Меню Рубрики

Установки для получения вакуума

Техника получения вакуума

Процессы откачки

Течение газа в вакуумной системе зависит от ряда параметров: температура газа и стенок на концах системы, абсолютного давления, внутреннего трения в газе и взаимодействия газа с поверхностью, а также от формы и размеров рассматриваемой системы. Различают три основных вида течения газа: турбулентное или вихревое, ламинарное или вязкостное и молекулярное или свободномолекулярное. Четкой границы между этими течениями нет – существуют промежуточные области переходных течений.

При вязкостном режиме течения газа средняя длина свободного пробега молекул l много меньше характерного размера емкости (например, для трубопровода таким размером является его диаметр D). При молекулярном и переходном режимах течения газа средняя длина свободного пробега больше характерного размера или сравнима с ним. Области течения дифференцируют числом Кнудсена . Молекулярному течению соответствует , вязкостному .

Газовыделение является одной из важнейших характеристик вакуумной техники. Оно зависит как от самого материала, так и от технологической обработки поверхности. Для большинства параметров скорость газовыделения зависит от температуры поверхности и увеличивается при возрастании температуры, поэтому эффективным приемом снижения газовыделения является высокотемпературный прогрев всех элементов вакуумной системы в течение нескольких часов и непрерывной откачкой.

При разработке вакуумных объемов и трубопроводов необходимо учитывать, что многие материалы при понижении давления начинают довольно интенсивно испаряться сами и выделять абсорбированные газы. Кроме того, происходит диффузия газов, особенно гелия и водорода сквозь материалы. Если для низковакуумных установок эти факторы незначительны, то в высоковакуумных устройствах этим вопросам приходиться уделять самое пристальное внимание. Наиболее распространенные вакуумные материалы: стекло (кварц), нержавеющая сталь, медь, алюминий. Неразъемные соединения элементов вакуумных систем обычно соединяют электродуговой сваркой в среде аргона или пайкой припоями на основе серебра.

Разъемные соединения (фланцы трубопроводов, смотровые окна и т.д.) герметизируются с помошью прокладок. Для низкого и среднего вакуума в качестве прокладок используются специальные сорта резины, полиэтилен, фторопласт и др. В сверхвысоковакуумной конструкции – металлические уплотнения из свинца, индия, алюминия, меди, золота.

Техника получения вакуума

Устройства служащие для создания вакуума называются вакуумными насосами. Промышленные вакуумные насосы работают в области давлений от 105до 10-10Па.

При большом различии в принципах действия и конструкциях, обусловленном многообразием требований к откачному оборудованию, во всех вакуумных насосах для откачки газа используется один из двух способов:

а) перемещение газа за счет приложения к нему механических сил в некотором месте вакуумной системы, откуда газ выталкивается;

б) связывание газа путем сорбции, химических реакций или конденсации обычно в замкнутой вакуумной системе.

По принципу действия промышленные вакуумные насосы, используемые для получения давлений меньше 102Па, разделяют на следующие группы:

1. Насосы объемного действия, в которых перемещение газа осуществляется путем периодического изменения объема рабочей камеры.

2. Эжекторные насосы, в которых происходит турбулентно-вязкостное увлечение газа струей рабочей жидкости или пара.

3. Молекулярные насосы, которые осуществляют откачку путем сообщения молекулам откачиваемого газа дополнительной скорости в определенном направлении. Насосы этой группы могут быть струйными, действие которых основано на сообщении молекулам откачиваемого газа дополнительной скорости непрерывно истекающей струей пара и механический молекулярными, в которых эта скорость сообщается движущимися поверхностями твердого тела.

4. Сорбционные насосы, которые осуществляют откачку газов путем их сорбции на поверхности или в объеме твердых тел. В эту группу входят и адсорбционные насосы, в которых откачка происходит вследствие обратимой физической адсорбции газа при низкой температуре.

5. Криогенные насосы, которые осуществляют откачку путем конденсации откачиваемых газов и паров на поверхностях, охлаждаемых до сверхнизких (криогенных) температур. Разновидностями криогенных насосов являются конденсационные и криосорбционные насосы.

В названиях насосов не всегда отражается принцип действия, но очень часто отмечаются их конструктивное устройство, используемый материал сорбента (геттера), рабочая жидкость и т.п. Необходимо отметить, что к механическим насосам откачивающее действие которых достигается за счет механического движения деталей, принято относить все объемные и турбомолекулярные насосы, хотя они различаются как по принципу действия, так и по области применения.

Для улучшения рабочих характеристик применяют насосы с комбинированным принципом действия. Наиболее часто применяемая комбинация – пароструйный насос с азотной ловушкой. Это связано с тем, что диффузионный насос дает в откачиваемый объем довольно много паров масла, которое является рабочей жидкостью насоса. Для уменьшения обратного потока паров масла на входе диффузионного насоса устанавливается так называемая ловушка, которая в простейшем случае представляет собой жалюзийную конструкцию охлаждаемую жидком азотом. Благодаря конденсации паров масла на азотной ловушке резко уменьшается обратный поток этих паров. Применение азотной ловушки позволяет на порядок улучшить вакуум.

