Меню Рубрики

Установки для обработки трансформаторных масел

Методы обработки трансформаторного масла

Обработка масла центрифугированием

Обработка масла центрифугированием заключается в удалении из масла влаги и взвешенных механических частиц при воздействии на них центробежной силы. Способом центрифугирования можно удалить из масла только влагу, находящуюся в состоянии эмульсии, и твердые частицы, удельная масса которых больше удельной массы обрабатываемого масла. Удалить из масла с помощью центрифугирования растворенные в нем влагу и газы, а также легкие, загрязняющие его примеси типа волокон нельзя, поэтому при подготовке масла для заливки в мощные высоковольтные трансформаторы такая обработка недостаточна. Она может применяться в основном при подготовке масла для заливки в трансформаторы класса напряжения 35 кВ и ниже либо в качестве предварительной очистки масла. Следует отметить, что длительная обработка масла центрифугированием способствует окисляемости чистого масла из-за возможного удаления антиокислительных присадок.

Промышленностью выпускаются различные типы маслоочистительных установок, работающих на принципе центрифугирования. В практике они называются центрифугами или сепараторами.

Наибольшее распространение для очистки трансформаторного масла получили установки типа СМ1-3000 и ПСМ1-3000, имеющие тарельчатые вращающиеся барабаны. Внутри барабана такой центрифуги помещается пакет, состоящий из большого числа тарелок — усеченных конусов из тонкого листового металла, имеющих отверстия по окружности. Влага и механические примеси отделяются центробежной силой из тонких слоев масла между тарелками, что ускоряет процесс очистки масла.

Устройство и работа маслоочистительных установок типа СМ1-3000 и ПСМ1-3000 хорошо известны широкому кругу специалистов и достаточно полно описаны в технической литературе.

Обработка масла фильтрованием

Обработка масла фильтрованием заключается в пропускании его через пористые перегородки (фильтрующие элементы), на которых задерживаются имеющиеся в нем примеси. Наиболее широкое распространение для обработки масла фильтрованием получили передвижные рамные фильтр-прессы.

Конструктивно фильтр-пресс представляет собой набор установленных на станине рам и плит, между которыми закладывают фильтрующий материал. После сборки их стягивают ручным зажимом. В плитах и рамах имеются отверстия, образующие после сборки каналы для прохода масла. Масло через фильтрующий материал продавливают маслонасосом. Контроль за работой производят по манометру, измеряющему давление масла в фильтр-прессе.

В качестве фильтрующего элемента наиболее широкое распространение получил фильтровальный картон (ГОСТ 6722-75). В фильтр-прессах можно применять и другие виды фильтрующих элементов, например суровую ткань из хлопчатобумажной крученой пряжи (ГОСТ 504-68), фильтровальную капроновую ткань ФК и др. Фильтровальный капрон не должен допускать отрыва волокон при работе фильтр-пресса, загрязняющих очищенное масло.

Промышленность выпускает передвижные рамные фильтр-прессы различных типоисполнений производительностью от 1500 до 3000 л/ч, устройство которых известно широкому кругу читателей.

Конструкция фильтр-пресса имеет следующие недостатки: контакт с окружающим воздухом (негерметичная конструкция), малая производительность, частая замена фильтрующего элемента.

В последнее время для очистки от механических примесей масел, предназначенных для заливки в мощные высоковольтные трансформаторы, применяют фильтры герметичной конструкции типа ФГН-30 и ФГН-60, которые выпускаются промышленностью для очистки жидкого топлива.

Устройство и принцип работы фильтра типа ФГН поясняет рисунок 1,а,б. Фильтр ФГН представляет собой вертикальный цилиндрический сосуд, разнимающийся в нижней части. На центральной трубе, сообщающейся с выходным патрубком, смонтированы фильтрационные пакеты. Фильтрационный пакет состоит из фильтрационного чехла и набора металлических дисков. Чехол изготовлен из нетканого материала. Диски внутри чехла расположены, как показано на рисунке 1,б.

а — устройство фильтра; б — фильтрующий пакет; 1 — входной патрубок; 2 — корпус; 3 — фильтрующий пакет; 4 — центральная труба; 5 — чехол; 6 — алюминиевый диск; 7 — выходной патрубок
Рисунок 1 — Схема устройства фильтра типа ФГН

Для контроля за давлением на фильтре установлен дифференциальный манометр, указывающий избыточное давление жидкости (до и после фильтра), а также разность давлений между ними (перепад давления). На подсоединительных патрубках дифференциального манометра имеется маркировка для правильного его подсоединения к фильтру.

Фильтрация масла в фильтре происходит следующим образом: заполняя внутреннюю полость фильтра, масло, проходя под давлением через чехол, очищается и попадает в канавки алюминиевого диска, откуда по радиальным пазам и через отверстия в центральном кольцевом выступе диска устремляется в пазы центральной трубы и дальше в выхлопной патрубок.

Технические данные фильтров типа ФГН приведены в таблице 1.

Таблица 1 — Технические данные фильтров типа ФГН

Пропускная способность, м3/ч*

Число слоев фильтрационного материала

Фильтрационная поверхность, м2

Рабочее давление максимальное, кПа

Диаметр присоединительных патрубков, мм

* Пропускная способность для трансформаторного масла указана примерно

Для пропускания масла через фильтр используют герметичные маслонасосы типа 5Т или ЦНТ.

Читайте также:  Установка времени на калине хэтчбек

Адсорбционный метод обработки масла

Процесс очистки масла при помощи адсорбции основан на поглощении воды и других примесей, ухудшающих его эксплуатационные свойства, различными адсорбентами. Для удаления из масла влаги в качестве адсорбента применяются синтетические цеолиты.

Кристаллы цеолита получают в результате реакции, которая происходит при смешивании гидроокисей алюминия Аl(ОН)3 и кремния (SiOH)4 в сильнощелочной среде. В результате кристаллизации положительно заряженные ионы алюминия и кремния располагаются в глубине пористого алюминосиликатного скелета, а отрицательно заряженные ионы кислорода — на поверхности скелета. На поверхности скелета имеются также положительно заряженные ионы Na, Са, К, способные к ионному обмену. Таким образом, цеолиты являются полярными адсорбентами.

Структура цеолитов и наличие на поверхности пор заряженных ионов кислорода определяют их высокую адсорбентную способность, особенно к полярным молекулам воды.

Каждый вид цеолитов отличается строго определенным размером входных отверстий пор, поэтому они адсорбируют только молекулы веществ, которые могут проникнуть внутрь пор, что определяет их высокую избирательную способность. В связи с этим цеолиты называют молекулярными ситами. Молекулы трансформаторного масла, имеющие сравнительно большие размеры, цеолитами не адсорбируются.

Промышленность выпускает два типа цеолитов — А и Х, по структуре отличающиеся размерами входных отверстий. Цеолиты типа А имеют средний диаметр входных отверстий 4,2·10-12 м, а типа X — 8— 10·10-10 м. Первый знак в обозначении марки цеолитов указывает на вид участвующего в ионном обмене элемента, например NaA, СаА, СаХ и др.

Сильно развитая пористая поверхность кристаллов цеолитов обеспечивает большую их влагоемкость (18— 20% массы). При низкой концентрации влаги в масле и повышенной температуре цеолиты имеют в несколько раз большую влагоемкость, чем некоторые другие адсорбенты (силикагель, активизированная окись алюминия и др.). Цеолиты выдерживают без потери своих свойств продолжительный нагрев при температуре 300—450°С, что необходимо для их осушки.

По внешнему виду чистый цеолит представляет собой мелкий кристаллический порошок, который неудобен для применения, поэтому из цеолитов с помощью связывающего материала (10—15% глины) изготовляют гранулы, которые по своей механической прочности пригодны для применения в промышленных условиях.

Технические сведения о качестве выпускаемых нашей промышленностью синтетических цеолитов приведены в таблице 2.

Таблица 2 — Качество синтетических цеолитов

Гравиметрическая (насыпная) плотность, г/см3, не менее

Номинальный размер по среднему диаметру, мм

Гранулометрический состав при этом должен отвечать содержанию фракции номинального размера, % (по массе), не менее

Индекс механической прочности на раздавливание, МПа, не менее

Индекс механической прочности на испытание, % (по массе), не менее

Водостойкость, % (по массе), не менее

Динамическая активность по парам
воды при проскоковой концентрации, отвечающей точке росы не выше —70°С, г/см3, не менее, для таблеток диаметром, мм:

Потери при прокаливании, % (по массе), не более

Для сушки трансформаторного масла в основном применяются цеолиты марки NaA. Обработка масла при помощи цеолитов позволяет удалить из него влагу, находящуюся в растворенном состоянии.

На рисунке 2,а показана технологическая схема цеолитовой установки. Основной составной частью установки является батарея адсорберов. Адсорбер представляет собой полый цилиндр, полностью заполненный цеолитом. В верхней и нижней горловине адсорбера имеются мелкие металлические сетки, которые служат для удержания цеолитов внутри цилиндра. Адсорберы при помощи коллекторов собраны в единую систему. Для очистки масла от механических примесей на входе установки имеется фильтр. В качестве фильтрующего элемента применяются фильтровальная бумага и ткань бельтинг. Такой же фильтр расположен на выходе установки. Он предназначен для задержания крошки цеолита в случае повреждения удерживающей сетки адсорбера. Для контроля за работой в установке имеются манометр и счетчик расхода масла.

а — принципиальная схема цеолитовой установки; б — схема устройства печи для сушки цеолитов; 1 — маслонасос; 2 — маслонагреватель; 3 — фильтр; 4 — адсорбер; 5 —счетчик масла; 6 — сушильная камера; 7 — нагревательная камера; 8 —. спиральные нагреватели; 9 — вентилятор; 10 — сухое масло; 11 — сырое масло
Рисунок 2 — Осушка масла цеолитами

При помощи маслонасоса сырое масло через маслоподогреватель и входной фильтр подается на включенные параллельно адсорберы, где происходит его сушка. Осушенное масло через выходной фильтр поступает на выход установки, смонтированной на автоприцепе. В таблице 3 приведены технические данные цеолитовой установки.

Таблица 3 — Технические данные цеолитовой установки

Масса цеолитов в каждом адсорбере, кг

Мощность электроподогревателя, кВт

Установка обеспечивает осушку масла до остаточного влагосодержания менее 10 г в 1т.

Перед обработкой масла необходимо тщательно высушить цеолиты. Цеолит осушивается продуванием через адсорберы нагретого до температуры 400—450°С воздуха. Процесс сушки будет закончен, когда температуры на входе и выходе адсорбера сравняются, что указывает на отсутствие выделяемой из адсорбента воды. При этом необходимо учитывать разброс температур за счет потерь через стенки адсорбера.

Читайте также:  Установка twonky server на debian

Осушку цеолитов производят в стационарных установках. Рисунок 2,б поясняет устройство стационарной установки для осушки цеолитов. При сушке промасленных цеолитов (ранее находившихся в работе) одновременно с удалением влаги происходит выгорание масла. Воспламенение масла в адсорберах происходит при температуре приблизительно 200°С и может вызвать быстрый подъем температуры до значений, опасных для состояния цеолитов, поэтому перед сушкой промасленных цеолитов необходимо полностью слить из адсорберов остатки масла и продуть их холодным воздухом в течение 10—15 мин. При сушке воздух движется в адсорберах сверху вниз, что способствует лучшему стеканию выделившегося масла и препятствует распространению пламени по адсорберу. Сушка свежих цеолитов происходит в течение 8—9 ч, а промасленных — 10—12 ч.

После сушки адсорберы охлаждают до температуры 100°С и заполняют сухим трансформаторным маслом. Затем прокачиванием через адсорберы сухого трансформаторного масла удаляют образовавшуюся при сушке пыль.

Перед обработкой масла с помощью цеолитовой установки необходимо определить пробивное напряжение исходного масла и оценить степень его увлажнения. После этого следует выбрать требуемую производительность установки, руководствуясь тем, что степень осушки масла зависит от продолжительности контакта его с цеолитом. При сильно обводненном масле скорость подачи масла в адсорберы должна быть не более 1600 л/ч. Не рекомендуется производить обработку масла цеолитовой установкой при наличии в масле видимой влаги и пробивном напряжении менее 20 кВ. В этом случае необходимо предварительно подсушить масло путем отстоя с последующим удалением сконденсировавшейся влаги либо центрифугированием.

