Меню Рубрики

Установки для неразрушающего метода контроля

Неразрушающий контроль

Неразрушающий контроль (НК) – это проверка надежности объекта, его отдельных элементов и конструкций щадящими методами, не требующими кардинальной разборки или временного выведения из строя. НК включает в себя исследование физических принципов, на которых базируются методы и средства контроля, не ухудшающие эксплуатационную пригодность и не нарушающие целостность объектов.

Виды и методы

Действующие стандарты лаконично определяют НК, как контроль, который не разрушает. В соответствии с ГОСТ 56542-2015 и в зависимости от лежащих в его основе физических процессов, он подразделяется на несколько видов:

  1. Магнитный, применяющийся в дефектоскопии ферромагнитных материалов для фиксации магнитных полей и свойств контролируемого объекта
  2. Визуально-измерительный (оптический) – наиболее востребован для контроля и обнаружения мельчайших повреждений в прозрачных изделиях и материалах
  3. Электрический – фиксирует электрополя и характеристики, образующиеся в контролируемом объекте под влиянием внешнего воздействия
  4. Вихретоковый (электромагнитный) – применяется в дефектоскопии электропроводящих материалов, посредством исследования неоднородностей поверхностного вихревого поля объекта
  5. Тепловой – подразумевает мониторинг тепловых полей, контрастов и потоков любых материалов для выявления неисправностей и дефектов
  6. Радиоволновой – применяется в контроле диэлектриков (керамика, стекловолокно), полупроводниковых и тонкостенных материалов
  7. Ультразвуковой (акустический) – применим ко всем материалам, беспрепятственно проводящим звуковые волны в целях решения проблем контроля и диагностики
  8. Радиационный (радиографический) – построен на взаимодействии ионизирующего излучения с контролируемым объектом из любых материалов и любых габаритов
  9. Капиллярный (проникающими веществами) – применяется для обнаружения течей и микроповреждений посредством наполнения индикаторным веществом внутренних полостей, контролируемого объекта
  10. Вибрационный — необходим для поиска дефектов в машинах и механизмах. Диагностирует неисправности путем оценки колебаний в основных узлах

Каждый вид НК реализуется с помощью методов неразрушающего контроля (МНК), которые классифицируются:

  • По способу взаимодействия различных веществ и полей с объектом контроля (магнитный, капиллярный)
  • По показателям первичной информации (намагниченность, газовый)
  • По форме получения первичной информации (индукционный, люминесцентный)

Зачем проводят НК?

В ходе производственно-эксплуатационных процессов техническое состояние любого объекта (здания, оборудования, их отдельные конструкции и элементы) требует регулярной оценки. НК позволяет проводить оценочные мероприятия без приостановки, демонтажа и отбора образцов, которые стоят достаточно дорого.

Применение методов НК в обследовании объекта не требует вынужденных простоев и позволяет обнаружить и устранить его усталость и различные дефекты на ранней стадии. Поэтому главные цели проведения НК направлены:

  • На минимизацию аварийных рисков и повышение уровня эксплуатационной безопасности оборудования на опасных производственных объектах (ОПО)
  • На проверку соответствия контролируемого объекта требованиям действующих нормативов и технической документации
  • На количественно-качественную оценку обнаруженных отклонений и установление уровня их опасности
  • На своевременное выявление различных неисправностей на разных стадиях возведения объектов капстроительства

Проведение неразрушающего контроля при запуске объекта в эксплуатацию почти всегда гарантирует увеличение расходов, обусловленных устранением выявленных дефектов. Но отказ от процедур может обернуться аварией с гораздо большими финансовыми потерями, в разы превышающими затраты на проведение превентивных мероприятий

Проведение аттестации и обучение специалистов по неразрушающему контролю

Сферы применения

Методы неразрушающего контроля применяются сегодня практически в каждой сфере хозяйственной деятельности от автомастерской и судоверфи до атомных реакторов и предприятий, использующих ОПО:

  • Емкости, функционирующие под избыточным давлением
  • Трубопроводы систем газораспределения
  • Оборудование с подъемными устройствами и механизмами
  • Резервуары для хранения нефтепродуктов
  • Буровое оборудование
  • Химически и взрывопожароопасные производства
  • Армокаменные, железобетонные и прочие разновидности строительных конструкций

Разнообразие средств и методов НК используется для:

  • Контроля надежности сварочных швов и герметичности сосудов, функционирующих под высоким давлением
  • Определения качества покрытия лакокрасочными материалами
  • Обнаружения деформаций и отклонений важных узлов и деталей
  • Дефектоскопии оборудования с продолжительным эксплуатационным сроком
  • Проведения исследований и выявления дефектов в различных структурах для дальнейшего совершенствования технологий
  • Постоянный мониторинг и контроль возможного возникновения дефектов и неисправностей на ОПО в целях их своевременного устранения

Применение НК позволяет предприятиям сэкономить на проведении тестирований на разрушение, что благотворно отражается на потребительской цене и качестве готовой продукции

Для каких узлов и деталей чаще всего заказывают НК?

Исследования востребованы в самых разных отраслях промышленности, включая строительство, которым раньше всех были опробированы и взяты на вооружение щадящие методы контроля. Практика свидетельствует, что исследованиям в рамках НК чаще всего подвергаются:

  • Любые разновидности сварочных швов и соединений
  • Строительные конструкции
  • Объекты капстроительства, их отдельные узлы и компоненты
  • Черные и цветные металлы, а также их сплавы
  • Ферромагнитные металлы и сплавы
  • Трубопроводы
  • Турбины и роторы
  • Корпусное оборудование
  • Листовой прокат
  • Аппараты высокого давления
  • Стенки котлов
  • Днища многомерных судов
  • Детали любых форм и размеров
  • Подъемные механизмы
  • Узлы и агрегаты любых видов транспорта
  • Керамика, изделия из стекла и фарфора
  • Многослойные конструкции, их отдельные элементы и соединения между ними
  • Изделия из стекла, пластмассы и неферромагнитных материалов любых форм и габаритов
  • Паяные, резьбовые и разъемные типы соединений

Применение методов неразрушающего контроля позволяет определить уровень качества, фактическую толщину, плотность и однородность массы, швов или покрытия вышеперечисленных конструкций и изделий в целях устранения выявленных отклонений

Приборы для проведения неразрушающего контроля

Выбор оборудования, применяемого в рамках проведения НК, зависит от поставленных задач, выбранного метода и параметров контролируемого объекта (наличия повреждений, толщины стен или покрытия).

  1. Визуально-измерительный контроль (ВИК) является не только базовым, но и одним из самых недорогих, скоростных и информативных методов НК. Его проведение регламентируется инструкцией РД 03-606-03, предполагающей применение несложных сертифицированных средств измерения:
    • Лупы
    • Эндоскопы
    • Фонарики
    • Щупы
    • Линейки
    • Рулетки
    • Зеркала
    • Термостойкий мел
    • Сварочные шаблоны
    • Фотоаппарат с возможностью микроскопической съемки
  2. Ультразвуковой контроль, относящийся к основным видам НК, регламентируется ГОСТом 23829-85, которым предусматривается наличие, предварительно проверенных:
    • Дефектоскопов общего или специального применения
    • Ультразвуковых резонансных и эхо-импульсных измерителей толщины
    • Ультразвуковых твердомеров
    • Пьезоэлектрических преобразователей (ПЭП)
    • Контактных жидкостей и гелей
  3. Радиографический контроль, позволяющий выявить отклонения недоступные для внешнего осмотра, производится посредством:
    • Рентгеновских аппаратов, выбор которых зависит от толщины контролируемого материала или изделия и чувствительности, указанной в ТУ используемого прибора
    • Гамма-дефектоскопов (в труднодоступных местах)
    • Усиливающих экранов
    • Рентгеновской пленки
    • Компьютерной радиографии
  4. Капиллярный контроль считается самым сенситивным методом, проведение которого регулирует ГОСТ 18442, подразумевающий применение:
    • Наборов капиллярной дефектоскопии, укомплектованных пенетрантами, проявителями, очистителями
    • Пневмопистолетов для жидкостей
    • Пульверизаторов
    • Источники ультрафиолета
    • Образцы для контроля
  5. Магнитный контроль, регламентирующийся отечественными и европейскими стандартами, выполняется с использованием:
    • Оптических устройств
    • Ультрафиолетовых ламп
    • Магнитного порошка или суспензии
    • Магнитогуммированной пасты
  6. Контроль герметичности классифицирует ГОСТ 24054-80 в зависимости от агрегатного состояния применяемых веществ:
    • Газовые
    • Жидкостные
  7. Тепловой контроль, базирующийся на преобразовании инфракрасного излучения в видимый спектр, проводится с применением:
    • Тепловизора
    • Пирометра
    • Логгеров данных
    • Измерителей плотности температур и тепловых потоков
    • Механических средств (термокарандаши, теплоотводящая паста, высокотемпературная краска)
  8. Вихретоковый контроль, регулируется ГОСТ Р ИСО 15549-2009 и предполагает использование оборудования, выбор которого координируется поставленными задачами:
    • Вихретоковые преобразователи и дефектоскопы
    • Структуроскопы
    • Измерители толщины
Читайте также:  Установка гидравлики для самосвалов

