Меню Рубрики

Установки для определения теплового потока

Установки для определения теплового потока

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

Buildings and structures. Method of measuring density of heat flows passing through enclosure structures

Постановлением Государственного комитета СССР по делам строительства от 14 июля 1982 г. N 182 срок введения установлен с 01.01.83

Настоящий стандарт устанавливает единый метод определения плотности тепловых потоков, проходящих через однослойные и многослойные ограждающие конструкции жилых, общественных, производственных и сельскохозяйственных зданий и сооружений при экспериментальном исследовании и в условиях их эксплуатации.

Измерения плотности тепловых потоков проводят при температуре окружающего воздуха от 243 до 323 К (от минус 30 до плюс 50 °С) и относительной влажности воздуха до 85%.

Измерения плотности тепловых потоков позволяют количественно оценить теплотехнические качества ограждающих конструкций зданий и сооружений и установить реальные расходы тепла через наружные ограждающие конструкции.

Стандарт не распространяется на светопрозрачные ограждающие конструкции.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Метод измерения плотности теплового потока основан на измерении перепада температуры на «вспомогательной стенке» (пластинке), устанавливаемой на ограждающей конструкции здания. Этот температурный перепад, пропорциональный в направлении теплового потока его плотности, преобразуется в э.д.с. батареей термопар, расположенных во «вспомогательной стенке» параллельно по тепловому потоку и соединенных последовательно по генерируемому сигналу. «Вспомогательная стенка» и батарея термопар образуют преобразователь теплового потока

1.2. Плотность теплового потока отсчитывается по шкале специализированного прибора, в состав которого входит преобразователь теплового потока, или рассчитывается по результатам измерения э.д.с. на предварительно отградуированных преобразователях теплового потока.

Схема измерения плотности теплового потока приведена на чертеже.

Схема измерения плотности теплового потока

1 — ограждающая конструкция; 2 — преобразователь теплового потока; 3 — измеритель э.д.с.; , — температура внутреннего и наружного воздуха; , , — температура наружной, внутренней поверхностей ограждающей конструкции вблизи и под преобразователем соответственно; , — термическое сопротивление ограждающей конструкции и преобразователя теплового потока; , — плотность теплового потока до и после закрепления преобразователя.

2. АППАРАТУРА

2.1. Для измерения плотности тепловых потоков применяют прибор ИТП-11 (допускается применение предшествующей модели прибора ИТП-7) по техническим условиям.

Технические характеристики прибора ИТП-11 приведены в справочном приложении 1.

2.2. При теплотехнических испытаниях ограждающих конструкций допускается проводить измерения плотности тепловых потоков при помощи отдельно изготовленных и отградуированных преобразователей теплового потока с термическим сопротивлением до 0,025-0,06 (м · )/Вт и приборов, измеряющих э.д.с., генерируемую преобразователями.

Допускается применение преобразователя, используемого в установке для определения теплопроводности по ГОСТ 7076-78*.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 7076-99, здесь и далее по тексту. — Примечание изготовителя базы данных.

2.3. Преобразователи теплового потока по п.2.2 должны удовлетворять следующим основным требованиям:

материалы для «вспомогательной стенки» (пластинки) должны сохранять свои физико-механические свойства при температуре окружающего воздуха от 243 до 323 К (от минус 30 до плюс 50 °С);

материалы не должны смачиваться и увлажняться водой в жидкой и парообразной фазах;

отношение диаметра преобразователя к его толщине должно быть не менее 10;

преобразователи должны иметь охранную зону, расположенную вокруг батареи термопар, линейный размер которой должен составлять не менее 30% радиуса или половины линейного размера преобразователя;

каждый изготовленный преобразователь теплового потока должен быть отградуирован в организациях, которые в установленном порядке получили право на выпуск этих преобразователей;

в указанных выше условиях внешней среды градуировочные характеристики преобразователя должны сохраняться не менее одного года.

2.4. Градуировку преобразователей по п.2.2 допускается проводить на установке для определения теплопроводности по ГОСТ 7076-78, в которой плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонных образцах материалов, аттестованных по ГОСТ 8.140-82* и установленных вместо испытуемых образцов. Метод градуировки преобразователя теплового потока приведен в рекомендуемом приложении 2.
________________
* На территории Российской Федерации документ не действует. Действует ГОСТ 8.140-2009, здесь и далее по тексту. — Примечание изготовителя базы данных.

2.5. Проверка преобразователей производится не реже одного раза в год, как это указано в пп.2.3, 2.4.

3. ПОДГОТОВКА К ИЗМЕРЕНИЮ

3.1. Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерений плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности проведения их с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин их показания должны быть в пределах погрешности измерений приборов.

3.2. Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

3.3. Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

3.4. Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для исключения их на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

3.6. Отсчетное устройство располагают на расстоянии 5-8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

3.7. При использовании приборов для измерения э.д.с., имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователя теплового потока производят при помощи удлинительных проводов.

При проведении измерений прибором ИТП-1 преобразователь теплового потока и измерительное устройство располагают в одном помещении независимо от температуры воздуха в помещении.

3.8. Аппаратуру по п.3.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

4.1. Измерение плотности теплового потока проводят:

при использовании прибора ИТП-11 — после восстановления условий теплообмена в помещении вблизи контрольных участков ограждающих конструкций, искаженных при выполнении подготовительных операций, и после восстановления непосредственно на исследуемом участке прежнего режима теплообмена, нарушенного при креплении преобразователя;

Читайте также:  Установка коленвала мтз 80 по меткам

при теплотехнических испытаниях с использованием преобразователей теплового потока по п.2.2 — после наступления нового установившегося режима теплообмена под преобразователем.

После выполнения подготовительных операций по пп.3.2-3.5 при использовании прибора ИТП-11 режим теплообмена на участке измерения восстанавливается ориентировочно через 5-10 мин, при использовании преобразователей теплового потока по п.2.2 — через 2-6 ч.

Показателем завершения переходного режима теплообмена и возможности проведения измерений плотности теплового потока может считаться повторяемость результатов измерения плотности тепловых потоков в пределах установленной погрешности измерения.

4.2. При измерении теплового потока в ограждающей конструкции с термическим сопротивлением менее 0,6 (м · )/Вт одновременно измеряют с помощью термопар температуру ее поверхности на расстоянии 100 мм от преобразователя , под ним и температуру внутреннего и наружного воздуха на расстоянии 100 мм от стены.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

где — градуировочный коэффициент преобразователя при температуре испытаний, Вт/(м ·мВ); за среднюю температуру испытаний принимают температуру поверхности ограждающей конструкции под преобразователем;

— значение э.д.с., мВ.

5.3. Определение градуировочного коэффициента преобразователя с учетом температуры испытаний производят по рекомендуемому приложению 2.

5.4. Значение плотности теплового потока , Вт/м , при измерениях по п.4.3 вычисляют по формуле

где — температура наружного воздуха напротив преобразователя, К (°С);

и — температура поверхности на участке измерения вблизи преобразователя и под преобразователем соответственно, К (°С).

5.5. Результаты измерений записывают по форме, приведенной в рекомендуемом приложении 3.

5.6. За результат определения плотности теплового потока принимают среднее арифметическое значение результатов пяти измерений при одном положении преобразователя на ограждающей конструкции.

ПРИЛОЖЕНИЕ 1 (справочное). ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРА ИТП-11

Прибор ИТП-11 представляет собой совокупность преобразователя теплового потока в электрический сигнал постоянного тока с измерительным устройством, шкала которого проградуирована в единицах плотности теплового потока.

3. Основная погрешность прибора в процентах при температуре воздуха 20 °С.

где — значение предела измерения;

— текущее значение измеряемой плотности теплового потока.

4. Дополнительная погрешность от изменения температуры воздуха, окружающего измерительное устройство, не превышает 1% на каждые 10 К (°С) изменения температуры в диапазоне от 273 до 323 К (от 0 до 50 °С).

