний, расчете производственных реакторов и многого другого.

Общие понятия

Под культивированием бактерий в микробиологии понимают выращивание микроорганизмов, осуществляемое в лабораторных условиях. В свою очередь микробы, которые выросли на подобранной питательной среде, называют культурой. Культуры могут быть смешанными, если они образованы разными видами микроорганизмов, и чистыми, если представлены только одним видом бактерий.

Читайте также:  Установка камеры для покраски

Если в питательную среду помещают только одну клетку, а получают в результате ее размножения группу особей, то эту совокупность микроорганизмов называют клоном. Когда клон развивается до такого уровня, что становится виден невооруженным глазом, такое скопление бактерий называют колонией.

Обычно культивирование бактерий, выделенных из различных источников, производят отдельно друг от друга. Каждую такую отдельно выращенную группу микробов называют штаммом. Так, если один вид стафиллококка выделен из трех источников (или разных порций одного и того же продукта, разных человек), говорят о трех штаммах этого вида стафилококка.

Факторы роста бактерий

К ним относят различные аминокислоты, липиды, пуриновые основания и другие соединения, необходимые для развития микроорганизмов. Некоторые микробы могут самостоятельно вырабатывать необходимые им вещества, а другим необходимо получать их в готовом виде. По потребности микроорганизмов в тех или иных ростовых факторах проводят идентификацию и дифференциацию бактерий. Также этот параметр важен для правильного изготовления питательной среды в целях проведения лабораторных и биотехнологических работ:

  • Аминокислоты. Бактерии могут нуждаться в одной конкретной аминокислоте или какой-либо группе кислот. Так, клостридиям необходим лейцин и тирозин, стрептококкам — лейцин и аргинин. Микроорганизмы, которым для роста необходимо получение аминокислот извне, называют ауксотрофными.
  • Пуриновые и пиримидиновые основания, а также их производные (аденин, гуанин и другие). Они являются важным фактором роста многих видов стрептококков.
  • Витамины. Они входят в состав коферментов, требуемых бактериям. Так, никотиновая кислота, а также ее амид, входящие в состав НАД и НАДФ, нужна коринебактериям дифтерии, шигеллы. Тиамин, как составная часть пирофосфата, требуется золотистому стафилококку, пневмококку, бруцеллам. Пантотеновая кислота, входящая в кофермент КоА, требуется бациллам столбняка и отдельным видам стрептококка. Цитохромы, а значит, образующие их фолиевая кислота, гемы и биотин, необходимы микобактериям туберкулеза и гемофильным бактериям.

Требования к средам

Условия, предъявляемые к питательным средам для культивирования бактерий:

  1. Питательность. Они должны содержать вещества, причем находящиеся в легко усвояемом виде, необходимые микроорганизмам для питания и пополнения энергии. К ним относят органогены и минеральные вещества. Для некоторых микроорганизмов дополнительно необходимы витамины и аминокислоты, которые они не могут синтезировать.
  2. Оптимальный уровень рН. Он влияет на проницаемость клеточной оболочки и, соответственно, на возможность усвоения питательных веществ бактерией. Чаще всего значение водородного показателя должно быть на уровне 7,2–7,4. Многие микроорганизмы в ходе своей жизнедеятельности вырабатывают продукты с кислой или щелочной реакций, и для того, чтобы рН питательной среды не изменялся, она должна обладать буферностью.
  3. Изотоничность. Осмотическое давление в питательной среде для культивирования бактерий должно иметь те же значения, что и внутри микробных клеток. Обычно оно соответствует 0,5 % раствору NaCl.
  4. Стерильность. Связано это с тем, что появление посторонних бактерий исказит результаты изучения анализируемого штамма.
  5. Уровень влажности. Этот показатель наряду с консистенцией среды должен иметь оптимальные характеристики для конкретного вида бактерий.
  6. Окислительно-восстановительный потенциал (RH2). Он показывает соотношение веществ, которые отдают и которые принимают электроны, а также уровень насыщения кислородом питательной среды. Для аэробов и анаэробов условия культивирования бактерий несколько разнятся по данному показателю. Анаэробные микроорганизмы лучше всего размножаются при значениях RH2, не превышающих 5, а аэробные – не менее 10.
  7. Унифицированность. Важно, чтобы питательная среда содержала неизменные количества отдельных ее ингредиентов. Кроме того, предпочтительны прозрачные растворы, на которых легче отслеживать рост культуры или заметить ее загрязнение.

