Меню Рубрики

Установки для производства нефтяного кокса

Установка замедленного коксования

Назначение

Коксование — процесс переработки жидкого или твёрдого топлива нагреванием без доступа кислорода. При разложении топлива образуется твёрдый продукт —нефтяной или каменноугольный кокс и летучие продукты.

Типы коксования по аппаратурному оформлению:

  1. замедленное коксование в необогреваемых камерах (для получения малозольного кокса)
  2. обогреваемых кубах (для получения электродного и специальных видов кокса)
  3. коксование в «кипящем слое» порошкообразного кокса (так называемый «термоконтактный крекинг»)

Наиболее часто в современной нефтепереработке и нефтехимии применяется технология замедленного коксования.

Процесс замедленного коксования представляет собой процесс термического крекинга для переработки тяжелых фракций нефти в более легкие газообразные и жидкие продукты и твердый (сырой) кокс.

Сырье и продукты

Сырье коксования может представлять собой смесь одного или нескольких видов сырья, таких как вакуумные остатки, атмосферные остатки или смолы. Эта смесь поступает на установку через резервуарный парк или напрямую с других технологических установок.

Установка замедленного коксования предназначена для производства следующей продукции:

  • отходящие газы коксования,
  • пропан-пропилен,
  • бутан-бутилен,
  • нафта коксования,
  • легкий газойль коксования (ЛГК),
  • тяжелый газойль коксования (ТГК),
  • топливный кокс.

Нефтяной кокс привлекает внимание специалистов как перспективное технологическое топливо в производстве вяжущих материалов — цемента, извести и гипса.

Кокс широко используется в качестве исходного сырья в производстве электродов для дуговых электропечей. Его применение в указанном качестве и в других производствах ограничивается содержанием серы.

Нефтяной кокс используется в качестве топлива при сжигании которого на ТЭЦ вырабатывается электроэнергия.

Потребление нефтяного кокса в промышленности

Технологическая схема

Установка состоит из следующих секций:

  • буферная емкость сырья и предварительный подогрев сырья,
  • коксование
  • секция первичного фракционирования
  • секция разделения газов
  • секция аминовой очистки
  • пропарка/продувка коксовой камеры
  • раскоксовывание
  • система выгрузки кокса.

Технологическая схема установки замедленного коксования

Принцип работы

Блок предварительного подогрева

Свежее сырье совместно с рециркулирующими дистиллятами направляется через линию теплообменника предварительного нагрева подачи, чтобы максимизировать рекуперацию тепла из потоков циркулирующих орошений (ЦО) и продуктовых газойлей. Через цепь теплообменников предварительного нагрева сырье обычно нагревается до 280-300 °С. Точная температура на выходе из теплообменника оценивается с помощью пинч-анализа для оптимального проектирования схемы теплообмена. Предварительно нагретый вакуумный остаток направляется в нижнюю часть фракционирующей колонны, которая выполняет роль буферной емкости и обеспечивает равномерную подачу для печных насосов.

Печь

Печь коксования работает на топливном газе. Каждая печь оборудована независимой системой подогрева воздуха (включающей в себя вытяжной вентилятор, нагнетательные вентиляторы, подогреватель пара и подогреватель воздуха) и дымовой трубой, установленной в верхней части каждой печи.

Поток рециркуляции дистиллята способствует испарению в процессе коксования. В печи повышенное испарение также увеличивает скорость в трубах, что, в свою очередь, уменьшает общее время пребывания сырья внутри печи. Цель состоит в том, чтобы уменьшить общее время в печи выше этой температуры, чтобы ограничить отложения кокса внутри труб, тем самым увеличивая длину межремонтного пробега.

Сырье выходит из печи с приблизительной температурой 500 °C и давлением 3,5 кг/см2 (изб.)

Коксовые камеры

Нагретое в печи сырье поступает в коксовые камеры, где происходит его крекинг с образованием кокса и продуктов крекинга. В результате протекания реакций крекинга, циклизации, ароматизации, дегидрирования, поликонденсации и уплотнения образуется сплошной слой кокса. Заполнение каждой коксовой камеры коксом до безопасного эксплуатационного уровня производится в течение 18 часов.