Дополнительная погрешность от изменения температуры преобразователя теплового потока не превышает 0,83% на 10 К (°С) изменения температуры в диапазоне от 273 до 243 К (от 0 до минус 30 °С).

6. Время установления показаний — не более 3,5 мин.

7. Габаритные размеры футляра — 290х175х100 мм.

8. Габаритные размеры преобразователя теплового потока: диаметр 27 мм, толщина 1,85 мм.

9. Габаритные размеры измерительного устройства — 215х115х90 мм.

10. Длина соединительного электрического провода — 7 м.

11. Масса прибора без футляра — не более 2,5 кг.

12. Источник питания — 3 элемента «316».

ПРИЛОЖЕНИЕ 2 (рекомендуемое). МЕТОД ГРАДУИРОВКИ ПРЕОБРАЗОВАТЕЛЯ ТЕПЛОВОГО ПОТОКА

ПРИЛОЖЕНИЕ 2
Рекомендуемое

где — значение плотности теплового потока в опыте, Вт/м ;

— вычисленное значение э.д.с., мВ.

Плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонном образце по формуле

где — теплопроводность материала эталона, Вт/(м·К);

, — температура верхней и нижней поверхностей эталона соответственно, К (°С);

— толщина эталона, м.

Среднюю температуру в опытах при градуировке преобразователя рекомендуется выбирать в интервале от 243 до 323 К (от минус 30 до плюс 50 °С) и выдерживать ее с отклонением не более ±2 К (°C).

За результат определения коэффициента преобразователя принимают среднее арифметическое значение величин, вычисленных по результатам измерений не менее чем 10 опытов. Число значащих цифр в значении градуировочного коэффициента преобразователя берется в соответствии с погрешностью измерения.

Температурный коэффициент преобразователя , К (°С ), находят по результатам измерений э.д.с. в градуировочных опытах при различных средних температурах преобразователя по соотношению

где , — средние температуры преобразователя в двух опытах, К (°С);

, — градуировочные коэффициенты преобразователя при средней температуре соответственно и , Вт/(м ·мВ).

Различие между средними температурами и должно быть не менее чем 40 К (°C).

За результат определения температурного коэффициента преобразователя принимают среднее арифметическое значение плотности, вычисленное по результатам не менее чем 10 опытов с различной средней температурой преобразователя.

Значение градуировочного коэффициента преобразователя теплового потока при температуре испытаний , Вт/(м ·мВ), находят по следующей формуле

где — градуировочный коэффициент преобразователя, найденный при температуре градуировки, Вт/(м ·мВ);

— температурный коэффициент изменения градуировочного коэффициента преобразователя, К (°C );

— разность между температурами преобразователя при измерении и при градуировке, К (°С).

ПРИЛОЖЕНИЕ 3 (рекомендуемое). ФОРМА ЗАПИСИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ ТЕПЛОВЫХ ПОТОКОВ, ПРОХОДЯЩИХ ЧЕРЕЗ ОГРАЖДАЮЩУЮ КОНСТРУКЦИЮ

ПРИЛОЖЕНИЕ 3
Рекомендуемое

Наименование объекта, на котором проводят измерения

Тип и номер преобразователя теплового потока

источник

Установки для определения теплового потока

Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

Buildings and structures. Method of measuring density of heat flows passing through enclosing structures

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Научно- исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН) при участии ООО «СКБ Стройприбор»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2014 г. N 70-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 октября 2014 г. N 1375-ст межгосударственный стандарт ГОСТ 25380-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

5 ВЗАМЕН ГОСТ 25380-82

(Поправка. ИУС N 7-2015).

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2015 год

Поправка внесена изготовителем базы данных

Введение

Создание стандарта на метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции, базируется на требованиях Федерального закона N 384-ФЗ от 30 декабря 2009 г. N 384-ФЗ* «Технический регламент о безопасности зданий и сооружений», согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой — не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий производственно-технологических процессов.
_______________
* Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.

Читайте также:  Установка принтера с правами пользователя

Настоящий стандарт разработан с целью установления единого метода измерения в лабораторных и натурных условиях плотности тепловых потоков, проходящих через ограждения отапливаемых зданий и сооружений, позволяющего количественно оценить теплотехнические качества зданий и сооружений и соответствие их ограждающих конструкций нормативным требованиям, указанным в действующих нормативных документах, определить реальные потери тепла через наружные ограждающие конструкции, проверить проектные конструктивные решения и их реализацию в построенных зданиях и сооружениях.

Стандарт является одним из базовых стандартов, обеспечивающих параметрами энергетический паспорт и энергетический аудит эксплуатируемых зданий и сооружений.

1 Область применения

Настоящий стандарт устанавливает единый метод измерения плотности тепловых потоков, проходящих через однослойные и многослойные ограждающие конструкции жилых, общественных, производственных и сельскохозяйственных зданий и сооружений при экспериментальном исследовании и в условиях их эксплуатации.

Стандарт распространяется на ограждающие конструкции отапливаемых зданий, испытываемые в условиях климатических воздействий в климатических камерах и при натурных теплотехнических исследованиях в условиях эксплуатации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.140-2009 Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерения теплопроводности твердых тел от 0,1 до 5 Вт/(м·К) в диапазоне температур от 90 до 500 К и от 5 до 20 Вт/(м·К) в диапазоне температур от 300 до 1100 К

ГОСТ 6651-2009 Термопреобразователи сопротивления. Общие технические требования и методы испытаний

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9245-79 Потенциометры постоянного тока измерительные. Общие технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 тепловой поток , Вт : Количество теплоты, проходящее через конструкцию или среду в единицу времени.

3.2 плотность теплового потока (поверхностная) , Вт/м : Величина теплового потока, проходящего через единицу площади поверхности конструкции.

3.3 сопротивление теплопередаче ограждающей конструкции , м ·°С/Вт : Сумма сопротивления тепловосприятию , термических сопротивлений слоев , сопротивления теплоотдаче ограждающей конструкции.

4 Основные нормативные положения

4.1.1 Метод измерения плотности теплового потока основан на измерении перепада температуры на «дополнительной стенке» (пластинке), устанавливаемой на ограждающей конструкции здания. Этот температурный перепад, пропорциональный в направлении теплового потока его плотности, преобразуется в термоЭДС (термоэлектродвижущую силу) батареей термопар, расположенных в «дополнительной стенке» параллельно по тепловому потоку и соединенных последовательно по генерируемому сигналу. «Дополнительная стенка» (пластинка) и батарея термопар образуют преобразователь теплового потока.

где — плотность теплового потока, Вт/м ;

— коэффициент преобразования, Вт/м ·мВ;

— величина термоэлектрического сигнала, мВ.

Схема измерения плотности теплового потока приведена на рисунке 1.

Рисунок 1 — Схема измерения плотности теплового потока

1 — измерительный прибор (потенциометр постоянного тока по ГОСТ 9245);

2 — подсоединение измерительного прибора к преобразователю теплового потока;

Рисунок 1 — Схема измерения плотности теплового потока

4.2.1 Для измерения плотности тепловых потоков применяют прибор ИТП-МГ 4.03 «Поток» [1]*.
________________
* См. раздел Библиография. — Примечание изготовителя базы данных.

Технические характеристики прибора ИТП-МГ 4.03 «Поток» приведены в приложении А.

4.2.3 Преобразователи теплового потока по 4.2.2 должны удовлетворять следующим основным требованиям:

материалы для «дополнительной стенки» (пластинки) должны сохранять свои физико-механические свойства при температуре окружающего воздуха от 243 до 343 К (от минус 30°С до плюс 70°С);

материалы не должны смачиваться и увлажняться водой в жидкой и парообразной фазах; отношение диаметра датчика к его толщине должно быть не менее 10;

преобразователи должны иметь охранную зону, расположенную вокруг батареи термопар, линейный размер которой должен составлять не менее 30% радиуса или половины линейного размера преобразователя;

преобразователь теплового потока должен быть оттарирован в организациях, которые в установленном порядке получили право на выпуск этих преобразователей;

в указанных выше условиях внешней среды тарировочные характеристики преобразователя должны сохраняться не менее одного года.

4.2.4 Тарировку преобразователей теплового потока по 4.2.2 допускается проводить на установке для определения теплопроводности по ГОСТ 7076, в которой плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонных образцах материалов, аттестованных по ГОСТ 8.140 и установленных вместо испытуемых образцов. Метод тарировки преобразователя теплового потока приведен в приложении Б.

4.2.5 Проверка преобразователя производится не реже одного раза в год, как это указано в 4.2.3, 4.2.4.

4.3 Подготовка к измерению

4.3.1 Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерения плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности их проведения с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин их показания должны быть в пределах погрешности измерений приборов.

4.3.2 Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

4.3.3 Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

4.3.4 Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для их исключения на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Читайте также:  Установка і монтаж унітаза

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

4.3.6 Отсчетное устройство располагают на расстоянии от 5 до 8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

4.3.7 При использовании приборов для измерения термоЭДС, имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователей теплового потока производят при помощи удлинительных проводов.

При проведении измерения прибором ИТП-МГ 4.03 «Поток» преобразователи теплового потока и измерительное устройство располагают в одном помещении независимо от температуры воздуха в помещении.

4.3.8 Аппаратуру по 4.3.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

4.4.1 Измерение плотности теплового потока проводят:

при использовании прибора ИТП-МГ 4.03 «Поток» после восстановления условий теплообмена в помещении вблизи контрольных участков ограждающих конструкций, искаженных при выполнении подготовительных операций, и после восстановления непосредственно на исследуемом участке прежнего режима теплообмена, нарушенного при креплении преобразователей;

при теплотехнических испытаниях с использованием преобразователей теплового потока по 4.2.2 — после наступления нового установившегося теплообмена под преобразователем.

После выполнения подготовительных операций по 4.3.2-4.3.5 при использовании прибора ИТП-МГ 4.03 «Поток» режим теплообмена на участке измерения восстанавливается ориентировочно через 5-10 мин, при использовании преобразователей теплового потока по 4.2.2 — через 2-6 ч.

Показателем завершения переходного режима теплообмена и возможности проведения измерений плотности теплового потока может считаться повторяемость результатов измерения плотности тепловых потоков в пределах установленной погрешности измерения.

4.4.2 При измерении теплового потока в ограждающей конструкции с термическим сопротивлением менее 0,6 (м ·°С)/Вт одновременно измеряют с помощью термопар температуру ее поверхности на расстоянии 100 мм от преобразователя , под ним и температуру внутреннего и наружного воздуха на расстоянии 100 мм от стены.

4.5 Обработка результатов измерений

4.5.1 При использовании приборов ИТП-МГ 4.03 «Поток» значение плотности теплового потока (Вт/м ) фиксируется на экране дисплея электронного блока прибора и используется для теплотехнических расчетов или заносится в архив измеренных значений для последующего использования в аналитических исследованиях.

4.5.3 Определение коэффициента преобразования с учетом температуры испытаний производят по приложению Б.

4.5.4 Значение плотности теплового потока , Вт/м , при измерении по 4.2.2 вычисляют по формуле

где — температура наружного воздуха напротив преобразователя, °С;

и — температура поверхности на участке измерения возле преобразователя теплового потока и под ним соответственно, °С.

4.5.5 Результаты измерения по 4.5.2 записывают по форме, приведенной в приложении В.

4.5.6 За результат измерения плотности теплового потока принимают среднее арифметическое значение результатов пяти измерений при одном положении преобразователя теплового потока на ограждающей конструкции.

Приложение А (справочное). Технические характеристики прибора ИТП-МГ 4.03 «Поток»

Конструктивно измеритель плотности теплового потока и температуры ИТП-МГ 4.03 «Поток» выполнен в виде электронного блока и соединенных с ним посредством кабелей модулей, к каждому из которых, в свою очередь, подсоединены посредством кабелей 10 датчиков теплового потока и/или температуры (см. рисунок А.1).

Принцип действия, положенный в основу измерителя, заключается в измерении термоЭДС контактных термоэлектрических преобразователей теплового потока и сопротивления датчиков температуры.

Преобразователь теплового потока представляет собой гальваническую медьконстантановую термобатарею из нескольких сот последовательно соединенных термопар, сложенных бифилярно в спираль, залитую эпоксидным компаундом с различными добавками. Преобразователь теплового потока имеет два вывода (по одному от каждого конца чувствительного элемента).

Работа преобразователя основана на принципах «дополнительной стенки» (пластинки). Преобразователь закрепляется на теплообменной поверхности исследуемого объекта, образуя дополнительную стенку. Тепловой поток, проходящий через преобразователь, создает в нем градиент температур и соответствующий термоэлектрический сигнал.

В качестве выносных датчиков температуры в измерителе применяются платиновые преобразователи сопротивления по ГОСТ 6651, обеспечивающие измерение поверхностных температур путем их крепления на исследуемые поверхности, а также температур воздуха и сыпучих сред методом погружения.

2. Пределы допускаемой основной абсолютной погрешности при измерении:

— плотности теплового потока: ±6%;

— температуры: ±0,2°С.

3. Пределы допускаемой дополнительной относительной погрешности при измерении:

— плотности теплового потока, вызванной отклонением температуры преобразователей теплового потока от 20°С: ±0,5%;

— температуры, вызванной отклонением температуры электронного блока и модулей от 20°С: ±0,05°С.

6. Габаритные размеры не более:

— электронного блока 175x90x30 мм;

— модуля 120x75x35 мм;

— датчиков температуры диаметром 12 мм и толщиной 3 мм;

— преобразователей теплового потока (прямоугольных): от пластин 10×10 мм толщиной 1 мм до пластин 100×100 мм толщиной 3 мм;

— преобразователей теплового потока (круглых) от пластин диаметром 18 мм толщиной 0,5 мм до пластин диаметром 100 мм толщиной 3 мм.

7. Масса не более:

— электронного блока 0,25 кг;

— модуля с десятью преобразователями (с кабелем длиной 5 м) 1,2 кг;

— единичного преобразователя температуры (с кабелем длиной 5 м) 0,3 кг;

— единичного преобразователя теплового потока (с кабелем длиной 5 м) 0,3 кг.

Рисунок А.1 — Схема кабельных присоединений преобразователей теплового потока и датчиков температуры измерителя ИТП-МГ 4.03 «Поток»

Рисунок А.1 — Схема кабельных присоединений преобразователей теплового потока и датчиков температуры измерителя ИТП-МГ 4.03 «Поток»

Приложение Б (рекомендуемое). Метод тарировки преобразователя теплового потока

где — значение плотности теплового потока в опыте, Вт/м ;

— вычисленное значение термоЭДС, мВ.

Плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонном образце по формуле

где — теплопроводность материала эталона, Вт/(м·°С);

, — температура верхней и нижней поверхностей эталона, соответственно, °С;

где , — средние температуры преобразователя в двух опытах, °С;

, — коэффициенты преобразования при средней температуре соответственно и , Вт/(м ·мВ).

Различие между средними температурами и должно быть не менее чем 40°С.

За результат определения температурного коэффициента преобразователя принимают среднее арифметическое значение плотности, вычисленное по результатам не менее чем 10 опытов с различной средней температурой преобразователя. Значение коэффициента преобразования преобразователя теплового потока при температуре испытаний , Вт/(м ·мВ), находят по следующей формуле

где — коэффициент преобразования, найденный при температуре тарировки, Вт/(м ·мВ);

— температурный коэффициент изменения тарировочного коэффициента преобразователя теплового потока, °С;

— разность между температурами преобразователя при измерении и при тарировке, °С.

Приложение В (рекомендуемое). Форма записи результатов измерения тепловых потоков, проходящих через ограждающую конструкцию

Наименование объекта, на котором проводят измерения

Тип и номер преобразователя теплового потока

источник