Вакуумные насосы подразделяют на насосы низкого, среднего, высокого и сверхвысокого вакуума.

К низковакуумным относят механические поршневые и двухступенчатые насосы, ротационные пластинчатые, двухроторные и винтовые насосы, насосы с частичным внутренним сжатием и водокольцевые. Давление, достигаемое в них, составляет P ≈1. 0,3 Па.

К средневакуумным относят пластинчато-роторные насосы и насосы с катящимся ротором, сорбционные насосы, давление в которых P ≈ 1 . 10 -3 Па.

К высоковакуумным насосам относят молекулярные и турбомолекулярные, давление в которых P ≈ 10 -4 . 10 -6 Па.

К сверхвысоковакуумным относят магниторазрядные, геттерно-ионные, конденсационные насосы, а также различные их модификации (P ≈ 10 -7 …10 -9 Па).

Устройство и работа механического насоса 2НВР‑5ДМ

Процесс откачки в пластинчато-роторных насосах основан на механическом всасывании и выталкивании газа вследствие периодического изменения объема рабочей камеры, образуемого цилиндром, крышками и движущимися частями насоса – ротором и пластинами. В цилиндре 3 (рис. 1) вращается в направлении, указанном стрелкой, эксцентрично установленный ротор 4. В прорези ротора помещены пластины 5, которые пружинами 6 прижимаются к поверхности цилиндра 3. При вращении ротора пластины скользят по поверхности цилиндра. Полость, образованная цилиндром, ротором и торцовыми крышками, делится пластиной на полости А и В. При вращении ротора объем полости А периодически увеличивается и в нее поступает газ из откачиваемой системы. Объем полости В периодически уменьшается, в ней происходит сжатие газа, сжатый газ выбрасывается через клапан 1.

Выход первой ступени соединен со входом второй ступени. Сжимаемый газ последовательно проходит обе ступени и выбрасывается через клапан второй ступени. При повышенных входных давлениях сжатый газ дополнительно выбрасывается через клапан первой ступени. Уплотнение между полостями всасывания А и сжатия В достигается при помощи масляной пленки. Выхлопные клапаны работают под слоем масла.

Механические вакуумные насосы с масляным уплотнением используются в качестве насосов предварительного разряжения в высоковакуумных агрегатах и являются неотъемлемой частью любой вакуумной установки.

Форвакуумные насосы позволяют получать давление до 10 -3 мм.рт.ст.

ВНИМАНИЕ!После остановки насоса, если не обеспечено равенство давлений во всасывающем и выхлопном патрубках, масло под действием атмосферного давления может выдавливаться в вакуумную систему. Поэтому для предотвращения всасывания масла, во впускную коммуникацию необходимо напустить воздух.

Диффузионный насос

Диффузионный насосы предназначены для работы в области высокого и сверхвысокого вакуума, т.е. при давлениях 10-3мм.рт.ст. ¸10-7мм.рт.ст. и ниже. Диффузионные насосы применяются совместно с механическими вакуумными насосами с масляным уплотнением. Для запуска и нормальной работы насоса необходимо на его выходе создать предварительное разрежение 10-2мм.рт.ст., что и обеспечивается форвакуумным насосом.

Схема устройства паромасляного диффузионного насоса, наиболее распространенного в настоящее время, показана на рисунке ниже. На дне сосуда, обычно металлического, находится испаряющаяся жидкость. Испарение ее обеспечивается электрическими нагревателями.

Откачиваемый объем присоединяется к верхнему концу насоса, а его выхлопной патрубок – к входной трубе форвакуумного насоса. После того как форвакуумный насос создал нужное давление в насосе и откачиваемом объеме, включается нагреватель и жидкость интенсивно испаряется. Пар поднимается по трубе, помещенной над жидкостью, с большой скоростью выбрасывается из сопла, которым заканчивается труба, а затем конденсируется на стенках и стекает вниз на дно сосуда. Стенки сосуда окружены «рубашкой», внутри которой протекает вода. Нагреватель и холодильник насоса обеспечивают, таким образом, непрерывную циркуляцию пара.

Молекулы откачиваемого газа, поступающие из рабочего объема, увлекаются струей пара, выбрасываемого из сопла, переносятся в нижнею часть насоса, где они попадают в патрубок и удаляются форвакуумными насосом в атмосферу.

Основное значение струи пара сводится к тому, чтобы передать часть своего импульса (кол-во движения) молекулам откачиваемого газа и направить их вниз к выхлопной трубе. Давление газа на выхлопе высоковакуумного насоса равно, очевидно, давлению, создаваемому форвакуумным насосом.

Конструкции паромасляных диффузионных насосов имеют ряд особенностей, связанных с использованием в качестве рабочей жидкости масла. Это прежде всего устройства обеспечивающие фракционирование (т.е. разделение на фракции) неоднородных масел, причем тяжелые фракции (с низким давлением насыщающего пара направляются в сопло первой (высоковакуумной) ступени, им обеспечивается низкое предельное остаточное давление и высокое быстродействие насоса в целом, а легкие фракции (с высоким давлением насыщающего пара) направляются в сопло последней ступени, обеспечивая высокое выпускное давление.