Каждый метод и прибор используются НК для выявления мельчайших деформаций и повреждений, а также изъянов различного происхождения, включая коррозию, грибок, растрескивание или расслоение. Чрезвычайная востребованность НМК объясняется достоинствами методов, а также их соответствием современным требованиям промышленной безопасности.

источник

Неразрушающий контроль

В ходе эксплуатации или изготовления различного оборудования, его узлов и деталей, постоянно требуется оценить его состояние. Делать это необходимо без остановки, вывода из эксплуатации, разборки или взятия образцов материалов, поскольку такие действия обходятся очень дорого.

Для этого разработаны и широко применяются методы неразрушающего контроля, или non-destructive test. Обследование конструкции, механизма, детали проводят не прерывая его использования, не вызывая простоев. Периодическое обследование позволяет своевременно обнаружить предпосылки к возникновению неисправности механизма или усталости конструкции и предпринять действия по устранению причин возможных неисправностей или разрушений. Это существенно повышает безопасность эксплуатации и снижает стоимость и продолжительность внеплановых ремонтов.

С помощью неразрушающего контроля в конструкциях, узлах и деталях находят дефекты на ранней стадии их возникновения:

  • пористость;
  • растрескивание;
  • механические или термические напряжения;
  • сдвиговые деформации;
  • посторонние включения;
  • и многие другие.

Классификация методов неразрушающего контроля по ГОСТ 18353- 79

Основные методы неразрушающего контроля основаны на применении различных физических явлений и измерении характеризующих эти явления физических величин. Наиболее широко применяются следующие виды неразрушающего контроля:

  • ультразвуковой;
  • радиоволновый;
  • электрический;
  • акустический;
  • вихревых токов;
  • магнитный;
  • тепловой;
  • радиационный;
  • проникающими веществами;
  • оптический.

Общие виды неразрушающего контроля могут включать в себя несколько конкретных методов, различающихся по таким признакам, как:

  • способ взаимодействия с контролируемым объектом;
  • физические величины, измеряемые в ходе наблюдения;
  • способ получения и интерпретации данных.

Правильный выбор способа позволяет предприятию сэкономить средства и обеспечить высокую надежность контролируемого оборудования и конструкций.

Читайте также:  Установка задних колодок хонда

Радиоволновой метод неразрушающего контроля

Заключается в облучении исследуемого объекта радиочастотным излучением и измерении параметров прошедшей, отраженной или рассеянной электромагнитной волны.

Он применим к диэлектрическим, полупроводниковым материалам, а также к тонкостенным металлическим оболочкам и конструкциям, в которых хорошо распространяются радиоволны. Используется для проверки однородности, габаритов и формы изделий из пластика, резины, композитных материалов. Измеряют при этом амплитудные, фазовые или поляризационные характеристики волны. Неразрушающий контроль радиоволновым методом позволяет обнаружить в массе материала неоднородности, посторонние включения, некачественные клеевые и сварные соединения и другие дефекты.

Электрический метод неразрушающего контроля

Группа методов неразрушающего контроля металлов и диэлектриков основана на измерении и интерпретации характеристик электростатического поля, приложенного к контролируемому объекту. Чаще всего измеряют электрический потенциал и емкость.

Для работы с токопроводящими материалами применяют эквипотенциальный способ, к диэлектрическим материалам чаще применяют емкостной. Термоэлектрический способ применим для достаточно точного определения химического состава материала без взятия образцов и применения дорогих масс-спектрографических установок.

Неразрушающий контроль электрический

С использованием электрических методик находят различные скрытые дефекты:

  • пустоты и пористость в отливках;
  • микротрещины в металлопрокате;
  • непровар и другие пороки сварки;
  • некачественные лакокрасочные покрытия и клеевые швы.