Для обеспечения расчетной производительности установки в холодное время года требуется дополнительно прогревать масло до температуры 10—15°С. Температурный режим работы установки поддерживается автоматически с помощью регулятора температуры.

Контроль за работой установки осуществляется по показаниям манометров, установленных на верхнем коллекторе батареи адсорберов и маслоподогревателя, а также по результатам анализа (пробивного напряжения и влагосодержания) проб масла, периодически отбираемых до и после установки.

Давление масла в установке зависит от ее производительности и температуры масла и не должно превышать 90—100 кПа.

Для очистки масла от асфальтосмолистых веществ, мыла и других вредных компонентов, ухудшающих его эксплуатационные свойства, в качестве адсорбентов применяются силикагель и отбеливающие земли. Масло пропускают через силикагель, засыпанный в адсорберы.

В качестве адсорберов обычно используют адсорбные или термосифонные фильтры трансформатора. Перед очисткой масла силикагелем рекомендуется проверять эффективность этой обработки в лабораторных условиях. Из природных адсорбентов применение получили отбеливающие земли. Обработка отбеливающей землей заключается в перемешивании ее в масле. Масса отбеливающей земли должна составлять примерно 10% массы масла. После обработки масло необходимо пропускать через фильтр для очистки от отбеливающей земли.

Обработка масла в вакуумных установках

На рисунке 3 показана принципиальная схема вакуумной установки для обработки трансформаторного масла типа УВМ-1. Установка предназначена для удаления из масла растворенной влаги и газа и обеспечивает осушку масла до остаточного влагосодержания не более 0,001% массы (10 г/т) и дегазацию его до остаточного газосодержания не более 0,1% объема.

1 — фильтр грубой очистки; 2 — входной маслонасос типа Р3; 3 — маслоподогреватель; 4 — прибор контроля температуры; 5 — счетчик объемный; 6 — дегазатор; 7 — корзина с кольцами Рашига; 8 — цеолитовый патрон; 9 — воздушный фильтр; 10 — прибор измерения остаточного давления в дегазаторе; 11 — вакуумный агрегат типа АВМ-150; 12 — основной вакуум-насос типа ВН-1МГ; 13 — вакуум-насос типа ДВН-150; 14 — водяной насос; 15 — адсорбциометр; 16 — маслоуказатель полости второй ступени; 17 — маслонасос типа ЭЦТ 100/8; 18 — фильтр тонкой очистки; 19 — гидрозатвор; 20— прибор контроля давления масла
Рисунок 3 — Принципиальная схема вакуумной установки типа УВМ-1

Основным рабочим элементом установки является двухступенчатый дегазатор. Он представляет собой разделенную на две части (ступени) герметичную металлическую емкость, внутри которой в подвесных корзинах расположены специальные насадки, предназначенные Для увеличения поверхности вакуумирования обрабатываемого масла. В качестве насадки применены цилиндрические кольца Рашига, обладающие большой поверхностью на единицу объема и оказывающие малое сопротивление потоку масла.

Сырое масло подается маслонасосом в установку через сетчатый фильтр грубой очистки, подогревается в нагревателе до температуры 50—60°С, поступает в полость первой ступени дегазатора, распыляется и под действием собственной массы тонким слоем стекает вниз по поверхности колец Рашига. Одновременно надмасляное пространство полости первой ступени вакуумируется вакуум-насосом типа ВН-1МГ агрегата типа АВМ-150, обеспечивая при этом поддержание остаточного давления в полости в пределах от 277 до 650 Па. Откачка выделяющихся паров влаги и газа осуществляется через установленные в вакуумпроводе цеолитовый патрон и воздушный фильтр. Цеолитовый патрон предназначен для поглощения водяных паров парогазовой смеси и рассчитан для осушки 100 т трансформаторного масла. После этого требуется сушка цеолита в патроне. Воздушный фильтр служит для защиты вакуум-насоса от цеолитовой пыли, образующейся при сушке цеолитов.

Читайте также:  Установка mingw для codeblocks

В первой ступени дегазатора происходит удаление из масла основного количества водяных паров и газа. Из полости первой ступени дегазатора масло самотеком поступает в полость второй ступени, где происходят его окончательная осушка и дегазация при остаточном давлении в надмасляном пространстве полости 67—133 Па. Необходимое разрежение в полости второй ступени осуществляется вакуум-насосом типа ДВН-150, последовательно соединенным с основным вакуум-насосом установки. Полости дегазатора соединены между собой через гидравлический затвор.

Из полости второй ступени обработанное масло подается электронасосом через фильтр тонкой очистки в трансформатор или емкость чистого масла.

Установка оборудована приборами контроля давления в маслоподогревателе, остаточного давления в дегазаторе, температуры нагрева и количества проходящего масла и газосодержания выходящего масла.

Электрическая схема управления работой установки УВМ-1 обеспечивает автоматическое поддержание требуемой температуры нагрева масла. Схема предусматривает автоматическое отключение маслоподогревателя при прекращении подачи масла в установку, а также отключение подогревателя цеолитового патрона при отсутствии вакуума в системе, световую сигнализацию для контроля за работой установки в рабочем режиме и при наладке.

Составные части установки, включая шкаф управления, смонтированы на раме профильной конструкции.

Технические данные установки типа УВМ-1 приведены в таблице 4.

Таблица 4 — Технические данные установки типа УВМ-1

Степень осушки масла по остаточному влагосодержанию, % (по массе) масла, не более

Степень дегазации масла по остаточному газосодержанию, % (по объему), не более

источник

Установка для обработки трансформаторного масла

Зачем нужна установка для обработки трансформаторного масла? Давайте более подробно разберемся в данной статье. Но обо всем по порядку.

Поскольку во многих случаях трансформаторное масло содержит твердые частицы (окалины металла, волокна целлюлозы и т.п.), воду и растворенные газы, необходимо использовать дополнительную обработку. Она предусматривает удаление перечисленных примесей с помощью специальных методов.

Центрифуга

На практике для того, чтобы избавиться от эмульсированной влаги и крупных твердых частиц часто применяются специальные центрифуги, производительность которых может достигать 10000 л/час. После обработки на таком оборудовании масло может использоваться в трансформаторах напряжением до 35 кВ включительно.

Дегазация

Удаление растворенной влаги, газов и легких примесей по типу целлюлозных волокон осуществляется за счет вакуумных дегазационных установок высокой производительности. Эффективностью также отличается осушка масел высушенными до остаточной влажности 0,5% цеолитами марок NaA и CaA. С их помощью можно добиться остаточного влагосодержания в масле не более 10-15 г/т.

Фильтрация

Механические примеси удаляются посредством фильтрации через пористые перегородки. Конечная эффективность такой очистки определяется в основном размером пор фильтрующего материала.

Также известны магнитные фильтры, с помощью которых из трансформаторных масел удаляются частицы измельченных металлов.

Большинство из перечисленных подходов не может использоваться в качестве самостоятельного способа обработки трансформаторного масла. Конечно, все зависит от типа и степени загрязнения, но на практике не встречаются масла, загрязненные только частичками целлюлозы, только частичками металлов, содержащие только воду или газы. Поэтому для достижения необходимой эффективности сначала используют несколько промежуточных методов, а затем – основной. Хотя степень очистки после таких операций и удовлетворяет требованиям, они достаточно длительны, энергозатратны и сложны в реализации.

Это привело к тому, что в последние годы на первый план вышли мобильные установки обработки трансформаторных масел.

Оборудование для обработки трансформаторного масла

Именно такое оборудование разрабатывает и производит компания GlobeCore. Мобильные станции предназначены для дегазации и очистки трансформаторных масел от механических примесей до степени, отвечающей самым высоким требованиям качества.

Гораздо удобнее и дешевле содержать собственную мобильную установку обработки трансформаторных масел от GlobeCore, которая позволяет осуществлять технологические операции непосредственно на территории электроэнергетического предприятия. Это обойдется намного дешевле, чем доставка и обработка трансформаторного масла на специализированных заводах.

источник