Меню Рубрики

Установки для проверки повышенным напряжением

Испытание повышенным напряжением

1. Общие положения.

К работе по проведению высоковольтных испытаний в электроустановках допускаются специалисты электролаборатории, лица не моложе 18 лет, прошедшие специальную подготовку и проверку знаний схем испытаний и правил испытаний в условиях действующих электроустановок.

Лица, допущенные к проведению испытаний, должны иметь отметку об этом в удостоверении в графе “Свидетельство на право проведения специальных работ” и ПУЭ.

2. Сущность процесса высоковольтных испытаний.

Испытание изоляции повышенным напряжением позволяет убедиться в наличии необходимого запаса прочности изоляции, отсутствии местных общих дефектов, не обнаруживаемых другими способами. Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами (измерение сопротивления изоляции, определение влажности изоляции и т.п.).

Величина испытательного напряжения для каждого вида оборудования определяется установленными нормами “Правил эксплуатации электроустановок потребителей”.

Электрооборудование и изоляторы электроустановок, в которых они эксплуатируются, испытываются повышенным напряжением по нормам, установленным для класса изоляции данной установки.

Изоляция считается выдержавшей электрическое испытание повышенным напряжением в том случае, если не было пробоя, перекрытия по поверхности, поверхностных разрядов, увеличения тока утечки выше нормированного значения, наличия местных нагревов от диэлектрических потерь. В случае несоблюдения одного из этих факторов — изоляции электрического испытания не выдержала.

3. Измерение сопротивления изоляции мегаомметром.

Для измерения сопротивления изоляции используются мегаомметры типа М4100/1-5 на напряжение от 100 до 2500В. Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “Л” (линия) должен быть подключен к токоведущей части испытываемой установки, а зажим “З” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

Мегаомметры дают правильные показания при вращении ручки генератора в пределах 90-150 об/мин и развивают номинальное напряжение при 120 об/мин и разомкнутой внешней цепи.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на шкале мегаомметра через 60 с, причем отсчет времени надо производить после достижения нормальной частоты вращения генератора.

При изменении сопротивления изоляции объектов с большой емкостью во избежание колебания стрелки прибора необходимо ручку генератора вращать с частотой, несколько выше номинальной, т.е. 130-140 об/мин (увеличивая скорость до успокоения стрелки) и отсчет показания производить только после того, стрелка займет устойчивое положение.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены.

При производстве измерений в сырую погоду необходимо учитывать возможное искажение показаний мегаомметра за счет увлажнения поверхности изолирующих частей установки. В этом случае необходимо пользоваться зажимом мегаомметра “Э”, который должен быть присоединен таким образом, чтобы исключить возможность замера поверхностных токов утечки.

4. Определение увлажненности изоляции методом абсорбции.

Метод основан на сравнении показаний мегаомметра, снятых через 15 и 60 сек. после приложения напряжения. Метод применяется для определения увлажненности гигроскопической изоляции электрических машин и трансформаторов.

Измерение сопротивления изоляции производится между каждой обмоткой и корпусом и между обмотками при изолированных свободных обмотках.

Коэффициент абсорбции равен:

где R60 и R15 — сопротивления изоляции, измеренные соответственно через 60 и 15 сек после приложения напряжения мегаомметром.

Для неувлажненных обмоток при t = 10-30оС этот коэффициент равен 1,3-2, для увлажненных обмоток он близок к единице.

Измерения производятся мегаомметром на напряжение 1000-2500В.

Измерение коэффициента абсорбции производится при t не ниже 10оС.

5. Описание процесса испытания повышенным напряжением.

5.1. Перед началом работы производителю работ необходимо проверить исправность испытательного оборудования.

5.2. При сборке испытательной цепи прежде всего выполняются защитное и рабочее заземление испытательной установки, и если потребуется, защитное заземление корпуса испытываемого оборудования.