Виды питательных сред

На выбор той или иной среды для выращивания микроорганизмов влияет множество факторов, среди которых — особенности их питания и цели исследования. Основными признаками, положенными в основу классификации питательных сред, являются:

1. Компоненты. По исходным веществам, используемым для создания субстрата, различают:

  • натуральные, которые готовятся из продуктов животного или растительного происхождения (например, мяса, молока, фруктов) и удобны для выращивания смешанных культур;
  • полусинтетические, в которых дорогостоящие натуральные пищевые продукты заменены на непищевые (например, костную муку, сгустки крови), и которые оптимальны для культивирования бактерий отдельных видов или выделения из среды продуктов их жизнедеятельности;
  • синтетические, которые готовятся из точных количеств химических соединений, имеют известный постоянный состав и легко воспроизводятся.

2. Консистенция (плотность). Различают среды:

Последние две готовят из специальных растворов или жидких веществ с добавлением агар-агара или желатина для создания необходимой плотности. Кроме того, плотной средой для роста бактерий является свернутая сыворотка крови, картофель, среды с силикагелем, каррагинан.

3. Состав. По данному признаку среды бывают:

  • простые, список которых короток — это мясопептонный бульон (МПБ), бульон и агар Хоттин-гера, мясопептонный агар (МПА), питательный желатин и пептонная вода.
  • сложные, приготовляемые из простых с добавлением крови, сыворотки, углеводов и другие веществ.

4. Назначение. Выделяют следующие питательные среды:

  • основные служат для выращивания многих патогенных микробов (обычно простого состава);
  • специальные применяют для выделения и культивирования бактерий, которые не растут на простых субстратах;
  • элективные (они же избирательные) подходят для выделения конкретного вида бактерий и подавляют рост сопутствующих микробов (селективность создается путем прибавки к средам некоторых веществ, например антибиотиков или солей, или коррекцией рН);
  • дифференциально-диагностические дают возможность отличить один вид бактерий от другого путем оценки ферментативной активности, например, среды;
  • консервирующие нужны для первичного посева с последующей транспортировкой образцов, поскольку предотвращают отмирание микроорганизмов, а также подавляют рост других бактерий.

Приготовление питательных сред

Важнейшим этапом культивирования анаэробных бактерий является приготовление подходящей питательной среды. После того, как выбраны оптимальные параметры, переходят к следующим стадиям:

  • взвешивание, путем отбора навески компонентов на аналитических весах;
  • растворение, проводимое в подогретой до 70 °С дистиллированной воде, причем отдельно растворяют фосфаты, микро- и макросоли;
  • кипячение, осуществляемое на водяной бане на протяжении двух минут;
  • определение pH, выполняемое индикаторной бумагой или потенциометром;
  • фильтрация, производимая через смоченный матерчатый или бумажный фильтры для жидких, а также расплавленных плотных сред, и через ватно-марлевый фильтр для агаровых;
  • розлив, выполняемый на 3/4 емкости;
  • стерилизация, зависящая от состава среды;
  • контроль на стерильность осуществляется путем отстаивания в течение двух суток в термостате с последующим просмотром;
  • химический контроль для установления рН и содержания необходимых элементов;
  • биологический контроль путем пробного засева.

Стерилизация посуды и сред

Одним из основных принципов культивирования бактерий является стерильность. Рост и развитие посторонних микроорганизмов может повлиять на характеристики питательной среды путем изменения ее химического состава и рН. Стерилизация является главным условием выращивания чистых культур. На практике под этим термином подразумевают методы уничтожения абсолютно всех жизненных форм на поверхности и в объеме стерилизуемых объектов. Стерилизации подвергается посуда, применяемые инструменты, среды, а также другие предметы, используемые в ходе исследования.

Читайте также:  Установка птф хелла микро де

Некоторые виды стерилизации:

  • Прокаливание. Стерилизацию петель и игл для посева, предметных стекол, некоторого инструмента можно выполнять с помощью горелки или спиртовки.
  • Кипячение. Годится для обработки шприцов, игл, пищевых продуктов, но не убивает споры бактерий.
  • Сухожаровая стерилизация. Проводится в особом сушильном шкафу и подходит для обработки колб, пробирок и прочей лабораторной посуды.
  • Стерилизация паром. Проводимый в автоклаве этот метод является высокоэффективным. Но он не годится для питательных сред, в состав которых входят белки или какие-либо другие соединения, разрушающиеся при высоких температурах. Более щадящей можно назвать тиндализацию. Она проводится в кипятильнике Коха и сочетает проращивание спор с их уничтожением.
  • Пастеризация. Применяется для сред, меняющих свои свойства при кипячении (например, молоко, вино, пиво), способна избавить их от неспороносных микроорганизмов. Температура обработки составляет всего 50-60 °С на протяжении пятнадцати-тридцати минут. В некоторых случаях применяют холодную стерилизацию, осуществляемую с помощью фильтров или УФ-лучей.

Условия культивирования бактерий

Рост и развитие бактерий возможны лишь при определенных факторах и значениях каждого из них:

1. Температура. Различают три группы бактерий, отличающихся температурными предпочтениями:

  • термофилы, или теплолюбивые микробы, растут при 45-90°С, а значит, не размножаются в организмах человека и животного;
  • психрофилы, или холодолюбивые микроорганизмы, предпочитают температуру в интервале 5-15 °С и выращиваются в холодильных камерах;
  • мезофилы, развиваются при температуре 25-37 °С, к ним относится основная масса бактерий.

2. Свет. Является особенностью культивирования бактерий-фототрофов, поскольку они осуществляют фотосинтетический процесс. Но для большинства микробов освещение не является обязательным условием. И даже наоборот, солнечный ультрафиолет может подавлять их развитие.

3. Вода. Всем микроорганизмам необходима вода в доступной (жидкой) форме. Вот почему в замороженных продуктах бактерии практически не развиваются.

4. Кислотность среды. Этот принцип культивирования бактерий уже был подробно разобран выше.

5. Аэрация. Кислород, как химический элемент, является составной частью воды и немалого количества соединений, применяемых для выращивания микроорганизмов. Газообразный кислород также может содержаться в воде и прочих жидкостях в растворенном виде. Существенная часть бактерий нуждается в постоянном поступлении молекул кислорода. Но ряду микроорганизмов он без надобности, или, хуже того, газообразный кислород токсичен для них, поскольку они не имеют каталазы и пероксидазы, разрушающих токсичные продуты дыхания. Поэтому важнейшим этапом культивирования анаэробных бактерий является удаление молекул О2 из питательной среды.

6. Культивирование микроорганизмов. Выращивание аэробных и анаэробных бактерий проводится в различных слоях среды и в разных режимах.

Выращивание аэробных микроорганизмов

Для культивирования аэробных бактерий требуется молекулярный кислород. Для получения чистых культур аэробов, которые можно успешно применять в медицине и пищевой промышленности, используются следующие методы:

  • поверхностное выращивание на плотных средах или в жидких средах (их тонком слое), когда кислород поступает прямо из воздуха;
  • глубинное культивирование в жидких средах, когда повышения количества растворенного в них кислорода добиваются путем постоянной аэрации.

Выращивание анаэробных микроорганизмов

Основным принципом культивирования бактерий этого типа является минимальный их контакт с кислородом воздуха. Обеспечить условия их роста гораздо сложнее, чем для аэробов. Для изоляции анаэробов от молекулярного О2 применяются следующие методы:

  1. Физические. Этот метод культивирования анаэробных бактерий сводится к их выращиванию в специальном вакуумном аппарате — микроанаэростате. Воздух в нем заменен на особую газовую смесь из азота с добавлением 10 % водорода и 5 % углекислого газа.
  2. Химические. К ним относятся: использование поглощающих агентов (например, Fe, Na2S2O4, CuCl) или восстанавливающих агентов (например, аскорбиновая кислота).
  3. Биологические. Сводится к совместному выращиванию аэробов и анаэробов в закрытой системе. Этот метод культивирования бактерий предполагает засевание одной половины чашки Петри каким-то из аэробных видов бактерий, а второй — изучаемым анаэробом. Развитие его начнется в тот момент, когда истратится весь кислород.

Для культивирования анаэробных бактерий подходят следующие способы посева:

  • в поверхностном слое;
  • в поверхностном слое с заливкой стерильным парафином;
  • в толще плотной питательной среды;
  • в глубинных слоях вязких сред.

Получение чистой культуры

Микробиологи в своей работе обычно имеют дело с образцами, заселенными множеством различных видов микробов. Однако для определения систематического положения микроорганизмов (семейство, род, вид), а также изучения их особенностей необходимо их изолировать и вырастить чистую культуру. Они имеют важнейшее значение во многих пищевых производствах, например, сыра, хлеба, кваса, вина и т. д. Культивирование молочнокислых бактерий позволяет получить важнейший компонент для производства кисломолочных продуктов, теста, какао, силоса и даже пластика.

Способ выделения чистой культуры в плотной среде основан на механическом отделении клеток микроорганизмов с последующим их изолированным выращиванием. Образец переносится в стерильный объем воды или физраствора (объемом 10—100 мл), а затем встряхивается на протяжении двух минут. Чтобы извлечь микроорганизмы, находящиеся в толще исследуемого материала (например, колбасы или сыра), сначала выполняют растирание кусочков образца стерильными инструментами с песком. Материал, прошедший предварительную подготовку, массой 1 г или объемом 1 мл разбавляют стерильной водой в 10, 100, 1000 и т. д. раз. Выбирают ту степень разведения, которая дает концентрацию клеток, соответствующую возможностям метода.

Последующее выращивание микроорганизмов заключается в подготовке питательной среды. Обычно выбирается плотная среда (МПА). Ее предварительно расплавляют и остужают до 45—50 °С, а уже потом разливают в несколько чашек Петри (три-пять штук), на дно которых помещены смывы с исследуемого вещества различных концентраций. Далее проводят перемешивание еще не застывшей питательной среды и внесенного в нее материала. Так добиваются фиксирования клеток в различных точках объема субстрата.

Далее чашки Петри помещают в термостат на 2 суток при 22 °С. За это время клетки размножаются до такой степени, что колония, образованная каждой из клеток, становится видна невооруженным глазом. Каждая из них является чистой культурой того вида бактерий, из клеток которого она выросла.

После этого с чашек Петри микроорганизмы пересевают в отдельные пробирки, наполненные питательной средой. Таким образом проводится выделение чистых культур из смешанного образца. Этот метод носит имя своего разработчика — Р. Коха. Также его принято называть чашечным методом, или истощающим посевом. После получения чистых культур различных видов бактерий выполняют установление их формы, обнаружение спор, семейства.

Все работы должны выполняться согласно принципам асептики. Чтобы избежать преждевременного развития микроорганизмов, исследование необходимо проводить сразу после отбора проб. Водопроводную воду анализируют после слива первых порций, поскольку в них могут находиться накопившиеся в трубах и кранах микробы. Микрофлора фруктов, ягод и овощей преимущественно размещена на поверхности (кожуре), поэтому выполняют смывы с нее. Для этого в стерильную емкость помещают плод и заливают его необходимым количеством воды. Затем их довольно энергично встряхивают и сливают воду в другую емкость. Посевы с матерчатых изделий также получают смывами, но предварительно из них вырезают кусочки заданного размера.

источник