Продукты крекинга выходят из верхней части коксовых камер в виде потока пара с приблизительной температурой 449 °C и давлением 1,05 кг/см 2 (изб.).

Рабочее давление в коксовой камере поддерживается как можно более низким для снижения количества образующегося кокса и увеличения выхода дистиллята. Горячий поток паров из коксовой камеры немедленно охлаждается до температуры 429 °C или менее при теплообмене с ТГК для прекращения реакций крекинга и полимеризации, вследствие чего коксообразование в линии паров с верха коксовой камеры к фракционирующей колонне установки коксования сводится к минимуму.

Фракционирование

Во фракционирующей колонне установки коксования происходит разделение потока паров из коксовой камеры на:

  • жирный газ коксования
  • нафту коксования
  • легкий газойль коксования
  • тяжелый газойль коксования
  • внутренний рецикловый продукт

Колонна разделена на две основные секции тарелкой для отвода ТГК. В верхней части установлены ректификационные тарелки клапанного типа; в нижней части размещены два уровня распылительных распределителей для повышения качества ТГК. Охлажденные пары из коксовой камеры поступают вверх через распределительное устройство паров и через зону распыления, при этом пары охлаждаются при соприкосновении со стекающим вниз жидким ТГК, который распыляется в верхней части зоны распыления.

Тяжелая рецикловая жидкость образуется в нижней части распылительной камеры. После охлаждения этот поток используется в качестве орошения для поддержания температур в кубе колонны ниже температур начала коксования.

Читайте также:  Установка времени на духовом шкафу куперсберг

Пары из верхней части фракционирующей колонны установки коксования охлаждаются и конденсируются в воздушном конденсаторе и концевом холодильнике верхнего продукта фракционирующей колонны. Часть жидких углеводородов из приемника подается на верхнюю тарелку в качестве флегмы. Сконденсированная кислая вода перекачивается насосом на границу технологической установки.

Блок разделения газов

Несконденсированные пары из приемника верхнего продукта направляются на прием газового компрессора и далее на блок разделения.

Секция разделения паров предназначена для разделения паров и жидких верхних продуктов, поступающих из фракционирующей колонны, на осушенный газ коксования, пропан-пропилен, бутан-бутилен и нафту коксования.

После компримирования жирного газа он вместе с нестабильной нафтой поступает на блок абсорбции, где из него удаляются легкие углеводороды С12.

Смесь нафты и СУГ поступает на блок стабилизации, где из нафты выделяются углеводороды С34.

Аминовая очистка

Углеводороды С12 и С34 отдельными потоками отправляются на блок аминовой очистки, где из них в результате процесса абсорбции с помощью МДЭА удаляется H2S.

Очищенный топливный газ С12 частично отправляется в топливную сеть предприятия, а также используется в качестве топлива для печи коксования.

Очищенный СУГ С34 направляется на дальнейшее фракционирование на пропан-пропиленовую и бутан-бутиленовую фракции.

Пропарка/продувка коксовой камеры

Коксование представляет собой полунепрерывный процесс с 18-часовым циклом коксования в коксовых камерах при эксплуатации. Каждая камера должна быть включена в процесс в течение 18 часов для заполнения и исключена из процесса на 18 часов для декоксования. Таким образом, суммарная продолжительность цикла между последовательными подачами нефтепродуктов в камеру составляет 36 часов.

По завершении цикла заполнения одной камеры поток из печи коксования переводится в другую (пустую) камеру посредством входного клапана переключения. Затем в нижнюю часть заполненной коксом камеры в течение 30 минут подается пар, а летучие легкие углеводороды отводятся во фракционирующую колонну установки коксования.

На протяжении следующих 60 минут расход пара увеличивается, а полученные пары (в основном водяной пар) направляются в нижнюю часть колонны продувки.

Раскоксовывание

Кокс удаляется их коксовых камер путем гидравлического декоксования за два этапа. Сначала в слое кокса проделывают отверстие диаметром около 915 мм. На втором этапе кокс разрезается на слои по мере опускания инструмента оператором. Гидравлические режущие инструменты монтируются на конце полой ударной штанги, которая подвешена на поворотном соединении. Ударная штанга вращается посредством электродвигателя. Лебедка на площадке поднимает и опускает ударную штангу в пределах конструкции вышки, построенной над коксовыми камерами.