Фракционирование масла, стекающего в кипятильник по стенкам корпуса, осуществляется с помощью лабиринтных колец, удлиняющих путь масла до центральной зоны. Легкие фракции успевают испариться на переферии, а более тяжелые в центре, где они испаряются в сопло первой ступени. Предельное остаточное давление пароструйного диффузионного насоса в значительной мере определяется качеством фракционирования и содержанием газа в масле.

При рабочих давления диффузионных насосов, длина свободного пробега молекул откачиваемого газа практически всегда больше диаметра впускного отверстия насоса. При тепловом движении молекулы газа направляются к паровой струе. Механизм удаления газа в диффузионных насосах обусловлен диффузионными процессами. Под действием разности концентраций газа над паровой струей и в струе (концентрация газа в струе вблизи сопла пренебрежительно мала) происходит диффузия газа в струю. Попав в струю молекулы газа получают импульсы от молекул пара в направлении парового потока и уносятся вместе со струей к охлаждаемой стенке корпуса насоса, при этом пар конденсируется, а газ, сжатый в струе до выпускного давления ступени перетекает вдоль стенки в пространство на следующей ступенью насоса. Наряду с прямой диффузией газа происходит и обратная диффузия, однако при оптимальных режимах работы она несоизмеримо мала, хотя в некоторых случаях, например, при откачке легких газов существенно влияет на характеристики насоса.

Читайте также:  Установка редуктора на кузов

Внимание!При работе с диффузионным насосом следует помнить, что впуск атмосферного давления в горячий насос приведет к окислению и разложению масла на более легкие фракции, что выведет насос из строя.

Типичная быстрота действия Snдиффузионного насоса составляет 102–104л/сек.

Турбомолекулярный насос

Турбомолекулярные вакуумные насосы предназначены для работы в области высокого и сверхвысокого вакуума (от 10 -2 до 10 -8 Па). По сравнению с молекулярными насосами малых зазоров, допускающими прогрев области впускного патрубка до 150 °С, они более надежны в эксплуатации и, главное, имеют значительно более высокую быстроту откачки.

При достижении остаточного давления во впускном патрубке турбомолекулярного насоса не содержится паров масла. В противоположность пароструйным насосам турбомолекулярные насосы начинают работать сразу же после пуска и не ухудшают своих характеристик от прорывов атмосферного воздуха. Большая быстрота безмасляной откачки в широком диапазоне давлений, отсутствие ловушек и затворов – важные преимущества турбомолекулярных насосов по сравнению с паромасляными.

В корпусе 1, с закрепленными в нем дисками 2, вращается ротор 3 с дисками. В дисках имеются косые прорези, причем прорези в роторных дисках расположены зеркально по отношению к прорезям в дисках корпуса. При вращении ротора откачка происходит за счет преимущественного отражения молекул от середины ротора к краям. Толщина дисков в описываемом насосе составляет несколько миллиметров, расстояние между дисками 1 мм. Радиальные зазоры также могут составлять около 1 мм, поскольку обратное протекание газа через такие зазоры при низких давлениях значительно меньше достигаемой быстроты откачки. Диски имеют большое число параллельно работающих прорезей, благодаря чему достигается большая быстрота откачки — 250 л/с.

Конденсационные насосы

Конденсационные, или криогенные, насосы используются в качестве последующих ступеней в сверхвысоковакуумных установках и обладают большой скоростью откачки (до 1 000 000) л/с. при давлении 1·10 -8 …1·10 -9 Па. Причем, криопанели (охлаждаемые поверхности криогенных насосов) могут быть расположены непосредственно внутри вакуумной камеры. В идеальном случае температура их должна быть достаточно низкой, чтобы вымораживать почти все газы и пары до пренебрежительно низкого равновесного давления. Ко всей поверхности таких панелей должен быть обеспечен свободный доступ откачиваемого газа, т. е. быстрота откачки должна ограничиваться лишь площадью криогенной поверхности и коэффициентом прилипания падающих на нее молекул. На практике охлаждение поверхностей до низких температур является дорогостоящим делом, причем стоимость увеличивается при понижении температуры криопанелей при той же газовой нагрузке. По этой причине криопанели окружаются сложными радиационными экранами, чтобы преграждать путь и предварительно охлаждать большинство молекул газа, диффундирующих в направлении криопанелей и защитить криопанели от теплового излучения.

Очевидно, что криопанели имеют ограниченную емкость и периодически их нужно отогревать, чтобы освободиться от намерзшего газа.

В зависимости от назначения криогенного насоса в качестве охлаждающей жидкости используется жидкий кислород, азот, водород, гелий.

Техника измерения давления разряженных газов (вакууметры)

Само понятие «давление газа» для вакуумной техники утратило свой смысл, так как почти нет таких процессов, которые определялись бы давлением газа, как усилием на единицу поверхности. Гораздо более важными характеристиками газовой среды в вакуумной технике являются плотность r или молекулярная концентрация N1газа. Именно они определяют теплоперенос, сорбционно-десорбционные процессы, воздействие газа на элементы электронных приборов и другие явления, наблюдаемые в вакууме. Приборы для измерения давления газа ниже атмосферного называются вакууметрами. Большинство вакууметров состоит из двух элементов: манометрического преобразователя сигнала давления в электрический сигнал и измерительного блока.