Акустический, или ультразвуковой контроль

Способ основан на возбуждении в конструкции колебаний определенной частоты, амплитуды, скважности импульсов и анализе отклика конструкции на эти колебания. Интерпретация результатов с помощью специализированных компьютерных программ позволяет воссоздать двумерные сечения исследуемого объекта, не разрушая его. Различают две основных группы методик акустической дефектоскопии:

  • Активные — установка осуществляет излучение колебаний и последующий прием отклика от конструкции.
  • Пассивные — осуществляется только измерение колебаний и импульсов.

Ультразвуковой неразрушающий контроль

Звуковые колебания с частотой выше 20 килогерц называют ультразвуком. Ультразвук является одним из самых популярных способов акустической дефектоскопии в промышленности и позволяет проверять качество и пространственную конфигурацию практически любых материалов. Популярность ультразвука определяется его преимуществами перед другими методами:

  • низкая цена оборудования;
  • компактность установок;
  • безопасность для персонала;
  • высокая чувствительность и пространственное разрешение.

Ультразвуковой способ мало применим к конструкциям, имеющим крупнозернистую структуру или сильно шероховатую поверхность.

Безопасность ультразвука для человека позволяет широко использовать его в медицинской диагностике, включая обследование ребенка в утробе матери и раннее определение его пола.

Вихретоковый метод неразрушающего контроля

Способ основан на наведении в исследуемом объекте вихревых (приповерхностных) токов малой интенсивности и частотой до нескольких мегагерц помещения его в электромагнитное поле, создаваемое вихретоковым преобразователями измерения. Применяется для металлов и других электропроводящих материалов. На основании неоднородностей приповерхностного вихревого поля можно судить о наличии неоднородностей и других дефектов в наружном слое металла (до глубины в несколько миллиметров). Измерения с высокой точностью определяют также дефекты лакокрасочных и защитных покрытий, нанесенных на металлическую деталь. В роли вихретокового преобразователя служить мощная катушка индуктивности, генерирующая высокочастотное электромагнитное поле. Вихревые токи, наводимые этим полем в приповерхностном слое металла, измеряют этой же катушкой (совмещенная схема) или отдельной (разнесенная схема). По пространственной картине распределения интенсивности измеренных токов определяют места неоднородностей, вносящих искажение в поле.

Вихретоковый метод неразрушающего контроля

На применении вихревых токов основано большое количество различных конструкций дефектоскопов, специализирующихся на определении толщины и однородности листов металлопроката и покрытий на конструкциях, непрерывного измерения диаметра проволоки и пруткового проката во время их производства. Применяются вихретоковые устройства, наряду с ультразвуковыми, и для определения состояния лопаток турбин и других ответственных высоконагруженных узлов.

Магнитный метод неразрушающего контроля

Эта группа методик имеет в своей физической основе измерение взаимодействия исследуемого объекта с магнитным полем. Применяются для дефектоскопии ферромагнитных материалов и сплавов. Три основных вида магнитных исследований – это:

  • магнитопорошковый;
  • феррозондовый;
  • магнитографический.

Чтобы обнаружить неоднородность в структуре магнитного материала, его намагничивают, а поверхность смазывают специальной суспензией или гелем, содержащим калиброванные металлические частицы. Эти частицы концентрируются вдоль силовых линий магнитного поля, простым и наглядным способом визуализируя его. В местах неоднородностей и дефектов магнитное поле искажено, и линии его будут искривлены. Магнитографические опыты проводились учеными еще в XVIII веке, но для целей дефектоскопии были приспособлены только в XX.

Читайте также:  Установка времени linux debian

Тепловой метод

Тепловые методики основаны на измерении интенсивности тепловых полей, излучаемых контролируемым устройством или конструкцией. Распределение температур на поверхности и градиент их изменения отражает распределение тепла внутри объекта. В местах дефектов и неоднородностей равномерная тепловая картина будет искажена.

Использование тепловизора для неразрушающего контроля

Исследователи путем расчетов и экспериментов определили типовые изменения в тепловом портрете изделия, характерные для тех или иных дефектов, и в настоящее время распознавание таких особенностей доверяют компьютерам и нейронным сетям. Измерения тепловой картины на поверхности производят как с помощью контактных термометров, так и путем дистанционной пирометрии. С помощью теплового портрета обнаруживают дефекты сварки и пайки, нарушения герметичности сосудов, места концентрации внутренних напряжений и неисправные электронные компоненты. Самое широкое применение тепловой способ находит в электронике и приборостроении.