Вода для резки подается насосом для резки кокса под давлением приблизительно 270 кг/см 2 (изб.). Чтобы избежать частых пусков и остановов насоса, применяется специальный гидравлический байпасный регулирующий клапан.

После удаления кокса обеспечивается повторная установка крышки на неработающую камеру, продувка паром для удаления воздуха и опрессовка паром. После этого в сборник подаются пары из работающей коксовой камеры, которая заполняется в данный момент.

Парожидкостная смесь, образовавшаяся в результате конденсации пара в неработающем сборнике, поступает в колонну продувки. После достаточного прогрева коксовой камеры она готова к работе в целях ее заполнения.

Система выгрузки кокса

Система выгрузки кокса (СВК) предназначена для переработки кокса, образовавшегося в установке замедленного коксования (УЗК) и является надежной и безопасной системой с отсутствием выбросов.

СВК способна дробить кокс и затем направлять его в виде суспензии (смеси частиц раздробленного кокса с водой) из коксовых камер в бункер обезвоживания и затем на участок хранения. Система обеспечивает высокоэффективное отделение кокса от воды и производит чистую воду для повторного использования в процессе декоксования.

СВК состоит из следующих технологических стадий:

  • охлаждение сточной воды из коксовых камер
  • дробление кокса и транспортировка суспензии
  • обезвоживание
  • выгрузка сухого кокса.

Достоинства и недостатки

Недостатки

  • высокая вероятность коксования змеевиков печи и куба фракционирующей колонны
  • сложность очистки сточных вод после гидравлической резки кокса водой
  • возможные проблемы при выгрузке и транспортировке кокса, связанные с большим количеством движущихся механизмов
  • несоответствие кокса заявленным требованиям при смене качества нефтяного сырья, неверного выполнения технологических стадий
  • контакт персонала с сыпучими/пыльными материалами, выбросы в атмосферу.

Достоинства

  • низкие капиталовложения по сравнению с величиной достижения глубины переработки (90-95%) и выхода светлых нефтепродуктов (70-75%)
  • широкая степень изучения и внедрения процесса коксования в мировой нефтепереработке
  • относительная простота технологического процесса
  • отсутствие катализатора для проведения процесса

Материальный баланс

Один из вариантов материального баланса установки замедленного коксования.

Существующие установки

Наиболее крупными установками замедленного коксования на НПЗ России по данным на 2017 год являются установки на «Газпромнефть-ОНПЗ» (Омск) и ПАО «ТАНЕКО» (Нижнекамск). В период 2017-2020 были запущены УЗК на «ЛУКОЙЛ-Нижегороднефтеоргсинтез», Антипинском НПЗ, Уфимском НПЗ.

источник

Технология производства нефтяного кокса и используемое в промышленности сырье

Коксование — это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка — кокса.

Коксование — это разложение при высокой температуре без доступа воздуха твердых и жидких горючих ископаемых с образованием летучих веществ и твердого остатка — кокса.

Сырье для получения нефтяного кокса

Качество сырья оказывает первостепенное влияние на характеристики конечного продукта − нефтяного кокса.

Производство кокса в СНГ в основном осуществляется на установках замедленного коксования (УЗК).

Характерной особенностью условий работы УЗК является использование в качестве сырья разнообразных смесей, остающихся на заводах в результате переработки нефти.

Сырьем служат тяжелые фракции нефти образующиеся в результате атмосферной и вакуумной перегонки нефти (мазуты, полугудроны, гудроны), крекинг-остатки от термического крекинга мазутов и гудронов, тяжелые газойли каталитического крекинга, остатки масляного производства (асфальт пропановой деасфальтизации гудрона, экстракты фенольной очистки масел и др.).

Из всех нефтяных остатков, склонных к образованию различных видов структур кокса, наиболее предпочтительными считаются ароматические концентраты (дистиллятный крекинг-остаток) и некоторые другие высокомолекулярные углеводороды.

По этой причине дистиллятное сырье относят к перспективным видам сырья.

НПЗ имеют разные производственные условия и работают на различных нефтях, поэтому для каждого НПЗ установки замедленного коксования строились с учетом конкретных условий.

Среди основных параметров, определяющих качество нефтей, таких как плотность, фракционный и химический состав нефтепродуктов, наиболее значимыми являются плотность и показатель сернистости.

Сера − одна из самых нежелательных примесей в составе сырых нефтей и конечного продукта − кокса.

В зависимости от массовой доли серы коксы, так же как и нефти, классифицируются на малосернистые, сернистые, высокосернистые.

Сернистые коксы отличаются менее благоприятными свойствами, по сравнению с малосернистыми коксами: вызывают коррозию оборудования, повышенное количество трещин в электродных изделиях, разрушение огнеупорной кладки печей прокаливания, вследствие чего их использование ограничено определенными областями.

Нефть, поступающая на нефтеперерабатывающие заводы, различается по составу, особенно по содержанию серы.

Для для России характерна переработка в основном сернистой и высокосернистой нефти.

К малосернистым (нефть с содержанием серы менее 0,5%) относят большую часть бакинских, грозненских, сахалинских, туркменских и некоторых украинских нефтей, а также казахстанских нефтей.

Сернистую нефть с содержанием серы 0,5-2,5% добывают в Урало-Поволжском районе (Туймазинское, Ромашинское месторождения и другие), в Западной Сибири (Самотлорское, Нижневартовское, Мегионское и другие).

К высокосернистым (нефть с содержанием серы более 2,5%) относятся месторождения − Арланское, Радаевское, Покровское (Урало-Поволжский район).

В настоящее время основным сырьем для получения кокса являются сернистые нефти.

Применение технологий, позволяющих получать качественный кокс независимо от состава исходной нефти, решает многие проблемы:
обеспечивает электродную промышленность качественным сырьем, позволяет задействовать в производстве более широкий диапазон нефтей, а также углубить процесс переработки нефти на НПЗ.

С целью обессеривания конечного продукта применяется прокаливание кокса.

Еще один путь получения обессеренного нефтяного кокса из высокосернистых марок нефти − это предварительное удаление серы из сырой нефти методом гидрообессеривания, гидрокрекинга, или деасфальтизации.

Этот вариант считается более действенным, несмотря на то, что является более сложным и требует дополнительных затрат.

На российские заводы нефть поставляется, главным образом, по системе магистральных нефтепроводов (МНП) Транснефти, в которой Западно-Сибирская нефть, марки Siberian Light смешивается с более тяжелой и сернистой нефтью марки Urals.

Способы получения сырого и обожженного нефтяного кокса

Коксование нефтяного сырья − наиболее жесткая форма термического крекинга нефтяных остатков.

Осуществляется при низком давлении и температуре 480-560 оС, с целью получения нефтяного кокса, а также углеводородных газов, бензинов и керосино-газойлевых фракций.

При коксовании происходит расщепление всех компонентов сырья с образованием жидких дистиллятных фракций и углеводородных газов; деструкция и циклизация углеводородов с интенсивным выделением керосино-газойлевых фракций; конденсация и поликонденсация углеводородов и глубокое уплотнение высокомолекулярных соединений с образованием сплошного коксового остатка.

Промышленный процесс коксования осуществляется на установках 3 х типов: периодическое коксование в коксовых кубах, замедленное коксование в камерах, непрерывное коксование в псевдоожиженном слое кокса-носителя.

Замедленное (полунепрерывное) коксование наиболее широко распространено в мировой практике.

Сырье, предварительно нагретое в трубчатых печах до 350-380 оС, непрерывно поступает на каскадные тарелки ректификационной колонны (работающей при атмосферном давлении), стекая по которым, контактирует с поднимающимися навстречу парами, подаваемыми из реакционных аппаратов.

Читайте также:  Установка прошивки на роутер zyxel

В результате тепло- и массообмена часть паров конденсируется, образуя с исходным сырьем так называемое вторичное сырье, которое нагревается в трубчатых печах до 490-510 о С и поступает в коксовые камеры − полые вертикальные цилиндрические аппараты диаметром 3-7 м и высотой 22-30 м.

В камеру реакционная масса непрерывно подается в течение 24-36 часов и благодаря аккумулированной ею теплоте коксуется.

После заполнения камеры коксом на 70-90% его удаляют, обычно струей воды под высоким давлением (до 15 МПа).

Кокс поступает в дробилку, где измельчается на куски размером не более 150 мм, после чего подается элеватором на грохот, где разделяется на фракции 150-25, 25-6 и 6-0,5 мм.

Камеру, из которой выгружен кокс, прогревают острым водяным паром и парами из работающих коксовых камер и снова заполняют коксуемой массой.

Летучие продукты коксования, представляющие собой парожидкостную смесь, непрерывно выводятся из действующих камер и последовательно разделяются в ректификационной колонне, водоотделителе, газовом блоке и отпарной колонне на газы,

Типичные параметры процесса: температура в камерах 450-480 о С, давление 0,2-0,6 МПа, продолжительность до 48 часов.
Достоинства замедленного коксования − высокий выход малозольного кокса.

Из одного и того же количества сырья этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании.

На российских НПЗ эксплуатируются 1-блочные и 2-блочные установки коксования (каждый блок состоит из 2 х или 3 х реакторов) нескольких типов.

Компоновка, проектирование установок произведены по проектам институтов Гипронефтезаводы и ВНИПИнефть.

Проводят в горизонтальных цилиндрических аппаратах диаметром 2-4 м и длиной 10-13 м.

Сырье в кубе постепенно нагревают снизу открытым огнем.

Далее обычным способом выделяют дистилляты, кокс подсушивают и прокаливают (2-3 часа).

После этого температуру в топке под кубом постепенно снижают и охлаждают куб сначала водяным паром, а затем воздухом.

Когда температура кокса понизится до 150-200 о С, его выгружают.

Типичные параметры процесса: температура в паровой фазе 360-400 о С, давление атмосферное.

Этим способом получают электродный и специальный виды высококачественного кокса с низким содержанием летучих.

Однако способ малопроизводителен, требует большого расхода топлива, а также значительных затрат ручного труда и поэтому почти не используется в промышленности.

Непрерывное коксование в кипящем слое (термоконтактный крекинг)

Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем и коксуется на его поверхности в течение 6-12 минут.

В качестве теплоносителя используется обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы.

Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель).

Там слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю.

Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор.

Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа.

Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании.

Типичные параметры процесса: температура в теплообменнике 300-320 о С, реакторе 510-540 о С и регенераторе 600-620 о С, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, теплоноситель — (6,5-8,0)

Коксование в кипящем слое используют для увеличения выхода светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса может быть применено для получения дизельных и котельных топлив.

Перед использованием нефтяной кокс обычно подвергается облагораживанию, включающему несколько процессов.

При прокаливании удаляются летучие вещества и частично гетероатомы (например, сера и ванадий), снижается удельное электрическое сопротивление.

При графитировании 2-мерные кристаллиты превращаются в кристаллические образования 3-мерной упорядоченности.

В общем виде стадии облагораживания можно представить следующей схемой: Кристаллиты → карбонизация (прокаливание при 500-1000 о С) → 2-мерное упорядочение структуры (1000-1400 о С) → предкристаллизация (трансформация кристаллитов при 1400 о С и выше) → кристаллизация, или графитированние (2200-2800 о С).

— алюминиевая промышленность, в качестве восстановителя (анодная масса) при выплавке алюминия из алюминиевых руд (бокситов). Удельный расход кокса 550 — 600 кг/т алюминия.

— сырье для изготовления электродов, используемых в сталеплавильных печах;

— сырье для получения карбидов (кальция, кремния), которые применяются при получении ацетилена;

— производство шлифовочных, абразивных материалов,

— при изготовлении проводников, огнеупоров и др.

— в качестве восстановителей и сульфидирующих агентов (сернисты1 и высокосернистый),

— для изготовления химической аппаратуры, работающей в условиях агресивных сред, в ракетной технике и тд (конструкционный материал).

источник