По принципу действия вакууметры можно свести в следующие классы:

Жидкостные, непосредственно измеряющие давление (U-образные вакууметры и их модификации).

Компрессионные, действие которых основано на законах изотермического сжатия идеального газа (вакууметр Мак-Леода).

Деформационные, использующие в качестве чувствительного элемента сильфон, мембрану и т.п., в которых деформация чувствительного элемента служит мерой давления.

Тепловые вакууметры, использующие зависимость теплопроводности газа от давления. Они подразделяются на термопарные и вакууметры сопротивления.

Ионизационные, в которых используется ионизация газа. Они подразделяются в свою очередь на:

а) электроразрядные, принцип действия которых основан на зависимости параметров электрического разряда в разряженном газе от давления;

б) электронные ионизационные, ионизация газов, в которых осуществляется потоком электронов, ускоряемых электрическим полем.

источник

Технический вакуум и способы его получения

Вакуумная электроника: способы получения технического вакуума и свободных носителей заряда в вакууме

Технический вакуум и способы его получения.

Вакуум означает пространство, свободное от вещества. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В технике и прикладной физике под словом вакуум понимается пространство, содержащее газ при давлениях значительно ниже атмосферного. Обычно техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр) говорят о достижении низкого вакуума (при этом в каждом кубическом сантиметре оказывается примерно 10 16 молекул).

В качестве одной из характеристик технического вакуума часто рассматривается соотношение между длиной свободного пробега молекул газа (λ) и характерным размером среды (d). В таком подходе под d понимается расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий ((λ/d) > 1) вакуум.

В другом подходе, при описании параметров различных технических установок и устройств, уровень вакуума определяют по давлению в среде. По этому признаку низкому техническому вакууму обычно соответствуют давления выше 100 Па, среднему — от 100 до 0,1 Па, высокому — от 0,1 до 10 мкПа. Область еще более низких давлений относят к сверхвысокому вакууму. Однако, при определении уровня вакуума в некотором объеме по давлению всегда следует оговаривать расстояния между стенками рассматриваемого пространства. Так например, в вакуумных установках и приборах размером d = 10 см низкому вакууму соответствует область давлений выше 10 2 н/м 2 (1 мм рт. ст.), среднему вакууму — от 10 2 до 10 -1 н/м 2 (от 1 до 10 -3 мм рт. ст. ) и высокому вакууму — ниже 0,1 н/м 2 (10 -8 мм рт. ст. ). Для указанных объемов область давлений ниже 10 -6 н/м 2 (10 -8 мм рт. cm. ) обычно называют сверхвысоким вакуумом. Но, например, в порах или каналах диаметром d = 1 мкм поведение газа соответствует высокому вакууму при давлениях, начиная с 10 3 н/м 2 (десятки мм рт. ст.), поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Наиболее высокая степень вакуума, достигаемая существующими методами, соответствует давлениям 10 -13 —10 -14 н/м 2 (10 -15 —10 -16 мм рт. ст. ). При этом в 1 см 3 объёма остаётся всего несколько десятков молекул. Достигаемая степень разрежения определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём. Поступление может происходить за счёт проникновения газа в вакуумную камеру извне через микроскопические отверстия (течи), а также в результате выделения газа, адсорбированного стенками или растворённого в них.

Свойства газа в условиях низкого вакуума определяются частыми столкновениями молекул газа друг с другом, сопровождающимися обменом энергией между ними. Такой газ обладает внутренним трением (вязкостью). Его течение подчиняется законам аэродинамики. Явления переноса (электропроводность, теплопроводность, внутреннее трение, диффузия) в условиях низкого вакуума характеризуются плавным изменением или постоянством градиента переносимой величины. Например, температура газа в пространстве между «горячей» и «холодной» стенками в низком вакууме изменяется постепенно. При этом переносимое количество тепла или вещества не зависит от давления. Если газ находится в двух сообщающихся сосудах при различных температурах, то при равновесии давления в этих сосудах равны. При прохождении тока в низком вакууме определяющую роль играет ионизация молекул газа.

В вакуумной электронике используют технический вакуум с очень низким остаточным давлением 10 -11 —10 -12 н/м 2 . Такой вакуум называют сверхвысоким.

Особенности сверхвысокого вакуума связаны уже не с соударениями частиц, а с другими процессами на поверхностях твёрдых тел, находящихся в вакууме. Поверхность любого тела всегда покрыта тонким слоем газа, который может быть удалён нагревом. После этого поверхностные свойства тел резко изменяются: сильно увеличивается коэффициент трения, в ряде случаев становится возможной сварка материалов даже при комнатной температуре и т.д. Слой газа, удалённый с поверхности твердого тела посредством его нагрева, постепенно восстанавливается в результате адсорбции молекул газа, бомбардирующих поверхность, что сопровождается изменением её поверхностных свойств. Для изменения этих свойств достаточно образования мономолекулярного слоя газа. Время t, необходимое для образования такого слоя в вакууме, обратно пропорционально давлению. При давлении p = 10 -4 н/м 2 (10 -6 мм рт. ст .) время t равно 1 сек, при других давлениях время t (сек) может оцениваться по формуле: t = 10 -6 * р, где р — давление в мм рт. ст. (или по формуле t = 10 -4 * р), где р — давление в н/м 2 . Эти формулы справедливы, если каждая молекула газа, ударяющаяся о поверхность, остаётся на ней (т.е., при коэффициенте захвата равном единице). В ряде случаев коэффициент захвата меньше 1 и тогда время образования мономолекулярного слоя соответственно увеличивается. При р -6 н/м 2 (10 -8 мм рт. ст. ) образование мономолекулярного слоя газа происходит за время, превышающее несколько мин. Сверхвысоким называют такой вакуум, в котором за время наблюдения не происходит существенного изменения свойств поверхности (первоначально свободной от газа) вследствие её взаимодействия с молекулами газа.

Читайте также:  Установка qts на компьютера

Технический вакуум в приборах вакуумной электроники (радиолампах, магнетронах, электронно-лучевых трубках и т.п.) получают с помощью специальных насосов (вакуумных насосов). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При (λ/d)>> 1 молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10 −5 торр) (10 11 молекул на 1 см³). Сверхвысокий вакуум соответствует давлению 10 −9 торр и ниже. Для сравнения, давление в космосе на несколько порядков ниже давления, которое в технике принято называть сверхвысоким вакуумом. Например, в дальнем же космосе и вовсе может достигать 10 −16 торр и ниже (1 молекула на 1 см³).

Для поглощения газов и создания глубокого вакуума используются геттеры. Более широкий термин «вакуумная техника» включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д.

Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов — это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например, в пористый титан) и криосорбционные насосы (в основном для создания форвакуума).

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое количество носителей тепла (газ фононов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами. Тем не менее, вакуум является лучшим теплоизолятором. Перенос тепловой энергии в нём происходит лишь за счёт теплового излучения. Конвекции и теплопроводности в вакууме нет. Это свойство вакуума используется для теплоизоляции в термосах (сосудах Дьюара), представляющих собой ёмкость с двойными стенками, пространство между которыми эвакуировано.

Вакуум широко применяется в электровакуумных приборах – радиолампах, магнетронах, электронно-лучевых трубках и т.п.

Приборы, используемые для измерения низких давлений, называются вакуумметрами.

Рассмотрим способы получения технического вакуума.

Для достижения вакуума 8 – 10 мм рт. ст. применяют различные типы ротационных или золотниковых масляных насосов. Принципиальная схема такого насоса показана на рис. 1. В цилиндрическом корпусе эксцентрично расположен ротор 2, вращающийся по направлению стрелки. Размер ротора меньше, чем размер внутренней полости корпуса. По его диаметру сделана прорезь, в которую вставлены две металлические пластинки 3, прижимаемые спиральной пружиной к внутренней стенке корпуса и скользящие по ней. По маслопроводу 8 масло (веретенное, марки M) вытекает в зазор 9. Масло, с одной стороны, служит смазкой поверхности скольжения, а с другой — играет важную роль, заполняя вредное пространство над пластинками 5, между корпусом и ротором. При вращении ротора через канал 4 остатки газов всасываются в пространство 6. Захваченный газ сжимается пластинкой 3 и через клапаны 5 и 7 удаляется из системы. Этот цикл повторяется при каждом обороте ротора. Таким образом, создается вакуум, величина которого может достигать порядка 10 -2 – 10 -3 мм . рт. ст.

Работа с насосами описываемого типа требует постоянного наблюдения, так как при внезапной остановке насоса вследствие прекращения подачи электроэнергии, срыва ремня и других причин масло из насоса может переброситься в откачиваемое пространство.

Рис. 1. Схема устройства ротационного (золотникового) вакуумного насоса:

1 – цилиндрический корпус, 2 – ротор, 3 – металлические пластинки, 4 – канал, 5 и 7 – клапаны, 6 – пространство, 8 – маслопровод, 9 – зазор.

Чтобы избежать подобных аварий, между насосом и вакуумной установкой помещают автоматически запирающийся клапан, а между ним и установкой — ловушку для пены, которую нужно ставить ближе к клапану.

На работу масляного насоса в большой степени влияет качество используемого масла: оно не должно содержать даже малолетучих примесей. Кроме того, нередко отсасываемый воздух или другой газ могут содержать пары воды или иных примесей. Водяные пары во время сжатия газа конденсируются еще до достижения атмосферного давления и в результате образуется масляно-водяная эмульсия. Из эмульсии вода снова испаряется. Для предотвращения этого в насосах применяется особое приспособление – «газовый балласт». Конденсация паров воды в отсасываемом воздухе предотвращается или уменьшается, если в пространство во время фазы сжатия вводить атмосферный воздух.

Для достижения глубокого вакуума, например порядка 10 -6 мм рт. ст., используют так называемые диффузионные насосы. Различают два основных типа диффузионных насосов: ртутные и масляные. Они бывают одноступенчатыми и многоступенчатыми, чаще всего двухступенчатыми. Принцип устройства обоих типов практически одинаков.

На рис. 2 показана схема стеклянного диффузионного ртутного насоса. Он состоит из резервуара 1 с ртутью, соединенного с холодильником 2. Ртуть доводят до кипения нагреванием газовой горелкой или электропечью. Пары ртути поднимаются по трубке 3, поступают в холодильник, в котором конденсируются и возвращаются в резервуар / по трубке 4. Принцип действия насоса основан на том, что вследствие частичной конденсации паров ртути внутри холодильника вблизи конца трубки 5 давление паров ртути (или иной жидкости) оказывается пониженным. Поэтому газ, находящийся в трубке 6, диффундирует в область с пониженным давлением и затем трубке 7 уносится к форвакуумной части установки

При сравнительно большом давлении в установке пары ртути, выходящие из трубки 5, сталкиваясь с молекулами газа, находящимися около конца этой трубки, отражаются по всем направлениям. Газ, находящийся в Трубке 6, при этом диффундирует во встречный поток паров ртути, еще не успевшей сконденсироваться. Применять диффузионный ртутный насос в таких случаях не следует.

Рис. 2. Стеклянный ртутный диффузионный насос.

При работе диффузионного насоса необходимо очень внимательно следить за правильным охлаждением конденсационной части. Подавать воду в холодильник следует до начала нагревания печи под резервуаром с ртутью и отключать после прекращения кипения ртути. Однако включать обогрев насоса следует только после того, как форвакуум уже будет создан.

При любом нарушении работы установки следует немедленно выключить нагревание ртутного насоса и до его полного охлаждения ничего не предпринимать для исправления ошибки или аварии. Причинами аварии могут быть: перегрев холодильника в результате остановки или замедления поступления воды, поломка холодильника вследствие усиления тока воды через горячий прибор. Если давление в установке повысится, кипение ртути прекратится, а ее температура начнет подниматься. Авария может произойти и при внезапном вскипании перегретой ртути.

Для получения вакуума порядка 10 -6 мм рт. ст. необходимо установить последовательно два одноступенчатых насоса или один двухступенчатый.

Диффузионное масло нужно время от времени заменять свежим. О пригодности диффузионного масла можно судить по его окраске: сильно окрашенное масло для работы непригодно.

2. Способы получения свободных электронов в вакууме.

В приборах вакуумной электроники свободные электроны в вакуумном пространстве прибора получают в процессе их термоэлектронной эмиссии с поверхностей металлических или полупроводниковых электродов, называемых катодами.

То обстоятельство, что электроны удерживаются внутри твердого тела, указывает на то, что в поверхностном слое тела возникает задерживающее поле, препятствующее электронам выходить из него в окружающий вакуум. Схематическое изображение потенциального барьера на границе твердого тела дано на рис. 3. Чтобы покинуть кристалл, электрон должен совершить работу, равную работе выхода. Различают термодинамическую и внешнюю работы выхода.

Термодинамической работой выхода называют разницу между энергией нулевого уровня вакуума и энергией Ферми твердого тела.

Внешняя работа выхода (или электронное сродство) – это разность между энергией нулевого уровня вакуума и энергией дна зоны проводимости (рис. 3).

Рис. 3. Форма кристаллического потенциала U вдоль линии расположения ионов в кристалле и в приповерхностной области кристалла.

На рис. 3 положения ионов отмечены точками на горизонтальной линии; φ = –U/е – потенциал работы выхода; ЕF – энергия Ферми (отрицательная); ЕC – энергия дна зоны проводимости; WO – термодинамическая работа выхода; Wa – внешняя работа выхода; заштрихованная область условно изображает заполненные электронные состояния

Можно указать две основные причины возникновения потенциального барьера на границе твердого тела и вакуума. Одна из них связана с тем, что электрон, вылетевший из кристалла, индуцирует на его поверхности положительный электрический заряд. Возникает сила притяжения между электроном и поверхностью кристалла, стремящаяся вернуть электрон обратно в кристалл. Другая причина связана с тем, что электроны за счет теплового движения могут пересекать поверхность металла и удаляться от него на небольшие расстояния (порядка атомных). Они образуют над поверхностью отрицательно заряженный слой. На поверхности кристалла в этом случае после выхода электронов формируется положительно заряженный слой ионов. В результате образуется двойной электрический слой. Он не создает поля во внешнем пространстве, зато на преодоление электрического поля внутри самого двойного слоя также требуется произвести работу.

Значение работы выхода для большинства металлов и полупроводников составляет несколько электрон-вольт. Например, для лития работа выхода равна 2,38 эВ, железа – 4,31 эВ, германия – 4,76 эВ, кремния – 4,8 эВ. В значительной степени величина работы выхода определяется кристаллографической ориентацией грани монокристалла, с которой происходит эмиссия электронов. Для (110)-плоскости вольфрама работа выхода составляет 5,3 эВ, для (111) и (100)-плоскостей эти значения равны соответственно 4,4 эВ и 4,6 эВ.

Читайте также:  Установка лампы в бардачке

Рис. 4. Энергетическая диаграмма для электронов металла и для валентного электрона в атоме

Большое влияние на работу выхода оказывают тонкие слои, нанесенные на поверхность кристалла. Атомы или молекулы, осевшие на поверхность кристалла, часто отдают электрон в него или принимают электрон от него и становятся ионами. На рис. 4 показана энергетическая диаграмма металла и изолированного атома для случая, когда термодинамическая работа выхода электрона из металла W больше, чем энергия ионизации Еион осаждающегося на его поверхность атома, В этой ситуации электрону атома энергетически выгодно туннелировать в металл и опуститься в нем к уровню Ферми. Поверхность металла, покрытая такими атомами, заряжается отрицательно и образует с положительными ионами двойной электрический слой, поле которого будет уменьшать работу выхода из металла. В частности, в случае кристалла вольфрама, покрытого монослоем цезия, реализуется ситуация, рассмотренная выше, так как энергия Еион цезия (3,9 эВ) меньше работы выхода вольфрама (4,5 эВ). В экспериментах работа выхода уменьшается более чем в три раза. Противоположная ситуация наблюдается, если вольфрам покрыт атомами кислорода. Поскольку связь валентных электронов в кислороде сильнее, чем в вольфраме, то при адсорбции кислорода на поверхности вольфрама образуется двойной электрический слой, увеличивающий работу выхода из металла. Наиболее часто реализуется случай, когда осевший на поверхность атом не отдает полностью свой электрон металлу или принимает в себя лишний электрон, а деформирует свою электронную оболочку так, что адсорбированные на поверхности атомы поляризуются и становятся электрическими диполями. В зависимости от ориентации диполей работа выхода металла уменьшается или увеличивается.

С поверхности нагретого катода эмиссия электронов становится достаточно интенсивной. Эффект интенсивной эмиссии с нагретой поверхности металла или полупроводника называется термоэлектронной эмиссией. Т.е., явлением термоэлектронной эмиссии называется испускание электронов нагретыми телами (эмиттерами) в вакуум или другую среду.

Рассмотрим, например, процесс термоэлектронной эмиссии с поверхности металлов.

Ход потенциала в металле можно представить себе, как мы уже не раз отмечали, в виде потенциального ящика или потенциальной ямы (см. рис. 5), содержащей в себе электроны. При этом, естественно, может возникнуть вопрос: существуют ли способы, с помощью которых можно было бы извлекать электроны из металла, являющегося практически неисчерпаемым их источником?

Металл можно заставить испускать электроны:

1) в результате нагревания металла до достаточно высокой температуры (так называемая термоэлектронная эмиссия);

2) в результате приложения к металлу достаточно сильного электрического поля (так называемое холодное вырывание, или холодная эмиссия);

3) в результате освещения металла светом достаточно большой частоты (так называемый фотоэлектрический эффект).

Рис. 5. Металл как потенциальная яма (а), функция распределения Ферми (б).

Рассмотрим первый из указанных способов. Среди электронов, наполняющих металл, могут покинуть его, т, е. уйти за его пределы, только те электроны, которые способны преодолеть потенциальный порог высоты Wm, изображенный на рис. 5а. Этот рисунок представляет повторение рис. 2.1 (вместо U стоит W; на рис. 5а изображены уровни энергии, занятые электронами при температуре абсолютного нуля). Очевидно, это могут сделать только те электроны, которые обладают достаточной скоростью в направлении, перпендикулярном поверхности металла. Если выбрать систему координат так, чтобы ось х была перпендикулярна поверхности металла, то будет существовать такая нижняя граница x0 для составляющей скорости x, что только электроны, для которых x > x0, смогут преодолеть потенциальный порог.

Скорость x0 определяется из условия (см. рис. 5а)

.

Из рис. 5б, на котором изображена функция распределения Ферми, видно, что это те электроны, которые принадлежат самому «хвосту» функции распределения Ферми.

Для плотности термоэлектронного тока i, т. е. потока электронов, покидающих единицу поверхности, расчет дает

, (1)

что находится в хорошем согласии с экспериментальными данными. Здесь величина (см. также рис. 5а) называется работой выхода. Это — константа, различная для разных металлов, могущая служить характеристикой металла. Работа выхода представляет собой ту минимальную энергию, которую должен затратить электрон, чтобы выйти из металла при температуре абсолютного нуля.

Согласно формуле (1) зависимость термоэлектронного тока i от температуры Т определяется как экспонентой, так и предэкспоненциальным множителем, которые действуют в одном и том же направлении (увеличение i при увеличении Т). Однако предэкспоненциальный множитель меняется с температурой очень медленно (по сравнению с резкой зависимостью от температуры экспоненциального множителя) и поэтому в первом приближении может считаться постоянным. Тогда

,

. (2)

Если по осям координат откладывать и , то уравнение (2) изобразится прямой, из наклона а которой может быть определена работа выхода (см. рис. 6). Обычно эта величина равна одному или нескольким электрон-вольтам.

Рис. 6. Зависимость термоэлектронного тока от температуры ( ).

Явление испускания электронов при нагревании металла называется эффектом Ричардсона.

По второму способу получения свободных электронов в вакууме металл можно заставить испускать электроны не нагревая его. Для этого достаточно поместить его в сильное внешнее электрическое поле. Представим себе два плоских электрода, расположенных один против другого, причем будем считать, что катодом служит исследуемый нами металл. Электрическое поле, напряженность которого обозначим через Е, направлено перпендикулярно к поверхности металла. На рис. 4.3 изображен жирной кривой ход потенциальной энергии электрона как функции х при наличии поля Е (напомним: ось х направлена перпендикулярно к поверхности металла). Тонкой кривой на рис. 7 изображен ход потенциальной энергии при отсутствии поля (при Е = 0). Мы видим, что наложение поля превращает потенциальный порог на границе металла в потенциальный барьер. При этом возникают два возможных механизма появления электронного эмиссионного тока.

Рис. 7. Ход потенциальной энергии электрона во внешнем

Прежде всего, внешнее поле приводит к понижению работы выхода на величину . Это облегчает термоэлектронную эмиссию, которая чрезвычайно чувствительна к величине (согласно (1) стоит в экспоненте). Таким образом, при наложении внешнего электрического поля термоэлектронная эмиссия делается заметной при более низких температурах, чем при его отсутствии. Если при отсутствии поля в электронной эмиссии могли участвовать только те электроны, для которых W > W1(см. рис. 7; здесь W — по-прежнему, полная энергия электрона), то при наличии поля в игре могут участвовать электроны, для которых W2 9 В/м). В действительности, однако, она наблюдается при более слабых полях, что объясняется неоднородностью поверхности, в отдельных точках которой могут возникать локальные перенапряжённости.

Рассмотрим третий способ извлечения электронов из металла. Предположим, что металл облучается светом определенной частоты. Это значит, что поверхность металла бомбардируется световыми квантами (фотонами), несущими в себе определенный запас энергии. Проникнув внутрь металла, световые кванты передают свою энергию электронам, которые затем могут использовать ее для преодоления потенциального порога и для выхода за пределы металла. Это явление называется внешним фотоэлектрическим эффектом или просто — фотоэффектом. Электроны, выброшенные из металла под действием света, будем называть фотоэлектронами.

Фотоэлектроны, покидающие металл, обладают широким спектром скоростей, т. е. в потоке фотоэлектронов при заданной частоте v падающего света имеются электроны с различными скоростями. Скорость фотоэлектрона при заданной v зависит от того, с какого энергетического уровня внутри металла был снят светом данный электрон. При температуре абсолютного нуля наивысшим энергетическим уровнем, занятым электроном, является уровень Ферми WF (рис. 8).

Все уровни, лежащие выше уровня WF, при Т = пусты, а уровни, лежащие ниже уровня WF, заняты. Скорость фотоэлектрона, снятого с уровня WF, обозначим через F. Очевидно (см. рис. 8),

, (4)

где m — масса электрона, hv — энергия падающего кванта, — работа выхода, с которой мы уже встречались, когда говорили о термоэлектронной эмиссии. Уравнение (4) выражает собой закон сохранения энергии. Частота vкр, для которой энергия падающего кванта hvкр равна работа выхода , называется красной границей фотоэффекта:

. (5)

Рис. 8. Энергетическая схема, иллюстрирующая происхождение быстрых и медленных фотоэлектронов (заштрихована область энергий, занятых электронами).

При Т = скорость F является максимальной. Это есть скорость самого быстрого электрона. В потоке фотоэлектронов имеются и более медленные электроны, снятые с более глубоких уровней (например, с уровня W1 на рис. 8).

При Т > в металле появляются электроны с энергией, большей, чем WF (например, с энергией W2, см. рис. 8), которым для удаления за пределы металла требуется затратить энергию, меньшую, чем работа выхода . Для таких электронов > F. Если при Т = мы имеем резкую красную границу, то при Т > красная граница оказывается в большей или меньшей степени (в зависимости от температуры) размытой.

Заметим, что если поместить металл во внешнее электрическое поле, то у такого металла красная граница фотоэффекта оказывается сдвинутой в красную сторону, т. е. в сторону меньших частот. Это объясняется тем, что электрическое поле снижает потенциальный порог на границе металла, как это видно из рис. 7, и, следовательно, работу выхода , а вместе с тем (как это видно из (5)) и красную границу vкр.

В заключение надо подчеркнуть, что оптика металлов не может быть построена на модели свободных электронов, с которой мы оперировали до сих пор. Можно показать, что свободные электроны, т. е. электроны, наполняющие потенциальный ящик с плоским дном не способны поглощать фотоны. Это, однако, могут делать электроны, находящиеся в периодическом поле. Тем не менее, все наши рассуждения остаются, в силе, поскольку электроны в периодическом поле обладают, подобно свободным электронам, практически сплошным энергетическим спектром, т. е. спектром, состоящим из множества тесно, расположенных, практически сливающихся энергетических уровней.

Не нашли то, что искали? Воспользуйтесь поиском:

источник