Перед присоединением испытательной установки к сети 380/220В на ввод высокого напряжения установки накладывается заземление. Сечение медного провода, с помощью которого заземляется вывод должно, быть не менее 4 кв мм.

Сборку цепи испытания оборудования производит персонал бригады, проводящей испытания.

5.3. Присоединение испытательной установки к сети напряжением 380/220В производится через коммутационный аппарат с видимым разрывом цепи или через штепсельную вилку, расположенную на месте управления установкой.

Читайте также:  Установка антены в триколоре

5.4. Присоединить провод к фазе, полюсу испытываемого оборудования или к жиле кабеля; отсоединить его разрешается по указанию лица, руководящего испытанием, и только после их заземления.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

-проверить, все ли члены бригады находятся на указанных местах, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

-предупредить бригаду о подаче напряжения и убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки, после чего подать на нее напряжение 380/220В;

-с момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода, считается находящейся под напряжением и производить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается;

-после окончания испытаний производитель работ должен снизить напряжение испытательной установки до 0, отключить ее от сети 380/220В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде. Только после этого можно пересоединять провода от испытательной установки или в случае полного окончания испытания, отсоединять их и снимать ограждения.

6. Порядок проведения испытаний установкой АИИ-70.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, автоматический выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа, а положение предохранителей соответствовало бы напряжению сети. При транспортировках высоковольтный трансформатор должен быть надежно закреплен внутри аппарата, рукоятка регулятора напряжения утоплена, дверцы закрыты, банка для испытания жидкого диэлектрика вынута из аппарата, а кенотронная приставка надежно закреплена.

При помощи щупа следует периодически проверять расстояние между электродами банки, которое должно быть равно 2,5 мм. Щуп должен входить между электродами без качки, но не очень туго.

6.1. Порядок проведения испытаний установкой УПУ-1М.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, сетевой выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа. Данная установка предназначена только для испытаний электрозащитных средств.

ПРАВИЛА БЕЗОПАСНОСТИ

1. Прежде чем приступить к испытаниям, необходимо заземлить медным проводом, сечение которого не менее 4 мм2, аппарат, ручной разрядник (в случаях, оговоренных ниже)., высоковольтный трансформатор и кенотронную приставку.

РАБОТА БЕЗ ЗАЗЕМЛЕНИЯ НЕДОПУСТИМА!

2. Необходимо установить защитное ограждение с предупреждающими надписями. Его крепят со стороны изоляционных трубок к кенотронной приставке (к скобам на кожухе микроамперметра), а со стороны металлических стержней — к поворотным ушкам каркаса пульта управления.

3. Любые переключения как на высоковольтной, так и на низковольтной стороне аппарата производить после отключения аппарата от сети при надежном заземлении высоковольтных частей.

4. Кабель либо другой объект со значительной емкостью после испытания необходимо заземлить, так как на испытуемом объекте в процессе испытания и даже после сохраняется заряд, предоставляющий большую опасность для жизни. Без заземления кабеля дверцу на крыше аппарата не открывать!

5. Все высоковольтные испытания производить в резиновых перчатках, стоя на резиновом коврике

ИСПЫТАНИЯ КАБЕЛЯ

1. Заземлить аппарат и ручной разрядник. В случае, если кенотронная приставка и высоковольтный трансформатор вынесены за пределы аппарата, они также подлежат заземлению.

2. Откинуть заднюю верхнюю дверцу аппарата, установив ее на кронштейне. Откинуть заднюю нижнюю дверцу и установить на нее кенотронную приставку, заведя ее лапы под скобу и выдавки дверцы.

Вставить в отверстие верхней дверцы рукоятку переключения пределов и

сочленить ее при помощи ключа с переключателем пределов блока

микроамперметра. Рукоятку заземлить.

3. Достать из запасных частей пружину и присоединить ее одним концом к высоковольтному повышающему трансформатору, а другим к высоковольтному выводу кенотронной приставки, расположенной посередине цилиндра.

Вставит вилку кенотронной приставки в розетку пульта управления (сзади слева).