Радиационный метод неразрушающего контроля

Этот способ чрезвычайно эффективный, он позволяет получать информацию о самых крупных установках и конструкциях (практически без ограничения размера) путем просвечивания их проникающим ионизирующим излучением.

Радиационный метод неразрушающего контроля

Применяется в следующих диапазонах:

  • гамма-лучи;
  • рентгеновское излучение;
  • нейтронное излучение.

Физической основой способа является возрастание плотности потока заряженных частиц в местах скрытых дефектов. На основании сравнения интенсивности прошедшего и отраженного потока делают вывод о глубине расположения неоднородности. Применяется при определении качества сварных швов на крупных изделиях, таких, как корпуса атомных или химических реакторов, турбин, магистральных трубопроводов и их запорной арматуры.

Метод неразрушающего контроля проникающими веществами

Суть способа заключается в том, что во внутренние полости контролируемого устройства или конструкции запускают специально подготовленную жидкость, реже — химически активное или радиоактивное вещество. По его скоплению или следам и определяют место дефекта.

Различают две разновидности:

  • капиллярный, для нахождения поверхностных капиллярных трещин, по которым и просачивается вещество – индикатор;
  • течеискание — для обнаружения утечек в трубопроводах и емкостях.

Метод неразрушающего контроля проникающими веществами

Поверхность тщательно очищают, далее наносят на нее вещество-индикатор, или пенетрант. После определенной выдержки наносят вещество — проявитель и наблюдают картину дефектов визуально. В случае применения радиоактивных маркеров обнаружение дефектов производят соответствующей рентгенографической аппаратурой. Методика обладает следующими достоинствами:

  • высокая чувствительность;
  • простота применения;
  • наглядность представления.

Он хорошо сочетается с другими методиками и служит им для взаимной проверки.

Оптический метод неразрушающего контроля

Оптический способ дефектоскопии основан на анализе оптических эффектов, связанных с отражением, преломлением и рассеянием световых лучей поверхностью или объемом объекта.

Внешние оптические методики позволяют определять чистоту и шероховатость поверхностей, особо важную в точном машиностроении. При измерении размеров мелких деталей применяется физическое явление дифракции, шероховатость поверхностей определяется на основе интерференционных измерений.

Внутренние дефекты возможно выявить лишь для прозрачных материалов, и здесь оптическим методикам нет равных по дешевизне и эффективности.

Выгодно отличаются они своей простотой и малой трудоемкостью и при нахождении пороков поверхностей, таких, как трещины, заусенцы и забоины.

Особенности выбора метода неразрушающего контроля

В ряде отраслей промышленности, таких, как :

выбор способов дефектоскопии строго регламентирован государственными стандартами и нормами сертифицирующих организаций, таких, ка МАГАТЭ или Госатомнадзора.

Вне этих отраслей руководитель подразделения качества предприятия выбирает методики дефектоскопии, руководствуясь следующими параметрами:

  • физико-химические свойства применяемого материала;
  • размеры и прежде всего — толщина конструкции;
  • тип контролируемого объекта, соединения или конструкции;
  • требования технологического процесса;
  • стоимостные параметры того или иного способа дефектоскопии.

Универсального способа определить все дефекты и сразу не существует. При планировании стратегии качества изделия необходимо определить дефекты, наиболее значимые по степени привносимого ими риска неисправности. Далее находится та комбинация средств измерения и методик неразрушающего контроля, которая:

  • позволит выявить все критически значимые дефекты с заданной вероятностью;
  • минимизирует финансовые издержки трудозатраты;
  • окажет минимальное влияние на основной производственный процесс.

Средства неразрушающего контроля применяются сегодня практически на всех производствах — от авиазавода и судоверфи до авторемонтной мастерской и кондитерской фабрики. Контролируют прочность сварных швов и герметичность сосудов высокого давления, качество лакокрасочного покрытия и однородность массы для приготовления зефира в шоколаде. Экономя предприятиям средства на проведение выборочных испытаний на разрушение, применение неразрушающей дефектоскопии сказывается и на цене выпускаемых на рынок продуктов при одновременной гарантии их высокого качества.

источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *