Меню Рубрики

Установки для обессоливания сточных вод

Обессоливание воды: методы и установки

Ученые считают, что человечество пришло к периоду, когда за пресную воду будут вспыхивать конфликты. Решить эту проблему можно только одним способом — найти оптимальный метод обессоливания воды.

Что такое обессоливание воды

Любая жидкость в своем составе имеет определенную долю солей, микроорганизмов, минералов. Очищение природной или водопроводной воды выводит из нее вредные вещества. Но иногда она в составе имеет большое количество солей, которые делают ее непригодной для употребления.

Обессоливание воды – это снижение концентрации растворенных в ней солей. Процедура может носить тотальный характер, когда жидкость лишается любого соляного содержания или частичный, когда в ней остается заданное количество соли.

Методы

Полное обессоливание проводится следующими способами:

  • Дистилляция, термический способ.
  • Методом ионного обмена.
  • Методом электродиализа.
  • Мембранным обратным осмосом.

Частичное удаление соли достигается при применении таких способов:

  • Известкование.
  • Баритовое умягчение.
  • Н-катионирование.
  • Вымораживание.

Методы обессоливания воды требуют затрат как финансовых, так и энергетических. Выбор способа обработки зависит от степени содержания соли в первоначальной жидкости, производительности установки, затрат на составляющие процесса (тепло, электроэнергия, реагенты). Каждый из методов имеет свои преимущества, недостатки и происходит при помощи технических средств.

Частичное обессоливание

Лишенная всех примесей вода применяется во многих производственных процессах и необходима для внутреннего употребления очень ограниченному числу людей. Для бытовых нужд требуется деминерализация воды до определенной степени. Чаще всего происходит умягчение жидкости методом катионирования.

В процессе происходит замена жестких солей на катионы водорода, которые, в свою очередь, вступая в реакцию, разрушают бикарбонатные ионы. Продукты образуют соединение, которое выводится в виде газа. Степень очистки оценивается по количеству выведенного карбоната кальция.

Дистилляция воды

Обессоливание воды с помощью метода дистилляции — самый старый и распространенный на сегодняшний день способ. Плюсом является его всеобщая доступность, а минусом – дороговизна процесса. Для получения воды без примесей используют дистилляторы. Они представляют собой испарители нескольких типов, разница между которыми состоит в конструкции, виде используемой энергии. Наиболее распространенные – паровые и электрические аппараты, отличающиеся дороговизной и большим потреблением энергоресурсов.

Аппарат представляет собой котел (или несколько котлов) низкого давления, где жидкость превращается в пар и отделяет концентрат солей. Чтобы вода получила максимальную очистку, в аппарате достигается температура медленного кипения. При таком режиме тяжелые примеси не попадают в конденсирующийся дистиллят. Одним из вариантов уменьшения стоимости является увеличение количества ступеней, но такая установка влечет крупные первоначальные инвестиции.

Оборудование для дистилляции помимо потребления большого количества энергии обладает внушительной стоимостью всех частей. Обеспечить высокую степень чистоты могут дорогостоящие трубы, арматура, теплообменники, испарители, сделанные из кварца или платины. Другие материалы непригодны.

Электрохимический метод

Суть метода заключается в пропуске воды через электрическое поле, при этом происходит перенос ионов солей – катионы распределяются в сторону катода, а анионы — к аноду. Система имеет три отсека, которые образуются при помощи катодной и анодной диафрагм. В срединном отсеке находится вода, подготовленная к обессоливанию.

Через поток пропускают постоянный электрический ток, при помощи которого происходит сортировка солей на катодную и анодную диафрагмы. Метод является очень дорогостоящим по затратам на оборудование и издержкам на электроэнергию, в связи с чем не получил распространения.

Ионный обмен

Наиболее надежный способ, которым достигается обессоливание воды, – метод ионного обмена. Осаживание примесей таким способом позволяет получить более чистую жидкость за короткий срок, что важно при промышленном обессоливании. Способ является наиболее экономически выгодным и дает лучший результат очистки.

Метод основывается на удалении из жидкости катионов и анионов солей, в результате очистки можно достичь разной степени деминерализации, вплоть до полного удаления солевых агентов. Обессоливание воды ионным обменом происходит при участии ионитов, которые представляют собой нерастворимые в воде полимеры, содержащие подвижный ион. При созданных условиях подготовленный полимер вступает в реакцию обмена с ионами солей того же знака. Помещенные в водную среду иониты набухают, увеличиваясь в размере в 1,5-2 раза.

По мере прохождения времени иониты собирают растворенные в воде соли и уплотняются. Насыщенные иониты регенерируют, после чего проводят их очистку. Продукты, полученные из насыщенных ионитов, называются «элюаты», в их состав входят растворы солей и щелочей. Часть из них являются ценными веществами, поэтому их утилизируют как ценные компоненты.

Обратный осмос

Технический прогресс и начавшая наблюдаться нехватка пресной воды рождают новые технологии опреснения и обессоливания. Популярным способом становится метод обработки обратным осмосом, надежность ему гарантирует развитие мембранных технологий. Промышленный интерес вызван сравнительно низкими энергозатратами. Большая часть аппаратов этого принципа используются для доочистки речной воды, где их эффективность многократно доказана.

Для бытового использования установки для обессоливания воды, основанные на принципе обратного осмоса, пригодны как в плане энергозатрат, так и по качеству получаемого продукта. В основе принципа обратного осмоса лежит пропускание воды под давлением через мембрану, которая непроницаема для растворенных солей и других примесей. Процесс обессоливания воды обеспечивают синтетические полупроницаемые мембраны, которые не могут задержать некоторые растворенные в воде газы (хлор, углекислота и пр.).

Метод обратного осмоса очищает воду от всех примесей, происходит полная деминерализация, что вредно для человеческого организма. В большинстве случаев обывателю приходится выбирать между водопроводной водой или обработанной при помощи какого-либо фильтра. Меньшим злом является вода, лишенная всех природных компонентов.

На сегодняшний день в некоторых странах уже существуют заводы по производству питьевой воды, где для обессоливания используют метод обратного осмоса, и в качестве дополнительной доочистки из нее выводят растворенные газы. Чтобы придать ей нормальное состояние, приближенное к естественному, на предприятиях в очищенную воду добавляют необходимые соли в выверенной концентрации.

Плюсы и минусы основных методов

Каждый из методов обессоливания воды имеет как положительные, так и отрицательные качества. Рассмотрев их подробно, можно понять, какому из них отдать предпочтение:

  • Ионный обмен помогает получить наиболее чистую воду, система надежна и не реагирует на степень минерализации исходной жидкости, требует небольших затрат на оборудование. Процесс обессоливания происходит при минимальных потерях расхода воды. К минусам метода относится стремительное загрязнение окружающей среды вредными химикатами, высокая стоимость самих реагентов, система быстро загрязняется и требует частой замены фильтров. Утилизация отходов и фильтрующих частей сопряжена со сложностями.
  • Дистилляция. Установки для обессоливания воды, основанные на термическом методе, используются без применения химических веществ, демонстрируют хорошее качество полученной жидкости, выделяемое в процессе работы тепло можно использовать для других нужд. Отличительной чертой данного способа является возможность устранения растворенных в воде газов. К минусам метода относятся: большие энергозатраты, необходимость подготовки воды, затраты на обслуживание установки (чистка всех частей), дороговизна аппаратуры.
  • Мембранные установки отличаются неприхотливостью к исходному состоянию воды, для процесса не требуются химические реагенты, просты в обслуживании. Отрицательными качествами являются: подготовка воды к процессу обработки, большой объем воды для обеспечения работы аппаратов, большой расход электроэнергии, что сказывается на стоимости конечного продукта.
Читайте также:  Установка retroarch на 3ds

Обессоливание в домашних условиях

Фильтрация воды – самый доступный способ доочистки. Для обессоливания колодезной или морской жидкости в домашних условиях есть два распространенных способа:

  • Емкость с водой поместить в морозильную камеру и оставить до неполного замерзания. Соль с частью жидкости не замерзнет, лед следует растопить, и можно пользоваться сразу. Для дополнительной очистки стоит пропустить талую воду через любой бытовой фильтр. Метод называется холодной дистилляцией.
  • Выпаривание. Берут две емкости разного размера, в большую наливают морскую/соленую воду, меньшую оставляют пустой и помещают в большую посуду. Всю конструкцию можно поставить для нагревания на плиту или оставить на солнце, предварительно закрыв крышкой. Необходимо добиться медленного кипения соленой воды. Пары, лишенные соли, будут концентрироваться в пустой емкости. Процесс испарения на солнце будет протекать гораздо медленнее. При этом способе получается довольно малый объем питьевой воды.

Опреснение и обессоливание воды кустарными способами возможно, но малорезультативно. Лучшим вариантом будет приобретение бытовой установки для очистки.

Бытовые установки

Для бытовых нужд чаще всего необходимы системы для доочистки воды. Фильтрация воды может проводиться несколькими способами:

  • Самый простой и доступный – кувшин со сменными фильтрами.
  • Насадка с фильтром на кран.
  • Настольные фильтры для воды.
  • Встраиваемые системы, осуществляющие очистку жидкости в зависимости от места размещения (только на кухне, в точке входа подачи воды в дом, многоступенчатые фильтры для очистки воды из артезианской скважины и т. д.).

Ни одна из бытовых систем не может полностью устранить соли из жидкости, но смягчить жесткую воду в состоянии. В этом случае необходимо знать, какими элементами она насыщена, чтобы подобрать систему, картриджи для воды, фильтры или реагенты. Процесс обессоливания требует габаритных аппаратов, большой площади для установки, крупных финансовых инвестиций и доступность обслуживания системы, что недоступно для широкого круга потребителей.

Виды бытовой очистки

На сегодняшний день повсеместно используются следующие виды очистки воды:

  • Угольная фильтрация. Прибор представляет собой емкость, наполненную древесным, активированным или каменным углем. Вода, прошедшая через такой фильтр, очищается от хлора, нефтесодержащих элементов, пестицидов, микроорганизмов, бактерий и т. д. Фильтр доступен по стоимости, долговечен и прост в эксплуатации.
  • Тонкой очистки. Этот вид фильтров делится на два вида – однофункциональные и многофункциональные. При любом выборе требуется обслуживание – постоянно менять картриджи для воды, производить замену арматуры и пр.
  • Грубой очистки. Устраняют крупные частички загрязнений (песок, ржавчину, осадок и пр.).
  • Глубокой очистки. К этому виду фильтров относятся системы с обратным осмосом, многоступенчатые фильтры и пр.

В большинстве регионов России требуется только дополнительная очистка воды, поскольку водных ресурсов в стране достаточно. Единственный регион, где может наблюдаться недостаток пресной воды, – это Крым, куда, возможно, потребуются промышленные установки для опреснения морской воды. Все аппараты для проведения процессов имеют патент. Опреснение и обессоливание воды должно производиться на научно обоснованных методах с обязательным тестированием результатов в лабораторных условиях.

источник

Обессоливание воды

Промышленные предприятия и отрасли предъявляют собственные требования к подаваемой жидкости. Обессоливание воды для устранения примесей является одним из главных критериев.

Деионизация или деминерализация жидкости — ключевой процесс обработки жидкости для подачи на предприятия. Уменьшение содержания солей или их исключение является обязательным условием обеспечения пригодности воды. По техническим нормам содержание примесей должно составлять не более 1 г/л. В редких случаях допускается небольшое отклонение от этих условий.

Опреснение или обессоливание применяется для морских или засоленных вод, подаваемых на предприятия теплоэнергетики, электроники, химии. На сегодняшний день процесс проводят несколькими способами:

  • термический,
  • мембранный,
  • ионообменный,
  • электродиализ,
  • обратный осмос.

Допускается обессоливание воды комбинированными способами.

Особенности методов обессоливания воды

Рассмотрим каждый метод обессоливания воды отдельно с его особенностями и этапами процесса:

  • Термический — старейший и один из самых эффективных способов удаления примесей. Процесс состоит из перегонки, дистилляции и выпарки. Обессоливание воды происходит посредством ее перевода в парообразное состояние и последующей конденсации. Твердые примеси образуют осадок. Возможно использование одноступенчатых, двухступенчатых и многоступенчатых дистилляционных установок для оптимизации процесса. Экономическая эффективность метода определяется количеством затрачиваемой тепловой энергии.
  • Мембранный — метод обработки с нагревом жидкости с одной стороны установки. Пар свободно проходит через непромокаемую поверхность и конденсируется в противоположной части оборудования. Твердые примеси остаются на поверхности мембраны.
  • Ионообменный — наиболее надежный и часто применяемый способ обессоливания воды. За годы использования механизм был отработан и налажен. Этот метод имеет свои разновидности. Возможна частичная очистка или глубокая. В первом случае проводится умягчение воды и замеса жестких солей атомами водорода, которые разрушают бикарбонат-ионы. Во втором — удаляются все примеси. Процесс делится на несколько ступеней. На каждой применяются определенные реагенты. Возможно применение установок смешанного действия, где используется сразу несколько катионитов для удаления солей.
  • Электродиализ — один из мембранных способов обессоливания воды. Ионы электролита переносят через специальные барьеры под воздействием электрического тока. Такой метод позволяет добиться частичного удаления примесей (солей жесткости).
  • Обратный осмос . Глубокое обессоливание воды обеспечивается использованием специальных мембран и проведением жидкости под давлением. Различают низконапорный и высоконапорный обратный осмос. В первом случае степень очистки составляет 80–95 % от первоначального состава, во втором — 98–99 %. Для сравнения, электродиализная методика дает максимальный результат в 70 %.

Методы обессоливания воды: за и против

При выборе способа обессоливания воды следует ориентироваться не только на особенности процесса обработки, но и на их преимущества и недостатки. У каждого метода есть свои достоинства.

Так, ионообменная очистка дает возможность получения сверхчистой воды. Этот метод отработан и достаточно надежен. Для проведения обессоливания не требуется учитывать состав поступающей жидкости. Даже при резкой смене параметров способ остается эффективным. С экономической точки зрения ионный обмен также остается выгодным. Затраты на капитальный ремонт и энергообеспечение минимальны, так же как образование вторичных отходов и расход питающей жидкости.

Обессоливание обратным осмосом дает готовую воду с высокими показателями отсутствия биологических и органических загрязнений, а также взвешенных частиц. Для проведения процесса требуется минимальное количество реагентов, а выброс твердых солей остается на низком уровне. Концентрированный остаток можно сбрасывать в канализацию без обработки, поскольку в очистке не используют агрессивные вещества. Эксплуатационные расходы сравнительно низкие.

Термический метод требует минимального количества применяемых реагентов. Сброс солей в окружающую среду незначителен, поэтому способ считается экологичным. Избыточная тепловая энергия может быть использована для повторной обработки. Для термической очистки характерно получение наименьшего количества отходов, даже сухих солей. По показателям взвешенных частиц полученная жидкость находится на высоком уровне. Это единственный метод, позволяющий удалить из воды растворенные газы.

Обессоливание воды тем или иным способом также имеет свои недостатки:

  • ионообменный — потребность в большом количестве агрессивных реагентов, соответственно, необходимость их последующей обработки для сброса в сток. Увеличение эксплуатационных расходов соразмерно процентному содержанию примесей в жидкости. Этот способ можно признать целесообразным для умеренно соленых вод;
  • обратноосмотический — требует тщательной подготовки перед запуском. Для обеспечения надежности очистки и сохранности оборудования рекомендуется постоянная работа установки. Следовательно, возрастают расходы на капитальный ремонт и энергозатраты. В соответствии с этим возрастает сброс и объем питающей воды;
  • термический — требует предварительной подготовки, больших капитальных и энергозатрат.
Читайте также:  Установка груши в потолке

Электродиализ на сегодняшний день считается наименее целесообразным из-за минимального качества получаемой воды и больших затрат на проведение процесса.

Обессоливание воды смешанным способом с применением безреагентного метода на первой стадии, а также ионообменного на второй позволяет сократить расходы и повысить качество очистки до максимума. При этом сброс отходов и содержание агрессивных реагентов сокращается до 10 раз.

источник

Технологии очистки сточных вод с повышенным солесодержанием

Выбор метода очистки засоленных стоков (обессолевание воды)

1. Методы обессоливания воды и их классификация.

Снижение солесодержание воды до лимитов ГОСТа 2874-82 «Вода питьевая» или до концентрации близкой к содержанию солей в дистиллированной воде называют соответственно опреснением и обессоливанием.

Существующие методы опреснения и обессоливания воды подразделяют на две основные группы: с изменением и без изменения агрегатного состояния воды. К первой группе методов относят дистилляцию, нагрев воды до сверх критической температуры (350 о С), замораживание, газогидратный метод; ко второй – ионообмен, электродиализ, обратный осмос (гиперфильтрация), ультрафильтрация, экстракцию и др.

Наиболее распространены в практике дистилляция, ионообмен, электродиализ и обратный осмос.

2.Опреснение и обессоливание воды дистилляцией.

Дистилляционный метод основан на способности воды, при нагревании испаряться и распадаться на пресный пар и соленый рассол. Принцип дистилляции основан на том, что при нагревании соленой воды до температуры более высокой, чем температура кипения (при данном солесодержании и давлении), вода начинает кипеть. Образовавшийся пар при давлении менее 50 кгс/см 2 практически не способен растворять содержащиеся в опресняемой воде соли, поэтому при его конденсации получается пресная вода. Для испарения 1 кг воды ее необходимо нагреть до температуры кипения и затем сообщить дополнительное тепло фазового перехода воды в пар, так называемую скрытую теплоту парообразования, равную при температуре 100 о С 539,55 ккал/кг. Чтобы полученный пар превратить в воду нужно у пара отнять тепло фазового перехода (559,55 ккал/кг). Значительная часть этого тепла может быть возвращена обратно в установку, т.е. рекуперирована. Чем больше тепла фазового перехода рекуперировано, тем выше считается тепловая экономичность дистилляционной опреснительной установки.

Принцип работы одноступенчатой дистилляционной опреснительной установки заключается в следующем: исходная вода подается через конденсатор-подогреватель в испаритель, где за счет тепла греющего пара или горячей воды, она нагревается и испаряется. Образующийся пар (вторичный) поступает в конденсатор, где охлаждается исходной водой и превращается в дистиллят. Тепло конденсации используется для предварительного нагрева подпиточной воды испарителя.

Наиболее широко применяются многоступенчатые испарительные установки, представляющие собой несколько последовательно работающих одноступенчатых установок, при этом вторичный пар предыдущей ступени используется в качестве греющего пара для испарения воды в последующей ступени. С увеличением числа ступеней многоступенчатые опреснительные установки становятся экономичнее. Однако, с увеличением числа ступеней испарения уменьшается температурный перепад по каждой из них, увеличивается общая поверхность нагрева аппаратов и соответственно резко возрастают капитальные затраты на опреснительную установку.

Основным преимуществом многоступенчатых дистилляционных опреснительных установок является то, что на единицу первичного пара можно получить значительно большее количество обессоленной воды. Так при одноступенчатом испарении на 1 т первичного пара получают около 0,9 т обессоленной воды, то на установках, имеющих 50-60 ступеней – 15-20 т опресненной воды. Удельный расход электроэнергии в дистилляционных установках составляет 3,5-4,5 кВт час/м 3 дистиллята.

При работе дистилляционных опреснительных установок негативную роль играет накипь на греющих элементах испарителей и конденсаторов, которая уменьшает температуру нагрева воды, ухудшает теплопередачу и работу всех агрегатов установки. Для предотвращения накипеобразования применяют реагентные (специальные ингибиторы, добавки, предварительное подкисление и т.п.) и безреагентные (магнитная, ультразвуковая обработка и др.). Практически полностью исключить накипеобразование достигается созданием достаточно глубокого вакуума в испарителях, что дает возможность снизить температуру испаряемой воды до 50 о С и ниже. Энергетические затраты составляют примерно 10 кВт час/м 3 обессоленной воды.

3. Ионообменный метод опреснения и обессоливания воды

Ионообменный метод опреснения и обессоливания основан на последовательном фильтровании воды через Н-катионовый, а затем НСО3-, ОН- или СО3 2- — анионитовый фильтр. В Н-катионитовом фильтре содержащиеся в воде катионы, главным образом Са (II), Mg (II), Na (I), обмениваются на водород – катионы

При пропускании воды после Н-катионитовых фильтров через ОН-анионитовые фильтры анионы образовавшихся кислот обмениваются на ионы ОН-:

В соответствии с необходимой глубиной обессоливания воды проектируют одно-, двух и трех ступенчатые установки, но во всех случаях для удаления из воды ионов металлов применяют сильнокислотные Н-катиониты с большой обменной емкостью.

Остаточное солесодержание при одноступенчатом ионировании принимают до 20 мг/л. Для получения воды с солесодержанием до 0,5 мг/л применяют установки с двухступенчатой схемой Н- и ОН – ионированием.

Основным недостатком обессоливания ионным обменом является:

  1. значительный расход реагентов на регенерацию ионитных смол:
    • регенерацию Н-катионитовых фильтров осуществляют кислотой (серная, соляная) с расходом 70-75 г/г-экв. Для Н-катионитных фильтров II ступени удельный расход 100 % серной кислоты-100 г на 1 гэкв. поглощенных катионов. Расход воды на отмывку катионита- 5-8 м 3 /м 3 катионита.
    • регенерацию ОН-анионитных фильтров осуществляю раствором щелочи, удельный расход 100% NaOH –120-140 кг/м 3 анионита. Расход воды на отмывку – до 10 м 3 /м 3 анионита.

    Как правило, при обессоливании пресной воды фильтры первой ступени регенерируются каждые 8-10 часов, второй ступени каждые 8-10 суток.

  2. Время регенерации фильтров составляет 3-3,5 часа, поэтому требуется установка двух фильтров (один работает, другой на регенерации), что увеличивает капитальные затраты.
  3. В связи с большим количеством используемых реагентов значительные затраты на грузовые их перевозки и на хранение.
  4. Необходимость организации реагентного хозяйства для приема кислот и щелочей, их растаривание, приготовление растворных и расходных растворов.
  5. Значительный сброс засоленных стоков в канализацию и загрязнение окружающей среды.

4. Опреснение воды электродиализом.

Опреснение воды электродиализом основано на том, что в электрическом поле катионы растворенных в воде солей движутся к погруженному в опресняемую воду катоду, а анионы – к аноду. При этом электрический ток в растворе переносится ионами, которые разряжаются на аноде и катоде.

Если пространство разделить проницаемыми для катионов и анионов перегородками на три части (катодную, анодную и рабочую), то под действием электрического тока большая часть катионов, растворенных в воде солей, будет перенесена в катодное, а анионов — в анодное пространство. Находящаяся в рабочем пространстве электродиализатора вода будет опресняться.

В качестве перегородок используются ионообменные (катионо- и анионо-активные) мембраны, от свойств и качества которых зависит эффективность работы электродиализатора. Мембраны должны обладать высокой электропроводностью, селективностью и высоким диффузионным сопротивлением, отличаться достаточной прочностью и стойкостью в воде и рассолах.

Конструкция многокамерного однонаправленного электродиализатора предполагает набор чередующихся камер, разделенных между собой ионообменными мембранами. Опресняемая вода поступает в четные камеры аппарата, через нечетные камеры происходит циркуляция рассола. При пропуске постоянного электрического тока катионы растворенных солей в четных камерах двигаются в сторону катионообменных мембран, проходят через нее, а анионы – к аноду, легко проходят в нечетную камеру через анионообменную мембрану. Из нечетных камер ни анионы, ни катионы в соседние камеры не проникают, так как на пути движения они встречают препятствие в виде непроницаемых для катионов анионоактивных мембран и непроницаемых для анионов катионоактивных мембран. Соли переносятся из четных камер в нечетные. Вода в четных камерах опресняется, в нечетных рассольных камерах накапливаются соли.

Для предотвращения образования осадка на поверхности мембраны нерастворимых солей кальция, сульфата бария, железа и т.п., а также органических соединений не удаляемых в процессе электродиализа применяют обратимый электродиализ, т.е. периодически осуществляют изменение полярности тока, что влечет за собой изменение направления движения потоков и удаление осадков.

Выход очищенной воды составляет 90-95% поступающей воды при регулируемой циркуляции концентрированного потока и других дополнительных мерах. Обычная рециркуляция концентрированного потока дает выход очищенной воды от 70 до 85%.

Процесс не требует дополнительных химических реагентов, в нем не создаются вещества, отравляющие окружающую среду, однако необходимым условием надежной работы электродиализной установки является тщательная предочистка воды от взвеси и примеси органических веществ, соединений железа и марганца.

5. Опреснение воды обратным осмосом.

В последнее время при подготовке обессоленной воды широко используются мембранные методы, в частности обратный осмос. Метод обратного осмоса является одним из наиболее перспективных способов очистки и глубокого обессоливания воды с различной минерализацией. Он основан на разделении растворов фильтрованием через полупроницаемые мембраны, поры которых пропускают молекулы воды, но не пропускают гидратированные соли или молекулы недиссоциированных соединений. Если в сосуде между пресной и соленой водой поместить полупроницаемую перегородку, способную пропускать воду и задерживать гидратированные ионы растворимых в воде солей, то можно наблюдать, как пресная вода начинает поступать в отсек с соленой водой. Переток чистой воды происходит вследствие разницы концентрации жидкости по обеим сторонам перегородки. Через некоторое время уровень пресной воды станет заметно ниже уровня соленого раствора. Разница уровней после установившегося равновесия характеризует осмотическое давление растворенного вещества. Если создать в соленом растворе давление, превышающее осмотическое, то возникает перетекание молекул пресной воды в направлении, обратном ее естественному движению, т.е. вода из раствора начинает перетекать через перегородку в пресную воду. Такой процесс известен под названием обратного осмоса. Опреснение соленой воды методом обратного осмоса основывается как раз на процессе перетекания молекул чистой воды из раствора при создании давления, превышающего осмотическое, в направлении от раствора к пресной воде через полупроницаемую перегородку. Полупроницаемая перегородка выбирается с таким расчетом, чтобы через ее поры могли проходить молекулы воды, но не могли проходить ионы солей, растворенных в соленой воде. Поскольку ионы солей, в размере примерно в 1,5 раза больше, чем молекулы воды, то это осуществить (в техническом смысле) вполне возможно.

Метод обратного осмоса по сравнению с традиционными методами обладает существенными преимуществами: затраты энергии на процесс относительно невелики, установки конструктивно просты и компактны, их работа мало зависит от колебаний качества исходной воды, для эксплуатации не требуется высококвалифицированного персонала, работа установок может быть легко автоматизирована. Основной особенностью обратного осмоса является практическое отсутствие расхода каких-либо химических реагентов для обработки воды (кислоты, щелочи и др.), если не считать небольших затрат для корректировки рН, ингибирования солеотложений и периодической промывки мембран. Сточные воды установок (концентрат) содержат практически только те соли, которые находились в исходной воде, тогда как при ионировании общее количество солей в стоках, по крайней мере, вдвое, а то и втрое превышает их содержание в очищенной воде. Правда, объем сточных вод, хотя и с меньшим солесодержанием, остается примерно таким же, как и при ионитном обессоливании.

Метод обратного осмоса отличается тем, что разделение на мембране происходит без фазовых превращений веществ и требует затрат энергии только на прокачку раствора вдоль мембраны и продавливание через мембрану растворителя (воды). При этом полупроницаемая мембрана работает не как фильтр, на котором скапливаются задержанные вещества. Она лишь разделяет исходный поток на два. Первый поток — прошедшая сквозь мембрану вода (пермеат) — содержит меньше солей, чем исходная вода. Второй поток — исходная вода — по мере продвижения вдоль мембраны становится все более концентрированным, унося с собой задержанные мембраной соли. Поток, покидающий разделительный элемент, называется концентратом.

Рабочее давление в аппарате зависит от солесодержания исходной воды и осмотического давления раствора. Для обессоливания водопроводной воды, как правило, достаточно 0,7-1,2 МПа, для обессоливания морской – 5-7 МПа.

В зависимости от рабочего давления мембраны и рулонные элементы могут быть низкого, среднего и высокого давления. В настоящее время предлагается целая гамма рулонных элементов низкого, среднего и высокого давления для обессоливания вод различного состава с высоким значением селективности (более 99%), как российского, так и импортного производства.

Разработка за рубежом новых высокоселективных и высокопроизводительных обратноосмотических мембран, работающих при давлениях 0,7-1,0 МПа и рулонных элементов на их основе (так называемые ресурсосберегающие элементы) дают возможность применять их эффективно при обессоливании маломинерализованных вод. При этом энергозатраты составляют 0,5-1,5 кВт/м 3 очищенной воды.

6. Выбор метода обессоливания.

Выбор метода обессоливания обуславливается качеством исходной и требованиями к качеству обработанной воды, производительностью установки и технико-экономическими соображениями. Оценка экономических показателей встречает определенные трудности, так как они зависят от многих факторов природного, технического и экономического характера. Однако существуют общие рекомендации по использованию того или иного способа обессоливания.

Ниже на диаграмме указаны рекомендуемые границы применения различных методов обессоливания в зависимости от солесодержания исходной воды и суточной производительности опресняемой установки (еще раз обращаем внимание на рекомендательный характер данной диаграммы).

Исходя, из данных диаграммы следует:

  1. Стоимость обессоливания воды ионообменом сильно возрастает с увеличением содержания соли в воде; одновременно снижается глубина обессоливания воды. Поэтому обессоливание ионообменом (ионный обмен смешанного действия, обычный или с непрерывной регенерацией) предпочтительно для большой суточной потребности вод с низкой степенью минерализации менее (до 100 мг/л).
  2. Учитывая новые разработки в области обратного осмоса, а именно разработка низконапорных, высокопроизводительных и высокоселективных мембран (энергосберегающих), резко расширилась область использования мембранной технологии (обратного осмоса). В широком диапазоне солесодержания (0,15-50 г/л) опреснительные мембранные установки по экономическим показателям соизмеримы с электродиализаторами, и выгодно отличаются от ионного обмена.
  3. Опреснения высококонцентрированных рассолов экономически выгодно проводить дистилляцией.

источник