Рукоятку «Защита» установить в положение «Чувствительная».

4. Подключить при помощи кабеля испытуемый объект к кенотронной приставке (муфту кабеля навернуть на вывод блока микроамперметра до упора) и установить защитное ограждение. Аппарат в рабочем положении показан на рис. 1.

5. Включить вилку шнура питания в сеть и, встав на резиновый коврик, включить аппарат.

При этом загорается зеленый сигнал, а после нажатия кнопки автомата «Вкл.» — красный.

6. Плавно вращая рукоятку регулятора напряжения по часовой стрелке, повысить напряжение до испытательного (отсчет вести по шкале киловольтметра, отградуированной в киловольтах максимальных)

7. Переключая рукоятку переключения пределов с большей кратности на меньшую и нажимая кнопку в центре рукоятки, измерять ток утечки.

Примечание: при измерении показание микроамперметра в делениях умножить на кратность предела.

8.После испытания снизить испытательное напряжение до нуля и нажать кнопку «Откл.»

Читайте также:  Установка tor ubuntu из репозитория

9. Поднести стержень ручного разрядника к разрядному крючку блока микроамперметра и снять емкостный заряд через разрядное сопротивление, встроенное внутри разрядника, а затем заземлить блок микроамперметра наглухо, повесив разрядник на крючок блока микроамперметра или на ручку кенотронной приставки.

Примечание: при необходимости аппарат можно включить через стабилизатор напряжения, однако при этом вследствие искажения формы кривой напряжения пользоваться градуировочными данными, снятыми при работе с конкретным стабилизатором.

Порядок испытания твердых диэлектриков такой же, как и кабеля.

7. Испытания повышенным напряжением промышленной частоты распределительных устройств (вместе с коммутационными аппаратами).

1. Подготовить испытываемый объект к испытаниям, для чего отключить от РУ трансформаторы напряжения, вентильные разрядники, кабели, которые должны быть закорочены и заземлены. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2,5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

8. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением распределительное устройство; величины испытательного напряжения приведены в таблице № 1. Продолжительность приложения испытательного напряжения 1 мин для керамической изоляции, 5 мин — для изоляции из твердых органических материалов. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных цепей 1 мин.

Испытательное напряжение кВ, ячейки с изоляцией

источник

Установки для проверки повышенным напряжением

Испытания изоляции повышенным напряжением позволяют выявить локальные дефекты, не обнаруживаемые иными методами; кроме того, такой метод испытаний является прямым способом контроля способности изоляции выдерживать воздействия перенапряжений и дает определенную уверенность в качестве изоляции. К изоляции прикладывается испытательное напряжение, превышающее рабочее напряжение, и нормальная изоляция выдерживает испытания, а дефектная пробивается.

При испытаниях повышенным напряжением используются три основных вида испытательных напряжений: повышенное напряжение промышленной частоты, выпрямленное постоянное напряжение и импульсное испытательное напряжение (стандартные грозовые импульсы).

Основным видом испытательного напряжения является напряжение промышленной частоты. Время приложения такого напряжения – 1 мин, и изоляция считается выдержавшей испытания, если за это время не наблюдалось пробоя или частичных повреждений изоляции. В некоторых случаях проводят испытания напряжением повышенной частоты (обычно 100 или 250 Гц).

При большой емкости испытуемой изоляции (при испытании кабелей, конденсаторов) требуется применение испытательной аппаратуры большой мощности, поэтому такие объекты чаще всего испытываются повышенным постоянным напряжением. Как правило, при постоянном напряжении диэлектрические потери в изоляции, приводящие к ее нагреву, на несколько порядков ниже, чем при переменном напряжении такого же эффективного значения; кроме того, и интенсивность частичных разрядов намного ниже. При таких испытаниях нагрузка на изоляцию существенно меньше, чем при испытаниях переменным напряжением, поэтому для пробоя дефектной изоляции требуется более высокое постоянное напряжение, чем испытательное переменное напряжение.

При испытаниях постоянным напряжением дополнительно контролируется ток утечки через изоляцию. Время приложения постоянного испытательного напряжения составляет от 5 до 15 мин. Изоляция считается выдержавшей испытания, если она не пробилась, а значение тока утечки к концу испытаний не изменилось или снизилось.

Третьим видом испытательного напряжения являются стандартные грозовые импульсы напряжения с фронтом 1,2 мкс и длительностью до полуспада 50 мкс. Испытания импульсным напряжением производят потому, что изоляция в процессе эксплуатации подвергается воздействию грозовых перенапряжений со схожими характеристиками. Воздействие грозовых импульсов на изоляцию отличается от воздействия напряжения частотой 50 Гц из-за гораздо большей скорости изменения напряжения, приводящей к другому распределению напряжения по сложной изоляции типа изоляции трансформаторов; кроме того, сам процесс пробоя при малых временах отличается от процесса пробоя на частоте 50 Гц, что описывается вольт-секундными характеристиками. По этим причинам испытаний напряжением промышленной частоты в ряде случаев оказывается недостаточно.

Воздействие грозовых перенапряжений на изоляцию часто сопровождается срабатыванием защитных разрядников, срезающих волну перенапряжения через несколько микросекунд после ее начала, поэтому при испытаниях используют импульсы срезанные через 2–3 мкс после начала импульса (срезанные стандартные грозовые импульсы). Амплитуда импульса выбирается исходя из возможностей оборудования, защищающего изоляцию от перенапряжений, с некоторыми запасами и исходя из возможности накопления скрытых дефектов при многократном воздействии импульсных напряжений. Конкретные величины испытательных импульсов определяются по ГОСТ 1516.1-76.

Испытания внутренней изоляции проводят трех ударным методом. На объект подается по три импульса положительной и отрицательной полярности, сначала полные, а затем срезанные. Интервал времени между импульсами – не менее 1 мин. Изоляция считается выдержавшей испытания, если во время испытания не произошло ее пробоев и не обнаружено повреждений. Методика обнаружения повреждений довольно сложна и обычно проводится осциллографическими методами.

Внешняя изоляция оборудования испытывается 15 ударным методом, когда к объекту с интервалом не менее одной минуты прикладывается по пятнадцать импульсов обеих полярностей, как полных, так и срезанных. Изоляция считается выдержавшей испытания, если в каждой серии из пятнадцати импульсов было не более двух полных разрядов (перекрытий).

Читайте также:  Установка и настройка параметров сетевого адаптера

Все виды испытаний можно разделить на три основные группы, различающиеся по назначению и соответственно по объему и нормам:

· испытания новых изделий на заводе-изготовителе;

· испытания после прокладки или монтажа нового оборудования, испытания после капитального ремонта;

· периодические профилактические испытания.

При профилактических или послеремонтных испытаниях проверяется способность изоляции проработать без отказа до следующих очередных испытаний. Контроль изоляции повышенным напряжением дает только косвенную оценку длительной электрической прочности изоляции, и основная его задача — проверка отсутствия грубых сосредоточенных дефектов.

Испытательные напряжения для нового оборудования на заводах-изготовителях определяются ГОСТ 1516.2-97, а при профилактических испытаниях величины испытательных напряжений принимаются на 10 –15% ниже заводских норм. Этим снижением учитывается старение изоляции и ослабляется опасность накопления дефектов, возникающих при испытаниях.

Контроль изоляции повышенным напряжением в условиях эксплуатации проводится для некоторых видов оборудования (вращающиеся машины, силовые кабели) с номинальным напряжением не выше 35 кВ, поскольку при более высоких напряжениях испытательные установки слишком громоздки.

Кабели. Испытательные напряжения для кабелей устанавливаются в соответствии с ожидаемым уровнем внутренних и грозовых перенапряжений.

На заводах-изготовителях маслонаполненные кабели и кабели с маловязкой пропиткой испытывают повышенным напряжением промышленной частоты (около 2,5 Uном). Кабели с вязкой пропиткой и газовые кабели для предотвращения повреждения изоляции испытывают выпрямленным напряжением порядка (3,5..4) Uном, где Uном – линейное напряжение при рабочих напряжениях 35 кВ и менее.

Кроме того, измеряют сопротивление изоляции, а при рабочих напряжениях 6 кВ и более измеряют сопротивление изоляции и tgδ.

После прокладки кабеля, после капитального ремонта и во время профилактических испытаний изоляцию кабелей испытывают повышенным выпрямленным напряжением. Время испытаний для кабелей напряжением 3–35 кВ составляет 10 мин для кабелей после прокладки и 5 мин после капитального ремонта и во время профилактических испытаний. Периодичность профилактических испытаний составляет от двух раз в год до одного раза в три года для разных кабелей. При испытаниях контролируется ток утечки, значения которого лежат в пределах от 150 до 800 мкА/км для нормальной изоляции. До и после испытаний измеряется сопротивление изоляции.

Силовые трансформаторы . На заводе-изготовителе внутренняя и внешняя изоляция испытывается полными и срезанными стандартными грозовыми импульсами, а также повышенным переменным напряжением промышленной частоты. Обнаружение повреждений продольной изоляции чаще всего проводят осциллографированием тока в нейтрали трансформатора и сравнением осциллограммы с типовой.

Если изоляция нейтрали и линейного вывода одинакова, то при испытаниях повышенным переменным напряжением оба конца испытуемой обмотки изолируются и на обмотку подается напряжение от постороннего источника. Если уровень изоляции нейтрали понижен, то испытания проводятся индуктированным напряжением повышенной частоты (до 400 Гц) с тем, чтобы можно было бы подавать напряжение порядка 2 Uном. Нейтраль при этом заземляется или на нее подается постороннее напряжение той же частоты. Поскольку ЭДС самоиндукции в обмотке пропорциональна частоте, то при той же максимальной индукции можно приложить повышенное, по сравнению с рабочим, испытательное напряжение.

При испытаниях изоляции должна быть испытана поочередно каждая электрически независимая цепь или параллельная ветвь (в последнем случае – при наличии полной изоляции между ветвями), а испытательное напряжение прикладывается между выводом и заземленным корпусом, все другие обмотки заземляются. Измерения сопротивления изоляции проводят до и после испытаний повышенным напряжением.

Перед первым включением вновь смонтированного трансформатора измеряют пробивное напряжение трансформаторного масла, сопротивление изоляции и коэффициент абсорбции, отношение C2/C50, tgδ (значение которого сравнивают с результатами заводских испытаний).

Во время периодических профилактических испытаний проводят те же испытания, что и перед первым включением, но допустимые значения tgδ при этом увеличены. Испытания изоляции повышенным напряжением при профилактических испытаниях предполагаются для обмоток напряжением до 35 кВ, значения испытательных напряжений при этом снижаются до 0,85-0,9 значения заводского испытательного напряжения.

Периодичность профилактических испытаний для разных трансформаторов колеблются от одного раза в год до одного раза в четыре года.

Вводы высокого напряжения . Основной вид контроля — периодический осмотр (от одного раза в трое суток до одного раза в шесть месяцев), также измеряют сопротивление изоляции между специальной измерительной обкладкой ввода и соединительной втулкой. Периодичность таких испытаний для разных вводов разная, но не реже одного раза в 4 года.

5.1. Нормируемые величины [1]

Испытания электрооборудования повышенным напряжением проводятся перед приемкой в эксплуатацию в сроки, предусмотренные графиком планово-предупредительных ремонтов и профилактических испытаний электрооборудования.

Нормы, условия испытаний и порядок их проведения представлены в таблице 1.

Таблица 1. Нормы, условия испытаний повышенным напряжением и указания их проведению

источник