Меню Рубрики

Установки для наплавки в среде углекислого газа

Установки для наплавки в среде углекислого газа

Наплавка в среде углекислого газа

Этот способ восстановления деталей отличается от наплавки под флюсом тем, что в качестве защитной среды используется углекислый газ.

Сущность способа наплавки в среде углекислого газа заключается в том, что электродная проволока из кассеты непрерывно подается в зону сварки.

Ток к электродной проволоке подводится через мундштук и наконечник, расположенные внутри газоэлектрической горелки.

При наплавке металл электрода и детали перемешивается.

В зону горения дуги под давлением 0,05. 0,2 МПа по трубке подается углекислый газ, который, вытесняя воздух, защищает расплавленный металл от вредного действия кислорода и азота воздуха.

При наплавке используют токарный станок, в патроне которого устанавливают деталь 8, на суппорте крепят наплавочный аппарат 2.

Углекислый газ из баллона 7 подается в зону горения.

При выходе из баллона 7 газ резко расширяется и переохлаждается.

Для подогрева его пропускают через электрический подогреватель 6.

Содержащуюся в углекислом газе воду удаляют с помощью осушителя 5, который представляет собой патрон, наполненный обезвоженным медным купоросом или силикагелем.

Давление газа понижают с помощью кислородного редуктора 4, а расход его контролируют расходомером 3.

К достоинствам способа относятся:

возможность наплавки при любом пространственном положении детали;

более высокую по площади покрытия производительность процесса (на 20. 30 %);

возможность наплавки деталей диаметром менее 40 мм;

отсутствие трудоемкой операции по отделению шлаковой корки.

К недостаткам:

повышенное разбрызгивание металла (5. 10%),

необходимость применения легированной проволоки для получения наплавленного металла с требуемыми свойствами,

открытое световое излучение дуги.

Для наплавки применяют следующее оборудование:

наплавочные головки АБС, А-384, А-409, А-580, ОКС-1252М;

источники питания ВС-200, ВСУ-300, ВС-400, ПСГ-350, АЗД-7,5/30;

осушитель, заполненный силикагелем КСМ крупностью 2,8—7 мм;

редукторы-расходомеры ДРЗ-1-5-7 или ротаметры РС-3, PC-ЗА, РКС-65, или кислородный редуктор РК-53Б.

При наплавке используют материалы:

электродную проволоку Св-12ГС, Св-0,8ГС, Св-0,8Г2С, Св-12Х13, Св-06Х19Н9Т, Св-18ХМА, Нп-ЗОХГСА;

порошковую проволоку ПП-Р18Т, ПП-Р19Т, ПП-4Х28Г и др.

Наплавку в среде углекислого газа производят на постоянном токе обратной полярности.

Тип и марку электрода выбирают в зависимости от материала восстанавливаемой детали и требуемых физикомеханических свойств наплавленного металла.

Скорость подачи проволоки зависит от силы тока, устанавливаемой с таким расчетом, чтобы в процессе наплавки не было коротких замыканий и обрывов дуги.

Скорость наплавки зависит от толщины наплавляемого металла и качества формирования наплавленного слоя.

Наплавку валиков осуществляют с шагом 2,5. 3,5 мм.

Каждый последующий валик должен перекрывать предыдущий не менее чем на 1/3 его ширины.

Твердость наплавленного металла в зависимости от марки и типа электродной проволоки 200. 300 НВ.

Расход углекислого газа зависит от диаметра электродной проволоки.

На расход газа оказывают также влияние скорость наплавки, конфигурация изделия и наличие движения воздуха.

Процесс полуавтоматической сварки в среде углекислого газа

Механизированную сварку в углекислом газе применяют при ремонте кабин, кузовов и других деталей, изготовленных из листовой стали небольшой толщины, а также для устранения дефектов резьбы, осей, зубьев, пальцев, шеек валов и т.д.

Сварка полуавтоматом в среде углекислого газа производится на постоянном токе, полярность которого является обратной, так как при прямой полярности дуга оказывается излишне нестабильной.

При наплавке металла лучше использовать как раз прямую полярность, так как коэффициент наплавки при этом будет значительно больше, чем при других параметрах.

Применяется такой тип сварки преимущественно для простых соединений.

Углекислота уступает аргону по защитным свойствам, но для стандартных видов металла, которых используется в промышленности большинство, он хорошо подходит.

Углекислый газ для полуавтоматической сварки не рекомендуется использовать в закрытых и плохо проветриваемых помещениях, так как он вызывает удушье.

Преимущества полуавтоматической сварки в углекислом газе состоят в следующих основных факторах:

Обеспечивается высокое качество соединения, в котором минимизируется появление бракованных изделий;

Защитный газ обладает относительно низкой стоимостью;

Сварочный процесс можно проводить даже на весу без подкладки;

Не возникает проблем со сваркой металла на малых толщинах, а также при сварке электрозаклепками;

Соединение металла может осуществляться практически в любом пространственном положении, если правильно подобраны режимы;

Рационально используется тепло сварочной дуги, что дает высокую производительность сварки.

Сварка металлов, которые трудно поддаются соединению, здесь может происходить с проблемами, одной из которых является пористость шва;

Не рекомендуется проводить многослойную сварку;

При использовании в плохо проветриваемом помещении углекислота может вызывать удушье;

Режимы полуавтоматической сварки в среде защитных газов определяются тем, какова толщина металла заготовки.

Можно проводит соединение как самых тонких деталей, данный параметр которых составляет 1-2 мм, так и более толстых, более 6 мм.

В среднем же толщина основного металла колеблется в пределах от 3 до 5 мм.

От этого значения металла зависит диаметр используемой проволоки или непокрытого электрода, сила тока и напряжения, скорость подачи расходного материала и сколько газа будет затрачено при данном процессе.

Читайте также:  Установка бензонасоса на уаз 452

В основе принципа работы лежит электродуговая сварка.

Она является основной температурной силой, которая служит для расплавления присадочного материала и заготовки.

Сам процесс сваривания в среде углекислого газа является относительно простым и не требует от сварщика каких-то особых усилий.

От мастера требуется всего лишь выдержать вылет проволоки, который определяется режимом сварки.

Также требуется равномерно с одинаковой скоростью перемещать горелку.

Существует ряд рекомендаций, которые относятся к работе с углекислотой на полуавтомате.

Для данного процесса следует выполнять следующие правила:

Перед тем как начать сам процесс, нужно убедиться, что углекислота выходит из горелки и сам инструмент является исправным.

Давление газа во время сваривания должно составлять 0,02 кПа. Это не постоянный показатель, так как при сквозняке и ветре, которые сдувают часть расходного материала, расход становится больше, а соответственно и подачу нужно осуществлять при большем давлении.

Горелка должна работать под особым углом. В среднем, данный параметр лежит в пределах от 65 до 75 градусов.

Шов желательно вести справа налево. Это обеспечивает лучший просмотр для свариваемых кромок. Если шов получается не соответствующим требуемому качеству, то следует сразу поменять режимы сварки, отрегулировав ток, скорость подачи проволоки, напряжение дуги или прочие значения.

Применяется два основных вида расходных материалов.

Первым является сама углекислота. Она не горючая, так что не вызывает опасности взрыва, но обеспечивает достаточный уровень защиты.

Вторым является сварочная проволока, которая подбирается в соответствии с металлом, который будет свариваться.

источник

Наплавка в среде углекислого газа

Процесс наплавки в среде защитных газов отличается тем, что в зону горения электрической дуги под давлением подается защитный газ и столб дуги, а также расплавленная сварочная ванна изолируются от кислорода и азота воздуха (рис. 8.3). Для создания защитной атмосферы используют пищевую углекислоту или сварочный углекислый газ, чистый аргон. Расход газа составляет 0,6 – 0,96 м 3 /ч.

Рис. 8.3. Дуговая наплавка в защитном газе плавящимся электродом: 1 – электрическая дуга; 2 – газовое сопло; 3– подающие ролики; 4 – электродная проволока; 5 – токоподводящий мундштук; 6 – защитный газ; 7 – основной металл; 8 – капли расплавленного металла; 9 – наплавленный металл

Наиболее распространена наплавка в среде углекислого газа плавящимся электродом (рис. 8.3). Она в 1,2–1,5 раза экономичнее наплавки под слоем флюса, а производительность при этом на 25 – 30 % выше. На­плавка в СО2 обеспечивает хорошее формирование шва, наплавленный металл получается плотным, зона термического влияния невелика. Благодаря последнему пре­имуществу этот способ применяют для наплавки неже­стких деталей малого диаметра (например, 10 мм).

Питание углекислым газом осуществляют по схеме баллон → подогреватель → осушитель → понижающий редуктор → ротаметр → наплавочный аппарат (горелка). Подогрев и осушение углекислого газа необходимы для предотвращения возможной закупорки льдом от­верстий в редукторе вследствие расширения газа и увеличения влажности. Для снижения давления СО2, подаваемого в зону дуги, с 5,0 – 5,5 до 0,05 – 0,20 МПа используют понижающий редуктор с манометрами вы­сокого и низкого давления. По шкале ротаметра опре­деляют расход газа.

Рис. 8.4. Принципиальная схема установки для дуговой наплавки в среде углекислого газа: 1 – кассета с проволокой; 2 – подающий механизм, 3 – ротаметр; 4 – редуктор; 5 – баллон с углекислым газом, 6 – наплавочная головка; 7 – рукав, 8 – источник питания дуги, 9 – амперметр, 10 – вольтметр, 11 – наплавляемая деталь, 12 – патрон вращателя, СЦО – система циркуляционного охлаждения

Известны два варианта механизации наплавки. В первом случае механизированы все дета­ли, включая подачу СО2 и электродной проволоки, относительное перемещение горелки и наплавляемой детали. В другом – механизирована подача СО2 и электродной проволоки, а относительное перемещение горелки и направляемой детали осуществляют вруч­ную.

Сварку (наплавку) в углекислом газе, как правило, проводят при постоянном токе обратной полярности с жесткой внешней характеристикой источника тока. Под действием высокой температуры дуги углекислый газ диссоциирует на окись углерода и атомарный кис­лород: СО2 → СО + О. Выделение газообразного веще­ства СО приводит к образованию пор в окисленном, вязком металле сварочной ванны.

Атомарный кислород обладает высокой химической активностью и окисляет зону сварки. Для устранения его вредного влияния необходимо применять раскислители, например кремний, марганец, титан, вводимые в состав электродной проволоки. Они взаимодействуют с оксидами железа по реакциям

2FeO + Si = SiО2 + 2Fe, (8.2)
FeO + Mn = MnO + Fe. (8.3)

Оксиды SiО2 и MnO не растворяются в жидком метал­ле и, взаимодействуя друг с другом, образуют легко­плавкие соединения (шлаки), которые всплывают на поверхность сварочной ванны. Практика показывает, что присутствие в металле электродной проволоки бо­лее 0,2 % кремния и более 0,4 % марганца предупреж­дает образование пор.

Таким образом, при наплавке в среде углекислого газа используют проволоку, содержащую марганец, кремний, титан. В странах СНГ используют, например, проволоку сплошного сечения Св-10ХГ2С, Св-10ГСМТ, Св-10Х13, Св-18ХГСА, Нп-2Х14, Нп-30ХГСА. Приме­няется также порошковая проволока, например ПП-18Т, ПП-19Т, ПП-4Х2В8Т и др. Для наплавки изношенных деталей машин, изготовленных из мало- и среднеуглеродистой стали (за исключением деталей, работающих в абразивной среде), лучшей является проволока марки Нп-30ХГСА.

Читайте также:  Установка грщ на раму

Основными технологическими параметрами наплавки в среде СО2являются состав электродного материала, напряжение дуги, сила и полярность тока, скорость наплавки и подачи электродного материала, шаг на­плавки, диаметр и вылет электрода, а также расход защитного газа. Состав электродного материала выби­рают с учетом требуемых физико-механических свойств наплавленного покрытия.

При повышении напряжения увеличивается длина дуги, соответственно возрастает путь капельного пере­носа металла через дуговой промежуток, что способст­вует интенсивности его окисления, разбрызгивания и выгорания марганца и кремния. Низкое напряжение дуги вызывает чрезмерное усиление швов и высокие подрезы. Основные технологические параметры рас­сматриваемого процесса и наплавки под флюсом почти не различаются.

На ряде предприятий для восстановления деталей машин используют автоматическую наплавку в среде углекислого газа с направленным охлаждением. Сущность способа заключается в том, что на наплавленный в среде углекислого газа металл (температура его долж­на быть равна или выше температуры закалки) пода­ется охлаждающая жидкость (5%-ный раствор кальцини­рованной соды в воде), которая обеспечивает закалку нанесенного слоя. Изменяя место подвода охлаждающей жидкости в зависимости от химического состава электродной проволоки, можно регулировать твердость наплавленного металла в пределах 27 – 51,5 HRC(без дополнительной термообработки).

Наплавка в среде углекислого газа занимает ведущее место среди других способов наплавки. Это объясняется ее существенными преимуществами: хорошее формирование шва (наплавленный металл плотный); интенсивный отвод тепла из зоны сварки (деталь на­гревается незначительно, что обеспечивает возможность наплавки тонкостенных и нежестких изделий без деформации и разрушения); высокая производительность процесса в связи с отсутствием потерь тепла на плав­ление флюса (на 25 – 30 % выше, чем при наплавке под флюсом); экономичность, простота конструкции оборудования; отсутствие необходимости удаления шлаковой корки, дестабилизирующей горение дуги.

Недостатками технологии наплавки в среде СО2 яв­ляются разбрызгивание металла, сравнительно низкие твердость и износостойкость наплавки, так как леги­рование наплавляемого металла через флюс не имеет места; окисляющее действие CO2 требует применения специальной проволоки, легированной кремнием и марганцем; необходимость транспортировки баллона с СО2; необходимость защиты сварщика от излучения электрической дуги.

Дата добавления: 2015-05-06 ; Просмотров: 3480 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Сварка и наплавка в среде углекислого газа

Углекислый газ (С02) при этом методе сварки и наплавки подается в зону сварки, тем самым оттесняет воздух и предохраняет металл от воздействия кислорода и азота. Схема наплавки в углекислом газе приведена на рисунке 8.

Наплавку в среде углекислого газа целесообразно применять для восстановления наружных и внутренних поверхностей деталей цилиндрической формы небольшого диаметра.

Сварку в среде углекислого газа применяют при ремонте тонколистовых конструкций. Наибольшее применение этот сварочный процесс получил для заварки трещин и приварки заплат при ремонте облицовки, кабин тракторов, автомобилей и сельскохозяйственных машин.

Сварка и наплавка в углекислом газе осуществляются автоматическим и полуавтоматическим способами. При полуавтоматической сварке и наплавке механизированы только операции подачи углекислого газа и электродной проволоки, при автоматической сварке механизирована также операция перемещения электрода относительно детали.

Материалы. Для сварки и наплавки в среде углекислого газа применяют проволоки следующих марок: Св-08ГС, Св-08Г2С, Св-12ГС, Св-10ХГ2С, Св-18ХГСА, Нп-ЗОХГСА, ПП-АН4, ПП-АН5, ПП-АН8, ПП-ЗХ2В8Т, ПП-Р18Т, ПП-Х12ВФТ и другие. Выбор электродной проволоки производится по содержанию элементов раскислителей. Основные раскислители в проволоке для сварки и наплавки углеродистых и низколегированных сталей — кремний и марганец. Сварка и наплавка проволокой, не содержащей достаточного количества раскислителей и с большим содержанием углерода, сопровождается повышенным разбрызгиванием, металл шва становится пористым, появляется опасность возникновения трещин.

Для обеспечения защитной среды углекислый газ получают обычно из пищевой углекислоты или специальной осушенной углекислоты. В баллонах содержится 20… 25 кг жидкой углекислоты под давлением 5,0… 6,0 МПа. В нормальных условиях из одного килограмма углекислоты при ее испарении получают 509 л СОг.

Оборудование. Для сварки и наплавки в среде углекислого газа выпускаются комплекты специального оборудования различных конструкций. В комплект входят автоматическая головка, подающий механизм, пульт управления, подогреватель, осушитель. Пост автоматической и полуавтоматической сварки и наплавки в углекислом газе, кроме узлов, входящих в комплект, дополнительно оборудуется понижающим редуктором, баллоном с СО2, резиновыми шлангами для подачи газа к горелкам, расходомером для определения расхода газа при сварке или наплавке.

Для сварки и наплавки в углекислом газе используют аппараты А-547-Р, А-547-У, А-929, ПДПГ-300, А-577-У.

Полуавтомат А-547-Р предназначен для сварки и наплавки электродной проволокой диаметром 0,5… 1,2 мм. Скорость подачи проволоки можно регулировать в пределах 120 … 140 м/ч. В качестве источника питания полуавтомат комплектуется селеновым сварочным выпрямителем ВС-200, рассчитанным на номинальный ток 200 А и напряжение 17 … 25 В.

Читайте также:  Установка плунжерной пары на тнвд бош

Полуавтомат А-547-У. Диаметр применяемой электродной проволоки 0,6… 1,2 мм. Скорость подачи ее 140… 600 м/ч. Номинальный сварочный ток 300 А. Источник питания — выпрямитель ВС-300. Полуавтомат обеспечивает качественную сварку металла толщиной 0,8 … 4 мм.

Полуавтомат А-929. Диаметр электродной проволоки 1…2 мм. Скорость подачи проволоки 120… 620 м/ч. Толщина свариваемого металла 1 … 8 . мм. Номинальный сварочный ток питания дуги 350 А, напряжение 17… 30 В. А-929 работает от сварочного преобразователя ПСГ-500.

Аппарат ПДПГ-300 работает с электродной проволокой диаметром 0,8 … 2 мм. Скорость ее подачи 90… 960 м/ч. Номинальный ток 300 А. Толщина свариваемого металла 0,8 … 6 мм.

Аппарат А-577-У работает с электродной проволокой диаметром 1,6 … 2 мм. Скорость ее подачи 80 … 600 м/ч. Ток питания дуги 500 А. Толщина свариваемого металла свыше 3 мм.

Специально для сварки в среде углекислого газа выпускаются сварочные преобразователи ПСГ-300, ПСГ-500 от privod.szemo.ru, сварочные выпрямители ВС-200, ВС-300, ВС-500, ВС-600 и др.

Для поворота узлов и деталей в удобное для сварки или наплавки положение используют наплавочные станки или манипуляторы. Установки для автоматической наплавки в среде углекислого газа монтируют также на токарных станках. Наплавляемую деталь закрепляют в патроне станка, на суппорте станка устанавливают наплавочный аппарат, к которому подводят мундштук для подачи углекислого газа в зону наплавки. Для наплавки деталей используют любую автоматическую головку со специальным мундштуком.

При выходе из баллона температура углекислого газа резко падает, так как жидкая углекислота испаряется и поглощает тепло. Снижение температуры углекислого газа может привести к замерзанию влаги и закупорке каналов вентиля и редуктора и перекрытию доступа газа к соплу горелки. В связи с этим углекислый газ подогревают с помощью электрических подогревателей. Для удаления влаги из углекислого газа применяют осушители. Реагенты (силикагель или медный купорос), заполняющие осушитель, нужно периодически (не менее одного раза в неделю) прокаливать при температуре 200… 250 °С в течение двух часов.

Режимы сварки и наплавки. Качество сварного шва и наплавленного слоя, их химический состав и структура зависят не только от материала наплавочной проволоки, но и от режимов сварки и наплавки. Основные параметры режимов: сила сварочного тока, напряжение дуги, диаметр, величина вылета и скорость подачи электродной проволоки, скорость сварки, расход углекислого газа.

Сварка и наплавка в среде углекислого газа производятся на постоянном токе обратной полярности. Сварочный ток и диаметр электродной проволоки определяют в зависимости от химического состава и толщины свариваемого металла, числа слоев шва и применяемого сварочного оборудования. В зависимости от величины, сварочного тока, напряжения дуги, диаметра и химического состава электродной проволоки выбирают скорость подачи электродной проволоки с таким расчетом, чтобы обеспечить устойчивое горение дуги.

Вылет электрода должен быть в пределах 8… 14 мм. Он зависит от удельного электрического сопротивления проволоки, ее диаметра, силы тока и существенно влияет на качество сварного шва. Расход углекислого газа, достаточный для защиты зоны сварки от воздуха, составляет 7… 10 л/мин, с возрастанием плотности тока расход газа увеличивается.

Таблица 6. Режимы сварки тонколистовой стали

Толщина металла, мм Диаметр
электродной
проволоки,
мм
Сила
ного
свароч-тока, А Напряжение дуги, В Скорость подачи проволоки, м/ч Скорость сварки, м/ч
1,0.. .1,5 0,8 70. …110 17.. .19 110. ..120 30…40
1,5.. .2,5 0,8 100. …150 18.. .21 120. ..150 25…35
1,0.. .2,0 1,0 100 …180 18.. .22 110. ..150 30…40
2,0.. .3,0 1,0 125, …180 19.. .22 130. ..160 30…40
3,0.. .4,0 % 1,0 150 …270 18.. .22 150. ..300 25…30
2,0.. .3,0 1,2 140 …250 20.. .23 250. ..220 30…45
3,0.. .4,0 1,2 170 …300 22.. .28 200. ..300 30…40

Механизированную наплавку в среде углекислого газа целесообразно применять для восстановления цилиндрических деталей диаметром 10… 40 мм и глубоких отверстий, когда затруднительно применять другие способы. Наплавку во всех случаях проводят при напряжении 17… 20 В, силе тока 75… 90 А. Электродную проволоку применяют диаметром 0,8 … 1,0 мм, вылет электрода составляет 8 … 15 мм, смещение электрода должно быть в пределах 3… 8 мм, скорость подачи проволоки 175… 230 м/ч. Скорость наплавки — 35… 45 м/ч, шаг — 2,5— 3,5 мм, толщина наплавленного слоя достигает 0,8 … 1,0 мм. Применяя данные режимы, этот способ широко используют для восстановления гладких и шлицевых валов. Наплавка деталей, для которых требуется высокая твердость (до HRC 50), осуществляется проволоками Нп-ЗОХГСА, Св-18ХГСА и другими с последующей закалкой токами высокой частоты. Наряду с проволокой сплошного сечения применяются порошковые проволоки с введением титана и углерода.

источник